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Abstract. Cooperative boolean games are coalitional games with both goals and
costs associated to actions, and dependence networks for boolean games are a
kind of social networks representing how the actions of other agents have an
influence on the achievement of an agent’s goal. In this paper, we introduce two
new types of dependence networks, called theabstract dependence networkand
therefined dependence network. Moreover, we show that the notion of stability is
complete with respect to the solution concept of thecorein the case of cooperative
boolean games with costly actions. We present a reduction, called∆-reduction,
to pass from a cooperative boolean gameG to gameG′ without loosing solutions.

1 Introduction

Dunneet al. [5] recently introduced a kind of coalitional games called cooperative
boolean games, and they characterize the complexity of the solution concepts of core
and stable sets. Moreover, Bonzon [3, 2] defines stable sets and uses dependence net-
works to simplify the computation of the pure Nash equilibrium, showing that the notion
of stability is complete with respect to the pure Nash equilibrium for actions without
costs. In this paper, we propose a new step to make the computation of the core easier
by means of the dependence networks associated with a cooperative boolean game. In
particular, we study the following two questions:

1. Is the notion of stability complete also with respect of the solution concept of the
core in the case of cooperative boolean games with costly actions?

2. How to pass from a cooperative boolean gameG to gameG′ without loosing solu-
tions?

We define two kinds of dependence networks and we show how to use them to calcu-
late the core. Abstract dependence networks (ADNs) represent a structure based on the
model presented by Bonzon et al. [3] without labels on the edges and AND-arcs, and
refined dependence networks (RDNs) with AND-arcs labeled bythe boolean variables
composing the goals. We use the dependence network to decompose games, such as
separating a game into two smaller independent games (with disconnected interdepen-
dencies) or isolating an agent requiring the execution of a costly action useless for all
the other agents. Moreover, we present a number of abstractions that allow to reduce
the search space by means of a set of criteria principally based on graphs visit algo-
rithms that are computationally tractable. Moreover, we underline a number of hidden



properties in the notion of core showing how, in certain cases, this notion is too strict
and, thus, it can lead to counterintuitive results.

The reminder of the paper is as follows. Section 2 provides anintroduction to the
framework of cooperative boolean games and their solution concept, the core. Section
3 defines the dependency relations in the cooperative boolean games, defining the two
types of dependence networks. Conclusions end the paper.

2 Cooperative Boolean games

A Cooperative Boolean Game (CBG) [5] consists of a set of agents 1, . . . , n, a set
of goals the agents desire to accomplish, the variables the agents control, and a cost
function. Goals are represented by a propositional formulaγi over some set of Boolean
variablesΦ.

Definition 1 ([5]). A cooperative boolean gameG is a(2n+3)-tupleG = 〈A, Φ, cost,
γ1, ..., γn, Φ1, ..., Φn〉 whereA = {1, ..., n} is a set of agents,Φ = {p, q, ...} is a finite
set of boolean variables,cost is a cost function defined inΦ → <+, γ1, ..., γn are
the boolean formulas overΦ representing the goals of the agents andΦ1, ..., Φn is a
partition of Φ over n, with the intended interpretation thatΦi is the set of Boolean
variables under the control of agenti.

The simple action theory works as follows, inspired by discrete event systems. For
each variablep ∈ Phi, there is one agent who can set its truth value to true or false.
Setting a variablep ∈ Φ to be> is performing the actionp, and settingp ∈ Φ to ⊥ is
doing nothing; only in the former case, the costs of the action are taken into account.
A set of variablesξ ⊆ Φ (or a strategy) stands for a valuation, in the sense that the
value of the variables belonging toξ is true and the value of the other ones is false,
and we writeξ |= φ means thatφ is true under the valuationξ under the standard
propositional semantics.costi(ξ) denotes the cost to agenti of valuationξ ⊆ Φ, that
is, costi(ξ) =

∑

v∈(ξ∩Φi)
cost(v). Agents minimize its costs only when they have

achieved their goal, or cannot achieve their goal. In other words, if the only way an
agent can achieve its goal is by making all its variables true, then the agent prefers to do
this rather than not achieve its goal. However, if there are different ways to achieve its
goal, then the agent prefers to minimize costs. This is represented by a utility function
that is always positive if the valuationξ satisfies the goal of the agenti and otherwise it
is always negative. Ifµ represents the total cost of all variables, the utility for agenti of
a valuationξ, ui(ξ) is defined as follows.

ui(ξ) =

{

1 + µ − costi(ξ) if ξ |= γi

−costi(ξ) otherwise

The meaning of the fact that coalitionD blocksξ1 throughξ2 is thatξ2 could do
better thanξ1 only flipping the value of some of the variables under the control of
D. Here a a coalitionD ⊆ A is a set of agents without represented relationship,ΦD

denotes the set of variables under the control of some memberof D, ΦD =
⋃

i∈D Φi,
andξ1 = ξ2 modD means that valuationξ2 is the same as a valuationξ1 except at most
in the value of variables controlled byD, ξ1 �i ξ2 iff ui(ξ1) ≥ ui(ξ2).



Definition 2 (Blocked Valuation [5]). A valuationξ1 is blocked by a coalitionD ⊆ A
through a valuationξ2 if and only if:(1)ξ2 is a feasible objection by coalitionD which
means thatξ2 = ξ1 mod D; (2) D strictly prefersξ2 overξ1: ∀i ∈ D : ξ2 �i ξ1.

The core is a fundamental concept in coalitional game theory. A valuation is in the
core if and only if no coalition has an incentive to defect.

Definition 3 (Core).Given a CBGG, ξ ∈ core(G) iff it is not blocked by any coalition.

The following example reproduces the classical schema of the Prisoner Dilemma,
and illustrates that Definition 3 is a strengthening of the well-known Nash equilibrium
in non-cooperative game theory [8], usually called Strong Nash Equilibrium (SNE).
This form of solution satisfies at the same time some requirements of both the cooper-
ative and non-cooperative game theory. From the solution criteria developed in cooper-
ative game theory, itborrowsefficiency, a strategy cannot be a solution if the agents or
a part of them can obtain better results. From non-cooperative game theory, it assumes
that agents are suspicious and that agreements cannot be enforced, that is at any time
agents may betray agreements.

Example 1.Let G be a CBG involving two agents.Φ1 = {a} andΦ2 = {b}, γ1 =
γ2 = a ∨ b, cost(a) = cost(b) = 1. The CBG can be represented by the following
payoff matrix:

a/b 1 0
1 (1, 1) (−1, 2)
0 (2,−1) (0, 0)

(0, 0) is the only Nash equilibrium in this game, that is not efficient as the two agents
collaborating can obtain better results,(1, 1), and hence it is not a SNE. On the other
hand, as(1, 1) is not a Nash equilibrium, it is not a SNE too. Indeed, if(1, 1) is proposed
as an agreement each agent would unilaterally betray it obtaining better results.

Note that whether SNE corresponds to the notion of core depends on how a strategic
game is translated into a cooperative game (see [9]). For example, if we use for the
strategic game in Example 1 the minimax representation of a corresponding cooperative
game - as introduced by von Neumann and Morgensten - then the strategy{1, 1} is in
the core. This kind of representation is calledoffensivebecause it is assumed that for
a certain coalitionD, the agents inA \ D worksin order to minimize the outcomes of
D. On the contrary if we adopt adefensiverepresentation where the primary aim of the
agents is to maximize their own utility, the SNE represents the core of the corresponding
cooperative game. The following example illustrates a number of cases in which, in
contrast to Example 1, the core is not empty.

Example 2.Consider a game where we have four agentsA = {1, 2, 3, 4} who want
to go in holidays to the seaside or to the mountains. We represent with the boolean
variablea to go to the seaside and withb to go to the mountains. Agenti going to
the seaside is represented by settingai to true whereas the holiday to the mountains is
represented bybi. For each agenti, cost(ai) = 2 andcost(bi) = 1. Agent 1 is in love
with agent 2 and he wants to go everywhere with her, thus its goal is represented by



γ1 = (a1 ∧ a2) ∨ (b1 ∧ b2). Agent 2 is in love with agent 1 but she cannot tolerate the
change of temperature of the mountains thus her goal isγ2 = a1 ∧ a2. Agent 3 is in
love with 2 and, as he is jealous of agent 1, he would like to stay with 2 without the
presence of 1γ3 = (a2 ∧ a3 ∧ ¬a1) ∨ (b2 ∧ b3 ∧ ¬b1). Agent 4 is in love with agent 3,
who does not like him, but she is not able to swim thus its goal is γ4 = b3 ∧ b4. Let us
say that agenti is satisfied given a valuationξ if ξ |= γi, i.e., if i’s goal is satisfied. It
can be verified that{a1, a2} is in the core.

3 Dependency Relations in CBG

Dependence networks have been developed by Conte and Sichman [12] as a kind of so-
cial network representing how each agent depends on other agents to achieve the goals
he cannot achieve himself. The notion of agent dependence used to define dependence
networks is related to the concept of social power, introduced by Castelfranchi [4].
Sauro [11, 1] shows how to use dependence networks to discriminate among different
potential coalitions during the coalition formation process. The authors develop a cri-
terion of admissibility calleddo-ut-des propertydescribing a condition of reciprocity.
Moreover, they define another criterion, called the indecomposable do-ut-des property,
establishing which coalitions cannot be formed under the assumption that agents are
self-interested. These two criteria have only a qualitative connotation and thus, they
cannot be directly applied to the solutions developed in game theory. Moreover, goals
are not structured and they do not represent explicitly costs of the actions.

The first attempts of use of the dependence networks to represent and simplify the
computation of the solution concepts for boolean games are given by Bonzon [2] and
Bonzon et al. [3]. Representing these dependencies on a graph, they show how to com-
pute pure-strategy Nash equilibria without enumerating all combinations of strategies.
This work does not consider costly actions and dependence networks are simple graph
without labeled edges.

In this section we present two types of dependence networks defined starting from
a CBG. These networks, on the one hand, explicitly representthe inter-dependencies
among agents according to their goals, on the other hand, they abstract from the quanti-
tative aspects of a game associated to the cost function. Abstract Dependence Networks
describe only which agents can play a role in the satisfaction of an agent’s goal, there-
fore they abstract from how they can contribute and in particular if they have to execute
a costly action. As this information may help in the study of the core and reduces the
search space, we define another type of dependence network, the Refined Dependence
Networks, which, as the name suggests, refine Abstract Dependence Networks by rep-
resenting how agents contribute to the satisfaction of a goal and whether this involves a
positive cost (without quantifying it). Starting from the Refined Dependence Networks,
we define a method called∆ − reduction to reduce the admissible strategies and we
prove the completeness of the∆ − reduction with respect to the computation of the
core.



3.1 Abstract Dependence Networks

As in Bonzon et al. [3], in order to correctly establish the dependencies among agents
we need to define which variables are relevant for the satisfaction of the agents’ goal.
A variablep is said irrelevant for a formulaφ in case there exists an equivalent formula
φ′ wherep does not occur. WithRVG(i) we represent the set of all variablesp ∈ Φ
that are relevant forγi, whereasRAG(i) is the set of agentsj ∈ A such thatj controls
at least one relevant variable ofi. Using the notion of relevant agents, we define a
dependence network where nodes represent agents and an edgefrom i to j represents
the dependence ofi from j (j ∈ RAG(i)).

Definition 4 (Abstract Dependence Network).
Given the CBGG = 〈A, Φ, cost, γ1, ..., γn, Φ1, ..., Φn〉, theabstractdependence net-
work ofG is the directed graph ADN(G) = 〈N, R〉 such that the set of nodesN corre-
sponds to the agents inG, N = A, and(i, j) ∈ R iff j ∈ RAG(i).

As in [3] we say that a set of agents inADN(G) is stable in case it isclosedunder
the relationR. R(C) is the set of players from whichC may need some action in order
to be satisfied.

Definition 5 (Stable set).Given a directed graph〈N, R〉, C ⊆ N is stable iffR(C) ⊆
C, i.e. for all i ∈ C, for all j such that(i, j) ∈ R j ∈ C.

Note that the notion of stable set is not related to the strategic criterion of the same
name originally introduced by von Neumann and Morgenstern [10].

Definition 6 (ADN Projection).
Let G = 〈A, Φ, cost, γ1, ..., γn, Φ1, ..., Φn〉 be a CBG, ADN(G) = 〈N, R〉 the corre-
sponding abstract dependence graph andC = {i1, . . . , im} ⊆ N a stable set, the
projection ofG on C is defined byGC = 〈C, ΦC , costC , γi1 , ..., γim

, Φi1 , ..., Φim
〉,

wherecostC : ΦC → <+ is the restriction ofcost onΦC .

As shown in Bonzon et al. [3] the projection of a CBG on a stableset is itself a CBG.

Proposition 1. Given a CBGG, if C is a stable set,GC is a cooperative boolean game.

In Bonzon et al. [3] the authors show that by restricting a boolean gameG to the
projectionGC of a stable setC, if a strategy profileξC in GC is not a Nash equilibrium,
then all of its extensions inG are not a Nash equilibrium. Here we extend this result to
the case of the core in CBG with costly actions.

Proposition 2. Given a stable setC, if ξ is in core(G), thenξC is in core(GC), where
ξC is the projection ofξ on the variables controlled byC, ξC = ξ ∩ ΦC .

Proof. Let ξ̄ a generic valuation inG andξ̄C the projection of̄ξ on the variables con-
trolled byC. Clearly, for alli ∈ C, costi(ξ̄) = costi(ξ̄C). Furthermore, asC is stable,
for all i ∈ C, RVG(i) = RVGC

(i) and hencēξ |= γi iff ξ̄C |= γi. This entails that for
two generic valuations̄ξ andξ̂ and for alli ∈ C, ui(ξ̄) ≤ ui(ξ̂) iff ui(ξ̄C) ≤ ui(ξ̂C).

Assume that there exists a valuationξ′C that blocksξC , i.e. there exists aC′ ⊆ C
such thatξ′C = ξC mod C′ and for alli ∈ C′ ξ′C �i ξC . Now let ξ−C = ξ ∩ ΦA\C

andξ′ = ξ′C ∪ ξ−C . Clearly,ξ′ = ξ mod C′ and, since for alli ∈ C ui(ξ) ≤ ui(ξ
′) iff

ui(ξC) ≤ ui(ξ
′
C), ξ is blocked byC′ throughξ′.



Finally, we defineconsistencysuch that given two coalitionsD1 andD2, we say that
two relative strategiesξD1

and ξD2
areconsistentif and only if for each agenti ∈

D1 ∩ D2, Φi ∩ ξD1
= Φi ∩ ξD2

. The following two propositions hold - the proof is
straightforward and it is left to the reader.

Proposition 3. Let ξ be a strategy blocked by a coalitionD throughξ′ and C be a
stable set such thatC′ = C ∩ D 6= ∅, thenξ is blocked byC′ throughξ′C .

Proposition 4. Given the stable setsC1, . . . , Cn and relative strategiesξC1
, . . . , ξCn

,
if

1. for all 1 ≤ i ≤ n, ξi ∈ core(GCi
);

2. ξC1
, . . . , ξCn

are consistent;
3. A =

⋃n
i=1 Ci,

then
⋃n

i=1 ξi ∈ core(G).

Propositions 2 and 4 provide a way to decompose the problem ofdetermining the core
of a CBGG into the subgamesGCi

, whereC1, . . . , Cn are stable sets that involve all
the agents inG. Then, once eachcore(GCi

) is determined, it remains to gather any
unionξ of consistent strategiesξCi

∈ core(GCi
), with 1 ≤ i ≤ n. Due to Proposition

4 ξ ∈ core(G), whereas, Proposition 2 ensures that in this way we find all the elements
in core(G), indeed ifξ′ ∈ core(G), thenξ′Ci

∈ core(GCi
), with 1 ≤ i ≤ n and hence

ξ′ is the union of consistent solutions in eachGCi
.

Example 3 (Continued).The abstract dependence network of the game in Example 2 is
ADN = 〈N, E〉, whereN = {1, 2, 3, 4} andR = {(1, 2), (2, 1), (3, 1), (3, 2), (4, 3)}.
This ADN is depicted in Figure 1-(a) where the edges represent the dependence of
the first agent on a second one for a boolean variable composing its goal and the circle
represents the stable setC. Let us consider agents 1 and 2 (see Figure 1-(a)), following
Definition 5 they represent a stable set (all the edges that goout from agent 1 enter
in agent 2 and converse), so we can consider first the projection of the game on them
(Definition 6). We can represent valuations asuvyz ∈ {0, 1}4, whereu represents the
value ofa1, v that ofa2, y the value ofb1 andz that ofb2. Following Definition 6, it
can be found that1100 is the only strategy in the core. Due to Propositions 2, also in
the complete game all the strategies containing eitherb1 or b2 and not containing one
of a1 anda2 are blocked.

3.2 Refined Dependence Networks

As seen before, by using stable sets Abstract Dependence Networks can be safely used
to split the original problem in subproblems without loosing solutions. However, Ab-
stract Dependence Networks may hide some useful information that can also be used
to prune some strategies that cannot belong to the core - and hence to reduce the search
space. For this reason we define another notion of dependencenetwork at a lower level
of abstraction and we call it Refined Dependence Network (RDN). These networks



Fig. 1.a)- ADN of Example 3 with the stable set C, b)- RDN of Example 6,c)- RDN of Example
6 after the∆-reduction

may seem actually equivalent to the boolean game itself, except for the cost of vari-
ables. These costs, however, are not a minor point since two boolean games that result
in the same RDN can have different solutions.

A Refined Dependence Network represents how the goals can be satisfied by means
of AND-arcs among the agents whose single edges are labeled with literals. Further-
more, costly actions aremarkedin a set∆.

Definition 7 (Refined Dependence Network).
A Refined Dependence Network is an AND-graph〈N, Φ, ∆, E, Φ1, ..., Φn〉 whereN
is the set of nodes,Φ is the set of boolean variables,∆ ⊆ Φ is the subset of costly
variables1, E ⊆ N × 2(N×Litt(Φ)) whereLitt(Φ) = Φ ∪ {¬p|p ∈ Φ} andΦi ⊆ Φ
wheren is the cardinality ofN .

In the following, given a literall, we denote by| l | the corresponding boolean
variable, that is ifl ∈ Φ, then| l |= l whereas ifl = ¬p, | l |= p. Furthermore, to
simplify the formalism, we represent an AND-arc(i, {(j1, l1), . . . , (jm, lm)}) as the
set of triples{(i, j1, l1), . . . , (i, jm, lm)}. Of course, a set as{(1, 3, p), (3, 4, q)} has no
meaning in our context.

As already done for Abstract Dependence Networks, we use Refined Dependence
Networks to reveal the structure of interdependencies among agents. First, we assume
that the goals of the agents do not contain irrelevant variables and are given in disjunc-
tive normal form, i.e.γi = γi1 ∨ · · · ∨ γim

where eachγij
is a conjunction of literals.

Note that the deletion of these irrelevant variables is coNP-complete. We expect that
a goal does not contain irrelevant variables, alternatively it is possible to consider the
whole set of variables occurring in a formula, avoiding in this way this computational
cost. To simplify again the formalism we describe respectively γi as a set ofγij

and
eachγij

as a set of literals - the empty set has the usual meaning respectively of ⊥
referred toγi and> referred to theγij

. Roughly, each AND-arce outgoing the agent
i corresponds to aγij

∈ γi, where each single edge that composese is labeled with a
literal occurring inγij

and reaches the agent that controls the corresponding variable.
The setΓ consists of the actions that have a strictly positive cost.

1 The set of variables with an associated cost.



Definition 8 (From CBGs to RDNs).
Given the CBGG = 〈A, Φ, cost, γ1, ..., γn, Φ1, ..., Φn〉, the corresponding Refined De-
pendence Network RDN(G) = 〈N, Φ, ∆, E, Φ1, ..., Φn〉 is such thatN = A, ∆ = {p ∈
φ | cost(p) > 0} and{(i, j1, l1), . . . , (i, jm, lm)} ∈ E iff {l1, . . . , lm} ∈ γi and for all
1 ≤ h ≤ m, | lh |∈ Φjh

.

Example 4.Let G be a cooperative boolean game defined byA = {1, 2, 3, 4}, Φ =
{a, b, c, d, e}, cost(a) = cost(b) = cost(c) = cost(d) = cost(e) = 1, γ1 = a,
γ2 = c ∧ e, γ3 = b ∧ c, γ4 = d, Φ1 = {b, e}, Φ2 = {d}, Φ3 = {a}, Φ4 = {c}.
The associated refined dependence networkRDNG = 〈A, Φ, E, Φ1, ..., Φn〉, whereE
is composed by the following dependencies:{(1, 3, a)}, {(3, 1, b),
(3, 4, c)}, {(2, 1, e), (2, 4, c)}, {(4, 2, d)}.

Given a Refined Dependence NetworkRDN(G) = 〈N, Φ, ∆, E〉, we mean with
RE ⊆ N × N the binary relation such that(i, j) ∈ RE just in the case there exists an
AND-arce ∈ E that starts fromi and reachesj, i.e. for some literall, (i, j, l) ∈ e. It is
easy to see thatADN(G) = 〈N, RE〉 and henceRDN(G) describesG at a lower level
of abstraction with respect toADN(G).

We want to use Redefined Dependence Networks to impose some constraints to
the setcore(G). To this scope some preliminary results are needed. A boolean variable
a ∈ Φi is said to beunfavourableif and only if a ∈ ∆, i.e. cost(a) > 0, and for each
{l1, . . . , lm} ∈ γi, a 6∈ {l1, . . . , lm}. In the following we denote by[i]− the set of
unfavourable variables of the agenti.

Proposition 5. Given a cooperative boolean gameG and an agenti ∈ A, for each
a ∈ [i]−, ξ ∈ core(G) impliesa 6∈ ξ.

Proof. a ∈ [i]− means thatcost(a) > 0 anda does not occur (positive) inγi. As-
sume thatξ |= γi, then, for some{l1, . . . , lm} ∈ γi, ξ |= {l1, . . . , lm}. Sincea 6∈
{l1, . . . , lm}, this means that alsoξ \ {a} |= {l1, . . . , lm}.

Now it remains to show that if for eachξ, ξ |= γi implies ξ \ {a} |= γi, then
ξ ∈ core(G) impliesa 6∈ ξ. Assume thata ∈ ξ, clearlyξ \ {a} = ξ mod {i} asa ∈ Φi.
Furthermore, asci(ξ \ {a}) < costi(ξ) and by hypothesisξ |= γi impliesξ \ {a} |= γi,
thenξ ≺i ξ \ {a}. But this means thatξ is blocked byi throughξ \ {a}.

Note that according to Proposition 5 it can be easily seen in Example 4 that, as all the
variables are unfavourable, the core can contain only the empty strategy. We also prove
that a goal depending on an unfavourable variablea can be reduced into one that do
not depend ona without affecting the possible solutions. More precisely,we define the
notion of reduction as follows.

Definition 9. Given a cooperative boolean gameG and an unfavourable variablea ∈
[i]−, we say that the cooperative boolean gameG′ is a ∆-reduction ofG just in the
case it is obtained fromG applying the following steps:

1. removea fromΦi;
2. remove from eachγi any conjunction of type{l1, . . . , a, . . . , ln};
3. replace in eachγi any conjunction of type{l1, . . . ,¬a, . . . , ln} with {l1, . . . , ln}.



Proposition 6. LetG′ be a∆-reduction of a CBGG, core(G) ⊆ core(G′).

Proof. For each valuationξ that does not contain the unfavourable variablea, it clearly
holds for each agenti thatui(ξ) in G is equal toui(ξ) in G′. Therefore, if inG′, ξ′1 is
blocked byC throughξ′2, then the same holds inG and hencecore(G) ⊆ core(G′).

Note that the converse does not hold. Consider Example 5:

Example 5.Let G be a cooperative boolean game composed by 3 agents and such that
Φ1 = {a}, Φ2 = {b, c} andΦ3 = {d}, γ1 = b, γ2 = a ∨ (c ∧ d) andγ3 = c ∧ b,
cost(a) = cost(b) = 1 and cost(c) = cost(d) = 2. The boolean variablea is an
unfavourable variable then the∆-reduced gameG′ is such thatΦ1 = ∅, Φ2 = {b, c}
andΦ3 = {d}, γ1 = b, γ2 = c ∧ d andγ3 = c ∧ b. The functioncost is the same as in
G. It is easy to see that{c, d} ∈ core(G′) whereas inG it is blocked by{1, 2} through
{a, b}.

Note that the previous results do not usequantitativevalues of the cost function
but only the fact that an action has a strictly positive value, therefore they reside in the
level of abstraction of RDNs. We can now define a procedure onRDN(G) which uses
unfavourable variables and∆-reductions to reduce the search space in finding the core.

Definition 10 (Reduction rule).Let RDN(G) be a Refined Dependence Network and
let ω denoting a boolean formula initially set to>, the reduction rule RDN(G) is given
by applying exhaustively the following rule:

Condition: for somea ∈ Φi ∩ ∆, there does not exist an AND-arce outgoing fromi
such that(i, i, a) ∈ e (i.e.a is unfavourable).

Action: remove any and-arce′ such that(j, i, a) ∈ e′, a from Φi and updateω with
ω ∧ ¬a.

Due to Propositions 5 and 6, the boolean formulaω we obtain from definition 10 con-
straints the strategies that can be in the core ofG, that isξ ∈ core(G) impliesξ |= ω.

Example 6 (Continue).Let us consider again the cooperative boolean game of Ex-
ample 2. In the corresponding RDN all the actions involve some positive cost, thus
∆ = Φ. The AND-arcs are shown in Figure 1-(b) (without connections for simplic-
ity of the figure) and all the edges are labeled with the boolean variable they rep-
resent. By exhaustively applying the rule in the Definition 10, b2 satisfies the given
condition, therefore we remove the AND-arc{(1, 2, b2), (1, 1, b1)} and the AND-arc
{(3, 3, b3), (3, 2, b2), (3, 1,¬b1)}. After these deletions, alsob1 andb3 satisfy the con-
dition in Definition 10, and hence also the AND-arc{(4, 3, b3), (4, 4, b4)} has to be
removed. Finally, alsob4 satisfies the condition, therefore as outputω is equal to¬b1 ∧
¬b2 ∧ ¬b3 ∧ ¬b4 ∧ ¬a4, therefore the only strategies that can be in the core are the
subsets of{a1, a2}. The RDN of Example 6 after the application of the∆-reduction is
depicted in Figure 1-(c).



4 Conclusion

In this paper we present a new approach to cooperative boolean games [5] based on
dependence networks [12]. Differently from Bonzon et al. [3], we use dependence net-
works to reduce the search space thanks to the application ofgraphs’ visit algorithms
and to argue on the notion of core, showing a number of hidden properties of this solu-
tion concept. Moreover, we define two different kinds of dependence networks, abstract
and refined dependence networks in which, differently from [3], we introduce costly
actions, labeled edges and ADN-arcs. Finally, we present the ∆-reduction that allows
to reduce the search space to find the strategies in the core without loosing solutions.

Concerning future work, we can address our methodology and results to the other
solution concepts, for example instead of Strong Nash equilibrium we could represent
the core with a less restrictive notion of stability such as the Coalitional-proof Nash
equilibrium. In particular, it has been shown that if a game has only one Nash Equilib-
rium, then it is also a Coalitional-proof Nash equilibrium.Moreover, we are working on
an algorithmFIND CORE to search the strategies in the core using the∆ − reduction
without loosing solutions.

Finally, we aim at evaluate the implemented algorithm in concrete domains - such
as the Grid - which can be represented as exchange networks [11]. Several game the-
oretical approaches used to model such domains require numerical information about
private utilities or the degrees of collaboration, howeversuch information is generally
not available. Conversely, Cooperative Boolean Games can be set up on the base of
known information: the goals that the agents request when they join an exchange mar-
ket and the costs of the resources they offer.
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