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Abstract.
games where agents may depend on each other for the satisfaict
their personal goals. In this work we investigate two défertypes
of social networksabstract dependence netwokksdrefined depen-
dence networkghat are used to define the notionstéible coalitions
and A-reduction, respectively. Stable coalitions enable taifoon

a subset of the agents and use results to determinatoibef the

Cooperative boolean games are a family of coalitionalBonzon et al. [2] show that the notion of stability is completith re-

spect to the pure Nash equilibrium with non costly actions sivow
in this paper that the notion of stability is complete alsthwespect
to the solution concept of the core in case of cooperativdeamo
games with costly actions. In Bonzon et al. [3], the authottered
their previous results with a generalization to non-diohwus pref-
erences, where agents can not only express plain satisfawntplain

whole gameA-reduction prunes the search space by returning a sefissatisfaction, but also intermediate levels. This galigation suf-

of actions that are not admissible to be executed. We preseal-
gorithm based on stable coalitions and\areduction implemented
in Prolog and experimental results that show how they effelgt
improve the computation of the core.

1 Introduction

fices to replace the preference component of a boolean garae by
input expressed in a propositional language for compademece
representation.
After Castelfranchi [4], Boella et al. [1] and Sauro [9] shbaw

to use social dependence networks to discriminate amofifgy ettt
potential coalitions during the coalition formation preseThey de-
velop a criterion of admissibility called do-ut-des prapetescribing

a condition of reciprocity: an agent gives a goal only if tfast en-

Cooperative Boolean Games [5] are a new particular family ofaples it to obtain, directly or indirectly, the satisfactiof one of its
boolean games [7, 6]. In such type of games, agent's primany a own goals. This criteria has only a qualitative connotatibnannot

is to achieve its individual goal, which is represented asop@si-
tional logic formula over some set of boolean variables.hEagent
is assumed to exercise a unique control over some subset ovén-
all set of boolean variables, and the set of truth assignsrfenthese
variables corresponds to the set of actions the agent canAalsec-
ondary aim, each agent wants to minimize the cost assodiatibe
execution of its actions. As in typical coalitional games, agent
can have the necessity to cooperate with the others becadsesi
not have sufficient control to ensure its goals are satisfiesever,
the desire to minimize costs leads to preferences overlgesiali-
tions, and hence to strategic behavior. One of the solutiorcepts
proposed for such games is the notion of core that strengttien
Nash equilibrium: a truth assignment of the boolean vaeskbtrat-
egy profile) is in the core in case no subset of agents canteraly
deviate from it and improves the rewards of each of its member

be directly applied to the solutions developed in game théorthis
approach goals are not structured and they do not repregaitity
the costs of the actions.

Refined dependence networks essentially provide a graph-rep
sentation of a cooperative boolean game where the numarfoal
mation about costs is abstracted and actions are simplyipaed in
free and costly actions. We present a reduction, calegduction,
to pass from a cooperative boolean gath a cooperative boolean
game (CBG)(’, simpler to be solved because less actions can be
executed. In Sauro et al. [10], the introduction of abstaact refined
dependence networks is provided. We extend the resultenezs
in [10] with the definition of the algorithm allowing the ajgztion
of the A-reduction and the experimental results it allows to achiev

The reminder of the paper is as follows. In section 2 we folynal
define cooperative boolean games. Section 3 shows the aption

In this paper, we propose a new step to make the computation Ggchniques relative to the core-membership problem. Qe and

the core easier by means of the social dependence netwatsi-as
ated to the cooperative boolean game. The reasons of owechm
twofold: first, we present a number of abstractions thatatio re-
duce the search space by means of a set of criteria principadled
on graphs visit algorithms which are computationally tahé; sec-
ond, we underline a number of hidden properties in the natf@ore
showing how, in certain cases, this notion is too much snict, thus,
it can lead to counterintuitive results.

5 present the algorithms and the experimental results. IGsinos
end the paper.
2 Cooperative Boolean games

A Cooperative Boolean Game (CBG) [5] consists of a set of &gen
1,...,n which desire to accomplish personal goals. Goals are rep-

We define two kinds of social dependence networks, repriesent resented by propositional formulasover some set of boolean vari-

two different levels of abstraction of a cooperative boolgame.

ables®. Each agent controls a (possibly empty) sulsBetC & of

Abstract dependence networks have already be used by Batzon the overall set of boolean variables. The notion of consalsed to

al. [2] to define stable coalitions which enable to divide émtire
problem in subproblems and then combine their solutionsiléNVh
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mean that agent has the unique ability within the game to set the
value (eitherT or L) of each variable € ®,. Variables are assumed
to be initially false, this way of setting a variabec ® to beT has
the meaning operforming the actiorp, whereas setting € ® to

1 meansdoing nothing Since action (as opposed to inaction) typi-



cally incurs some cost, Dunne et al. [5] define the cost fonetbst
in such a way thatost(p) denotes the cost of performing actipn

®p = ;e p @i- Ifavaluations: is the same as a valuatign except

at most in the value of the variables controlled Bythen&; = &

(i.e., settingp to T). Agents’ secondary goal is to minimize its costs. mod D.

Summing up briefly, if the only way an agent can achieve itd goa

by making all its variables true, then the agent prefers thitorather
than not achieve its goal but if there are different ways tuiee it,
then the agent prefers always those that minimize costs.

Definition 1 A cooperative boolean gantgis a (2n + 3)-tuple
G = (A, D, cost, V1, ...;Vn, P1, ..., Pn)

whereA = {1,...,n} is a set of agentsp = {p, q, ...} is a finite
set of boolean variablegpst is a cost function defined i — R,

D blocks¢; throughés sinceés could do better thag; only by

flipping the value of some of the variables under the contfaDo

From Dunne et al. [5], the definition of blocked valuation ssfal-
lows:

Definition 2 (Blocked Valuation)

A valuation¢; is blocked by a coalitiorD C A through a valuation
& ifand only if:

1. & is afeasible objection by coalitioP which means thag, = &

mod D.

71, .-, Yo @re the boolean formulas ovér which represent the goals 5 p strictly preferse, overéy: Vi € D : €5 = £1.

of the agents andb, ..., ®,, is a partition of & over n, with the

intended interpretation thab; is the set of Boolean variables under

the control of agent.

The blocked valuation allows us to define the core of a codpera
boolean game. The core is a fundamental concept behindionali
game theory. A valuation is in the core if and only if no caafithas

A subset of @ is a valuation, where the usual meaning is that the gy incentive to defect.

value of the variables belonging §as true and the value of the other

ones is false§ = ¢ means tha is true under the valuatiohunder
the standard propositional semantics.

Valuations intuitively correspond to possible strategadsthe
agents, in Dunne et al. [5}ost;(£) denotes the cost to agenbf
valuation¢ C &, that is,

cost;i (&) =

Z cost(v)

vE(END;)

As in Dunne et al. [5], we define an utility function that is alyg
positive if the valuatior¢ satisfies the goal of the agehaind oth-
erwise it is always negative. However, this is not an utifitpction

Definition 3 (Core)
Given a cooperative boolean gartig ¢ € core(G) if and only if it
is not blocked by any coalition.

We focus now on the problem of computing the core of a CBG. In
general, this problem can be seen as a generation and te&mro
generate a strategy, then check whether it belongs to tieeacoord-
ing to Definition 3. Thus, it is useful in the following to cader
a generation spacethat is the set of strategigswe need to check
core-membership, andtast spacethe set of strategie we search
to establish whethef belongs to the core. Clearly, if no optimization

in the classical way as discussed by von Neumann and Morgenst is implemented both the generation and the test space tamsie

[8] such as, for example, a functian: X — R from choices to the
real numbers assigning a real number to every outcome in dahady

captures the agent's preferences over both simple and aordpot-

teries. In [5], if u represents the total cost of all variables, the utility

for agent; of a valuation, u; (&) is defined as:
1+ pu — cost;i ()

ey if & =
ui() = { —cost; (&)

otherwise
This utility function leads to a preference orderover valuations:

set of all strategies and unfavorable have a cardinalitalemp2!®'.

3 Reducing the generation space

In Sauro et al. [10], we introduce two optimization techrguhat
enable to reduce the generation space. Both of them are bagkd
notion of social dependence network that can be definedrgfdrom
a CBG. These social networks, on the one hand, explicitlyesemt
the inter-dependencies among agents according to thds, gwathe

&1 & iff wi(€1) > wi(€2). The best utility for an agent is reached other hand they abstract from the quantitative aspects aheegs-

if it has its goal satisfied without performing any actioniltyt of

sociated to the cost function. In particular, the first tyfesacial

w + 1) while the worst utility for an agent is reached in the case itdependence network, we named Abstract Dependence Nefvi®rks

does not get its goal satisfied but it performs actions su¢h set all
its variables true (utility—cost; (®;)).

Typically, an agent has to cooperate with the other agerause
it does not have sufficient control to ensure its goal is BatisHow-
ever, aiming at minimizing its costs, an agent is prefeedigtuinwill-
ing to execute one of the actions under its control. Theesfagents
cooperate only in the case in which a cooperative solutigumefer-
able to the alternatives, either because the agents cattrieva their
goals independently or their can reduce their respectig. dihe
utility achieved by agents within a coalition depends nst un their
actions but on the actions of the whole set of agents invaivede
game.

A coalition D is represented as a (sub)set of agefitsc A and
thus it does not represent any kind of particular relatignsimong
the members composing it. Lé&d C A be a coalition, therbp
denotes the set of variables under the control of some meaofiliey

the same already used in Bonzon et al. [2] as decompositithaaie
for the Nash Equilibrium in Boolean Games without costlyi@ts.
In Sauro et al. [10] we essentially extend the results in Banet
al. [2] to the framework defined in Dunne et al. [5].

As in Bonzon et al. [2], in order to correctly establish theele-
dencies among agents we need to define which variables evamel
for the satisfaction of the agents’ goal. A variaples said irrelevant
for a formula¢ in case there exists an equivalent formglavhere
p does not occur. WittRV (i) we represent the set of all variables
p € ® that are relevant fof;, whereasR A (i), is the set of agents
j € A such thatj controls at least one relevant variableiofThe
notions of relevant agent and relevant variable are crucialhat
follows since they allow to define dependence networks aadvey
to prune them. Using the notion of relevant agents, we defide-a
pendence network where nodes represent agents and an eaige fr
to j represents the dependence ohj (j € RAg(7)).



Definition 4 (Abstract Dependence Network)

Given the CBGG = (A, @, cost, V1, ..., Yn, P1, ..., Dpn), the ab-
stractdependence network ¢f is the directed graph ADNZ) =
(N, R) such that the set of node$ correspond to the agents i,
N = A,and(i,j) € Riff j € RAc(3).

As in Bonzon et al. [2] we say that a set of agent?\IDN(G) is
stable in case it islosedunder the relatiork. R(C') is the set of

players from whichC' may need some action in order to be satisfied. RDN(G) =

Definition 5 (Stable set) Given a directed grapkN, R), C C N is
stable iff R(C') C C, i.e. foralli € C, for all j such that(z, j) € R
jecC.

Definition 6 (ADN Projection)
LetG = (A, @, cost,y1, ..., Vn, D1, ..., Pr) be a CBG, ADNG) =
(N, R) the corresponding abstract dependence graph &hd=

{i1,...,im} C N a stable set, the projection ofG
on C is defined by Ge = (C,Pc,costc, iy, Yims
D; ..., D, ), Wherecostc : o — RT is the restriction ofcost

on the set of boolean variable of @.

By definition the goals occurring in the projection of a CBG @n
stable set” does not contain variables controlled by agents outsid

C, therefore the projection is itself a CBG.

By using stable sets, Abstract Dependence Networks carfélg sa

used to split the original problem in subproblems withowisiog
solutions. However, Abstract Dependence Networks may $idee
useful information that can also be used to prune some gtestthat

cannot belong to the core - and hence to reduce the search. spac
For this reason we define another notion of dependence retator
a lower level of abstraction called Refined Dependence N&&vo

(RDNSs). These social networks may seem actually equivadetite
boolean game itself, except for the cost of the variablessg&ltosts,

however, are not a minor point since two boolean games tlsattre

in the same RDN can have different solutions.

to~; and T referred to they;;. Roughly, each AND-are outgoing
the agent corresponds to &;; € 7, where each single edge that
composeg is labeled with a literal occurring iny;; and reaches the
agent that controls the corresponding variable. Theé\sebnsists of
the actions that have a strictly positive cost.

Definition 8 (From CBGs to RDNS)

Given the CBG G = (A, @, ¢, 715 ooy Yy @1y ey P,

(N, ®,A,E,®y,...,D,) is such thatN = A,
A = {p S ¢ | c(p) > O} and {(i,j1,l1),...,
(4, Jm,lm)} € Eiff {l1,...,ln} € s and foralll < h < m,
| ln |€ @jh.

Example 1 Let G be a cooperative boolean game definedAy=
{1,2,3,4}, ® = {a,b,¢,d, e}, cost(a) = cost(b) = cost(c) =
cost(d) = cost(e) = 1,71 = a,v2 = cAe 3 = bAcg,
va =d, Py = {b,e}, o = {d}, P35 = {a}, P4 = {c}. The associ-
ated refined dependence netw@lONg = (A, D, E, $q, ..., D),
where E is composed by the following dependencigét, 3,a)},

{(37 1,0), (3,4, C)}' {(27 1,e), (2,4, C)}v {(47 2, d)}

Given a Refined Dependence NetworlRDN(G) =
(N, ®,AE, ®q,...,P,), we mean withRg C N x N the

eDinary relation such thdt, j) € Rg just in the case there exists an

AND-arce € E that starts from and reacheg, i.e. for some literal

1, (i,7,1) € e. Itis easy to see thakDN(G) = (N, Rg) and hence
RDN(G) describes? at a lower level of abstraction with respect to
ADN(G).

¢onstraints to the sebre(G). To this scope some preliminary results
are needed. A boolean variahlec ®; is said to beunfavorableif
andonly ifa € A, i.e.cost(a) > 0, and for eacHl1,...,ln} € v,

a & {li,...,lm}. In the following we denote by:i]~ the set of
unfavorable variables of the agent

Proposition 1 Given a cooperative boolean gamizand an agent

A Refined Dependence Network represents how the goals canc A, for eacha ¢ [], € € core(G) impliesa ¢ €.
be satisfied by means of AND-arcs among the agents whose sin-

gle edges are labeled with literals. Furthermore, costtioas are
markedin a setA.

Definition 7 (Refined Dependence Network)
A Refined Dependence Network is a
(N, ®, A, E, ®q,...,D,) where N is the set of nodesd is the

set of boolean va_riablesz} C @ is the subset of costly variablés
E C N x 2WXLitt®) where Litt(®) = & U {-plp € &} and
®; C & wheren is the cardinality ofN.

Proof 1 a € [i]” means thatost(a) > 0 and a does not occur
(positive) invy;. Assume tha§ = ~;, then, for som€lq,...,ln} €
¥i, & E {l1,...,lm}. Sincea & {l1,...,ln}, this means that also

E\{a} = {l, - I}

AND-graph  Now it remains to show that if for eagh¢ |= ~; implies¢\{a} =

vi, then¢ € core(G) impliesa ¢ &. Assume that € &, clearly
&\ {a} = & mod {i} asa € ®;. Furthermore, agost; (£ \ {a}) <

cost;(€) and by hypothesi§ | ~; implies¢ \ {a} E i, then
& <i &\ {a}. But this means that is blocked byi through¢ \ {a}.

Given a literall, we denote by|i| the corresponding boolean Note that, according to Proposition 1, if all the variables anfavor-

variable. If I € @, then| [ |= [ whereas ifl =
|l I=

—p then

{(¢,j1,11),- -, (i, 4m,lm)}. Of course, a setad1, 3, p), (3,4,9)}
has no meaning in our context.

able, the core can contain only the empty strategy. We pruaea

p. Furthermore, to simplify the formalism, we repre- goal depending on an unfavorable variablean be reduced into one
sent an AND-arc(z, {(j1,%1),.-., (Jm,lm)}) as the set of triples

that does not depend anwithout affecting the possible solutions.
More precisely, we define the notion of reduction as follows.

We use Refined Dependence Networks to reveal the structure ddefinition 9 Given a cooperative boolean gargéand an unfavor-

interdependencies among agents. First, we assume thabahe af
the agents do not contain irrelevant variables and are givelis-
junctive normal form, i.ey; = i, V --- V 7, where eachy;; is
a conjunction of literals [11]. To simplify again the fornsah we
describe respectively; as a set ofy;; and eachy;; as a set of liter-
als - the empty set has the usual meaning respectively &ferred

3 The set of variables with an associated cost.

able variablea € [1]~, we say that the cooperative boolean gafife
is a A-reduction ofG just in the case it is obtained frod applying

the following steps:

1. removeu from ®;;
2. remove from each; any conjunction of typéls, ..., a,...
3. replace in eachy; any conjunction of typél,, ...

, G, .

with {01, ..., I}

We want to use Refined Dependence Networks to impose some



Figure 1. Refined Dependence Network of Example 1.

Proposition 2 Let G’ be a A-reduction of a CBGG, coreg(G) C
core(G").

Proof 2 For each valuatiorg that does not contain the unfavorable
variable q, it clearly holds for each agentthatw; () in G is equal
to w; (€) in G'. Therefore, if inG’, £ is blocked byC' through &5,
then the same holds i@ and hence corg) C core(G’).

The converse does not hold. Note that the previous result®tio

2. £ € corg(G) == £ is contrib(&) minimal for veonrip (e

Each¢ in the generation space such that eitheitrib (&)  ben (&)

or itis not contrib (&) minimal for y.,,i5(¢) €an be discarded with-
out checking whether it is blocked, thus, both the propsmigempt
to reduce the test space to the empty set. Whether they cambe p
itably used as optimization technique clearly depends erctimpu-
tational complexity.

Since the conditiorontrib(£) Z ben (&) can be easily computed,
the first property is a possible optimization techniqueualty it has
been implemented in our framework). On the contrary, withaop
that is essentially the same as Theorem 1 in Dunne et al H&¢king
that¢ is not contrib (&) minimal for v, ey has the same compu-
tational complexity as checking thatbelongs to the core (coNp-
complete). Therefore, it has not been considered as a pessifdi-
date.

Note that, sincecontrib(0) = @, the empty strategy cannot be
discarded according to the first property for at least oregesily we
still have a test space of exponential size. For this reagecpnsider
some other criterion to reduce the test space. Clearly, Heicase
of unfeasible actions, we need a computationally easy waglect
a subset o2® that is complete with respect to the core-membership

use quantitativevalues of the cost function but only the fact that problem.

an action has a strictly positive value, therefore theydesin the

On the one hand, when a strategis optimal for an agent, i.e.

level of abstraction of RDNs. We can now define a procedure orx — argma u;(€), no other strategy can be strictly more profitable

RDN(G) which uses unfavorable variables andreductions to re-
duce the search space in finding the core.

Definition 10 (Reduction rule) Let RDNG) be a Refined Depen-
dence Network and let denoting a valuation initially set t@, the
reduction rule RDNG) is given by applying exhaustively the follow-
ing rule:

Condition: for somea € ®; N A, there does not exist an AND-arc
e outgoing fromi such that(i, j, a) € e (i.e. a is unfavorable).

Action: remove any AND-are’ such that(j,i,a) € ¢, a from ®;
and adda to w.

Due to propositions 1 and 2, the valuatienwe obtain from defi-
nition 10 constraints the strategiesdare(G) to be also in® \ w.

for i, and hence does not have any incentive to participate to a
coalition D in order to block¢. On the other hand, assume tlgat
satisfies the goa};, and for a giveru € ®;, cos{a) > cosf(¢), then

1 has no incentive to perform. The following theorem expresses
these two considerations, the proof is straightforwarditisdeft to

the reader.

Proposition 3 Given a CBCGG, a strategy and an ageni. Assume
that D blocks¢ throughé’. We have that:

1. & = argmax u;(§) =i ¢ D;
2. £ =i, a € ®; and costa) > cost(§) = a £ £,

Proposition 3 can be used to reduce the test space as follo@s.
is optimal for the agent® = {i1,...,im}, then a strategy’ that

For more details and graphical examples about ADNs and RDNgPIocks¢ is such that N @; = &' Nd;, forallj € O. Thus, the test

see [10].

4 Reducing the test space

In the previous section, we have seen how to determinateethef s

space is reduced 1g),,,, ®». Furthermore, icos(a) > cost(¢),
the test space can be further reduced to those strat€gseh that
agd.

Finally, note that to decide whether a stratggig optimal for an
agent; it is not required to check for all the other strategfewith

unfeasible actions such that the generation space becomes the powu:(§) > u:(§). As we are considering goals in disjunctive normal

erset ofd \ w. However, even if core-membership has to be checkedorm, i.e.vi = {7vi,...

just for one strategy (for example teenptystrategyl) C @ \ w), the
test space still remains the set of all strategies &, which is ex-
ponentially large in the size of a CBG. For this reason, ia giction
we study optimization techniques that reduce the test space
Before studying new optimization techniques, it is reabtmao
look for previous results that can be reused for our end. ftiqoéar,
two properties shown in Dunne et al. [5] can be taken into @aeto

, Vi }» We just have to consider the strate-
giesé;;, = {a € ® | a € v;,}. Then, the maximal value;" of
the utility ;(&;;), with 1 < j < m, corresponds to the maximal
utility agent: can obtain. Therefore, we simply have to check that

ui(§) = .

5 Algorithms

Let contrib(¢) be the set of agents that incur some positive cost in'/e use the results in Sections 3 and 4 to implement in Prolog a

& (contrib(§) = {i | Ja € {s.t.a € ®; andcos{a) > 0}) and
ben (&) thebeneficiarieof € (ben (&) = {i | £ &= v:}). Furthermore,
we writeé Cc ¢ if €N ®c C ¢ N d¢ and say that is C minimal
for ¢ in case¢ = ¢ and no¢’ Ce &, &' = ¢. Then, the following
properties hold:

1. £ € core(G) = contrib(§) C ben(§)

procedurefind_core that, given as input a CB&, returnscore(G).
A procedural description ofind_core is given in Algorithm 1. Es-
sentially, find_core consists of two procedure§IND_CORE and
CORE_MEM.

In FIND_CORE, the ADN of G is instantiated and it is partitioned
in its smallest subgraphs = {A4,..., A,} that are pairwise dis-
connected. Clearly, each; represents a stable coalition and no agent



occurs in two distincl; andA; (lines 2-3). For eachl € A, the pro-
jectionG’ of A is computed (line 6) and the core@f is determined
as follows. First, the RDN of:’ is instantiated and, according to Def-
inition 10, DELTA_RED calculates the set of unfeasible actions.
Then, for eaclkt not containing actions i, the core-membership
of ¢ is decided byCORE_MEM. If £ € coreg(G'), then it is added to
CORE'.

The core of G is computed by gathering any union of strate-
gies in eachcore(G’). This is done incrementally in line 14. In
CORE_MEM, first it is checked whethetontrib(§) C ben(€),

in affirmative case¢ cannot belong to the core and hence false

is returned. CORE_LMEM computes in line 4 the s&d of agents
such that¢ is optimal. According to Proposition 3, such agents
do not have any incentive in modifying their strategies. §hu
their strategies ardreezedin £». Then, given the action§d A

of the remaining agents, actionsof the beneficiary agents with

cos{a) > cos{¢) are discarded — again according to Proposition 3.

Input: A cooperative boolean game
G= <A7¢7008t7717 oIy Py
Output: core(G)
CORE — {0};
ADN «— CONVERT_ADN(G);
A — PAIRWISE_DIS(ADN);
forall A € Ado
CORE’ — 0;
G’ — PROJECT_CBG(G, A);
RDN «— CONVERT_RDN(G');
w < DELTA_RED(RDN);
forall ¢ C ®[G'] \ wdo
if CORE_.MEM(¢, G’) then
| CORE’ — CORE’'U{¢}
end
end

CORE « {¢ | &€ = & U&, where¢; € CORE and¢, € CORE’}

) ¢n>

0O~ O U WNPE

e el
2 WNR OO

end
return CORE;

=
o 0

Algorithm 1: FIND_CORE

Input: A cooperative boolean gantg and a strategy
Output: True if ¢ € core(G), false otherwise.
if contrib(§) € ben(§) then
| return false;
end
O — {i| & = argma u;(§)};
€0 — &NU;ico @i
TA — UJQO ‘I:‘j;
forall j € ben(&) \ O do
| TA—TA\{a|a€ ®;andcos(a) > cost;(&)};
end
forall ¢ C T Ado
if BLOCKED (¢, £o U &) then
| return false;
end
end
return true;

©OoO~NO® 0 WNE

e el
O WNERO

Algorithm 2: CORE_MEM

After this last optimization, the core membershifisitally com-
puted and a strategy blockirggis searched in the set of strategies
o UE, wheret’ is a subset of the resultiri§A.

As noted in Bonzon et al. [2], a further optimization couldibe
principle possible by removing some &g j) in ADN(G) in case
all the actions ofj that occur iny; are irrelevant. However, selecting
irrelevant variables in a formula¢ means to check the validity of

ot < ¢, whereg+ and¢, are obtained by substituting each oc-
currence ofu in ¢ with T and_L respectively. Thus, this would add
a coNP-complete step just to deal with a few casepatliological
goals and without being sure that, by removing an edge, twe su
graphs result disconnected. For this reas@N(G) is instantiated
from the initial goals, without determining irrelevant iables.

6 Experimental results
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Figure 2. Experiments varying the costs of variables and the size alsgo

We have implemented a generator that enables to instaGiREs
of different shapes The generator takes as input 6 parameters: the
number of agentsVa, the number of actions per ageM,., the
number of disjunctsNp, the number of conjunct®¢, the mini-
mal and maximal cost valu€s,,,;,, andC.,,.... As output we obtain
a CBG with N4 agents that contraN 4. variables each. An agent’s
goal takes the formy, Vv --- V vn, Where eachy; consists in a
conjunctioniy A --- A In. of randomly generated literals. Finally,
an integer cost value from@',,i, t0 Cnq. iS randomly assigned to
each propositional variable. In the figures, the ordinais eepre-
sents the run-time expressed in seconds where, for eachsepu
ting, the reported results correspond to the mean over 26 ofin
find_core. In the figures the following tuple is used for the experi-
ments[Nac, Np, No, Cmin, Crmaz)-

In Figure 2.a, the number of actions per agent as well as the-st
ture of goals remain fixedNa. = Np = N¢ = 2). Also, Crin



is fixed to0 whereas the X axis corresponds to the number of agentX axis represents different pairs of values {d¥p, N¢) such that

N 4. Different lines correspond to different values of the mai
costCrn.qz. AS can be seen, performances strongly depend,on,
and the framework behaves better by increasing it. This iy ap-
parently surprising since costless actions cannot be iedaby ap-
plying A-reduction or in lines 7-9 oEORE_MEM. Now, as the cost
of each actioru is randomly chosen in the ran@e. . ., Cpaz, the
smallerC,q. is the higher is the probability th@bs(a) = 0. In
particular, forCr.. = 2 approximatively33% of the actions cannot
be unfeasible, this rate decreasei6t and10% for Crnaz = 3

the total number of literals composing a goal is constantmeign
(6,2),(4,3),(3,4),(2,6). As before, we can see a valuable variabil-
ity in performances and, to better understand why la¥gejeopar-
dizes more than larg&p, we run a version of our framework with
only A-reduction on value&s, 2) and(2, 6). The run-times obtained
—respectively 457 and 449 seconds— are very close to the el
tained in the original framework fof2, 6). This means that the op-
timizations designed to decide the core membership perfmtier
with goals composed by several disjuncts of small size thase

and Cmaz = 9, respectively. Furthermore, dealing with randomly with few disjuncts of big size.

generated CBGs, by settiljp = Nc = 2 the resulting ADNs
are very likely to be strongly connected and hence stablkticoms
practically do not affect performances.

7 Conclusion

Figure 2.b shows how the framework behaves by increasing th# this paper we present an approach to optimize the conipntat
sizeof goals. As beforeN4. = 2 and the X axis corresponds the of the core in cooperative boolean games [5] which is esagnti

number of agent®/ 4, on the contrary the cost range is fixed te 10

— note that all variables are costly. Each line correspoadtifter-
ent goal sizesNp is set equal taVe- and their value varies from
1 to 5. With goals composed by a single litetdp = N¢o = 1,
even with 11 agentsfind_core returns in0.2 seconds. By compar-
ing with the previous figure, one of the factors that impras@snuch
performances is that the resulting ADNs present quite dftenor
more disconnected components and hence stable coalitbtunsl g
decompose the original game.
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Figure 3. Varying the number of disjuncts and conjuncts in a goal

As said before, withVa = N¢ = 2 stable coalitions practically
do not affect performances anymore. However, by generating
dom CBGs, goals are still enougimall with respect to the number
of possible literals that it is very likely that all — or all@pt — actions
result to be unfeasible. So, in most of the casesfititecore reduces
the search space to the only empty strategy and hence Ihasiial
setting measures performance<6GiRE_MEM. For larger values of

Np and N¢, performances get worse. One reason is that the proba-

bility that a costly action is unfeasible decreases withrthmber of

literals occurring in a goal. Thus, th®-reduction becomes less and

less effective.
In Figure 2, bigger goals are obtained by increasing Béthand

N¢ at the same time, but which of these two values has a higher inf10]
pact on performances? Figure 3 shows a set of experimentewhe

the number of agents, actions per agents and cost rangedd(ffexe
spectivelyN4 = 7, Nac = 3, Crnin = 1 andCia = 10). The

4 Note thatN4 = 11 andN4. = 2 mean222? ~ 4 - 10° possible strategies
composing initially both the generation and the test spaces

based on dependence networks [9, 11]. The problem of congputi
the core of a cooperative boolean gafés a typical generation and
test problem. We provide optimization techniques usingkimds of
social dependence networks for the generation phase aeddixgy
some the results provided by Dunne et al. [5] for the test@has

On the one hand, the advantage, shown by the results of 8&ctio
is that, also in the case of games with a number of strategied s
in an order of some millions, results are obtained in few r@aL
On the other hand, the optimization techniques we proposkisn
paper are referred only to actions with a positive cost. dxsiwith
no cost have not been analyzed in order to propose new optiiiz
techniques and this is left for future research. Finallg, phoposed
optimization techniques, concerning the core-membengtoplem,
return satisfactory results if they are applied to parciinds of
goals in which the disjuncts are small.

REFERENCES

[1] G. Boella, L. Sauro, and L. van der Torre, ‘Strengthensmissi-
ble coalitions’, in17th European Conference on Atrtificial Intelligence,
ECAI, pp. 195-199, (2006).

[2] E.Bonzon, M. Lagasquie-Schiex, and J. Lang, ‘Depen@snetween
players in boolean games’, Bymbolic and Quantitative Approaches
to Reasoning with Uncertainty, 9th European ConferenceS@8RU
pp. 743-754, (2007).

[3] E.Bonzon, M. Lagasquie-Schiex, and J. Lang, ‘Depensnigetween
players in boolean gamesht. J. Approx. Reasoning0(6), 899-914,
(2009).

[4] C. Castelfranchi, ‘Social power. a point missed in malgient, dai and
hci.’, in Decentralized Al - Proceedings of MAAMAW. ®lsevier Sci-
ence Publishers, (1990).

[5] P.Dunne, W. van der Hoek, S. Kraus, and M. Wooldridge d@erative
boolean games’, iiith International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS 1015-1022, (2008).

[6] P.Harrensteinl.ogic in Conflict Ph.D. dissertation, Utrecht University,
2004.

[7] P. Harrenstein, W. van der Hoek, J. Meyer, and C. Wittayd@oolean

games’, in8th Conference on Theoretical Aspects of Rationality and

Knowledge, TARKpp. 287-298, (2001).

[8] J. Neumann and O. Morgensteifheory of Games and Economic Be-
haviour, Princeton Univeristy Press, 1944.

[9] L. Sauro, Formalizing admissibility criteria in coalition formatio

among goal directed agent®h.D. dissertation, University of Turin,

2005.

L. Sauro, L. van der Torre, and S. Villata, ‘Dependentyooperative

boolean games’, i\gent and Multi-Agent Systems: Technologies and

Applications, 3rd KES International Symposium, KES-AMS®AIme

5559 ofLecture Notes in Computer Sciengp. 1-10, (2009).

J. Sichman and R. Conte, ‘Multi-agent dependence byeddgnce

graphs’, inlst International Joint Conference on Autonomous Agents

& Multiagent Systems, AAMABp. 483-490, (2002).

[11]



