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Abstract

Cooperative boolean games are a family of coalitional games where agents
may depend on each other for the satisfaction of their personal goals. In
Dunne et al. [1] the authors define as solution concept the notion of core show-
ing that several decision problems, such as core-emptiness, are Πp

2-complete.
In this work we investigate how to improve the computation of the core.
In particular, we introduce two different types of dependence networks, ab-
stract dependence networks and refined dependence networks, that are used
to define the notion of stable coalitions and ∆-reduction, respectively. Stable
coalitions enable to focus on a subset of the agents and use results to deter-
minate the core of the whole game. ∆-reduction prunes the search space by
returning a set of actions that are not admissible to be executed. We present
an algorithm based on stable coalitions and a ∆-reduction implemented in
Prolog and experimental results showing how they effectively improve the
computation of the core.
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1. Introduction

Cooperative Boolean Games [1] (CBG) are a particular family of boolean
games [2, 3]. In such type of games, agents’ primary aim is to achieve their
individual goal, which is represented as a propositional logic formula over
some set of boolean variables. Each agent is assumed to exercise a unique
control over some subset of the overall set of boolean variables, and the set
of truth assignments for these variables corresponds to the set of actions the
agent can take. As secondary aim, each agent wants to minimize the cost
associated to the execution of her actions. As in typical coalitional games,
an agent can have the necessity to cooperate with the others because she

Preprint submitted to Journal of Logic and Computation July 12, 2010



does not have sufficient control to ensure her goals are satisfied. However,
the desire to minimize costs leads to preferences over possible coalitions, and
hence to strategic behavior. One of the solution concepts proposed for such
games is the notion of core that strengthens the Nash equilibrium criterion:
a truth assignment of the boolean variables (strategy profile) is in the core
in case no subset of agents can unilaterally deviate from it and improve the
rewards of each of its members.

In this paper, we propose a new step to make the computation of the core
easier by means of the dependence networks associated to the cooperative
boolean game. The reasons of our choice are twofold: first, we present a
number of abstractions that allow to reduce the search space by means of
a set of criteria principally based on graph visit algorithms which are com-
putationally tractable; second, we underline a number of hidden properties
in the notion of core showing how, in certain cases, this notion is too much
strict and, thus, it can lead to counterintuitive results.

We define two kinds of dependence networks, representing two different
levels of abstraction of a cooperative boolean game. Abstract dependence
networks have already be used by Bonzon et al. [4] to define stable coalitions
which enable to divide the entire problem in subproblems and then combine
their solutions. While Bonzon et al. [4] show that the notion of stability is
complete with respect to the pure Nash equilibrium with non costly actions,
we show in this paper that the notion of stability is complete also with
respect to the solution concept of the core in case of cooperative boolean
games with costly actions. Refined dependence networks essentially provide
a graph representation of a cooperative boolean game where the numerical
information about costs is abstracted and actions are partitioned in free and
costly actions. We present a reduction, called ∆-reduction, to pass from a
cooperative boolean game G to a CBG G′, simpler to be solved because less
actions can be executed.

Dependence networks enable to reduce the generation space, that is the
set of truth assignments on which core-membership has to be checked. We
also define optimization techniques that improve the core-membership prob-
lem and provide experimental results of a Prolog implementation.

The reminder of the paper is as follows. In section 2 we formally define
cooperative boolean games and the core. Section 3 introduces the depen-
dency relations in cooperative boolean games by defining the two types of
dependence networks. Section 4 shows the optimization techniques relative
to the core-membership problem. Sections 5 and 6 present the algorithms to
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simplify the computation of the core and the experimental results. Section
7 gives an informal introduction to the various kinds of boolean games and
dependence networks studied in multiagent systems. Conclusions end the
paper.

2. Cooperative Boolean games

A Cooperative Boolean Game [1] consists of a set of agents 1, . . . , n which
desire to accomplish personal goals. Goals are represented by propositional
formulas γi over some set of boolean variables Φ. Each agent controls a
(possibly empty) subset Φi ⊆ Φ of the overall set of boolean variables. The
notion of control is used to mean that agent i has the unique ability within
the game to set the value (either ⊤ or ⊥) of each variable p ∈ Φi. Variables
are assumed to be initially false, this way of setting a variable p ∈ Φ to be ⊤
has the meaning of performing the action p, whereas setting p ∈ Φ to ⊥
means doing nothing. Since action (as opposed to inaction) typically incurs
some cost, Dunne et al. [1] define the cost function cost in such a way that
cost(p) denotes the cost of performing action p (i.e., setting p to ⊤). As
in [1], we do not consider the cost about refraining from doing something
even if there may be contexts in which it is possible that both doing and
not doing an action have costs. Agents’ secondary goal is to minimize their
costs. Summing up briefly, if the only way an agent can achieve her goal is
by making all her variables true, then the agent prefers to do that rather
than not achieve her goal but if there are different ways to achieve it, then
the agent prefers always those that minimize costs.

Definition 1 (Cooperative Boolean Game [1]).
A cooperative boolean game G is a (2n + 3)-tuple

G = 〈A, Φ, cost, γ1, ..., γn, Φ1, ..., Φn〉

where A = {1, ..., n} is a set of agents, Φ = {p, q, ...} is a finite set of
boolean variables, cost is a cost function defined in Φ→ ℜ+, γ1, ..., γn are the
boolean formulas over Φ which represent the goals of the agents and Φ1, ..., Φn

is a partition of Φ over n, with the intended interpretation that Φi is the set
of boolean variables under the control of agent i.

A subset ξ of Φ is a valuation, where the usual meaning is that the value
of the variables belonging to ξ is true and the value of the other ones is

3



false. ξ |= φ means that φ is true under the valuation ξ under the standard
propositional semantics.

Valuations intuitively correspond to possible strategies of the agents, in
Dunne et al. [1], costi(ξ) denotes the cost to agent i of valuation ξ ⊆ Φ, that
is,

costi(ξ) =
∑

v∈(ξ∩Φi)

cost(v)

As in Dunne et al. [1], we define a utility function that is always positive
if the valuation ξ satisfies the goal of the agent i and otherwise it is always
negative. If µ represents the total cost of all variables, the utility for agent i
of a valuation ξ, ui(ξ) is defined as:

ui(ξ) =

{

1 + µ− costi(ξ) if ξ |= γi

−costi(ξ) otherwise

This utility function leads to a preference order�i over valuations: ξ1 �i ξ2

if and only if ui(ξ1) ≥ ui(ξ2). The best utility for an agent is reached if she
has her goal satisfied without performing any action (utility of µ + 1) while
the worst utility for an agent is reached in the case she does not get her
goal satisfied but she performs actions such as to set all her variables true
(utility −costi(Φi)).

Typically, an agent has to cooperate with the other agents because she
does not have sufficient control to ensure her goal is satisfied. This means that
an agent may not have under her control all the variables she needs to be set
as ⊤ in order to achieve her goal. However, aiming at minimizing her costs,
an agent is preferentially unwilling to execute one of the actions under its
control. Therefore, agents cooperate only in the case in which a cooperative
solution is preferable to the alternatives, either because the agents cannot
achieve their goals independently or their can reduce their respective cost.
The utility achieved by agents within a coalition depends not only on their
actions but on the actions of the whole set of agents involved in the game.

A coalition D is represented as a (sub)set of agents, D ⊆ A and thus it
does not represent any kind of particular relationship among the members
composing it. Let D ⊆ A be a coalition, then ΦD denotes the set of variables
under the control of some member of D, ΦD =

⋃

i∈D Φi. If a valuation ξ2

is the same as a valuation ξ1 except at most in the value of the variables
controlled by D then ξ1 = ξ2 mod D.
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The meaning of “D blocks ξ1 through ξ2” is that ξ2 could do better than ξ1

only flipping the value of some of the variables under the control of D. From
Dunne et al. [1], the definition of blocked valuation is as follows:

Definition 2 (Blocked Valuation [1]).
A valuation ξ1 is blocked by a coalition D ⊆ A through a valuation ξ2 if and
only if:

1. ξ2 is a feasible objection by coalition D which means that ξ2 = ξ1 mod D.

2. D strictly prefers ξ2 over ξ1: for all i ∈ D : ξ2 ≻i ξ1.

The blocked valuation allows us to define the core of a cooperative boolean
game. The core is a fundamental concept behind coalitional game theory. A
valuation is in the core if and only if no coalition has an incentive to defect.

Definition 3 (Core).
Given a cooperative boolean game G, ξ ∈ core(G) if and only if it is not
blocked by any coalition.

Definition 3 is a straightening of the well-known Nash equilibrium which
in non-cooperative game theory [5] is usually called Strong Nash Equilibrium
(SNE). This form of solution satisfies at the same time some requirements of
both the cooperative and non-cooperative game theory. From the solution
criteria developed in cooperative game theory it borrows efficiency, a strategy
cannot be a solution if the agents or a part of them can obtain better results.
From non-cooperative game theory, it assumes that agents are suspicious and
that agreements cannot be enforced, that is at any time agents may betray
agreements. To better understand the features of SNE, let us consider the
following example.

Example 1. Let G be a CBG involving two agents. Φ1 = {a} and Φ2 = {b},
γ1 = γ2 = a ∨ b, cost(a) = cost(b) = 1. The CBG can be represented by the
following payoff matrix:

a/b 1 0
1 (1, 1) (2, 3)
0 (3, 2) (0, 0)

On the one hand, (0, 0) is the only Nash equilibrium in this game, that is not
efficient as the two agents collaborating can obtain better results, (1, 1), and
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hence it is not a SNE. On the other hand, as (1, 1) is not a Nash equilibrium,
it is not a SNE too. Indeed, if (1, 1) is proposed as an agreement each agent
would unilaterally betray it obtaining better results.

Note that whether Strong Nash Equilibrium corresponds to the notion of core
depends on how a strategic game is translated into a cooperative game (see
Myerson [6]). For example, if we use for the strategic game in Example 1 the
minimax representation of a corresponding cooperative game - as introduced
by von Neumann and Morgensten [7] - then the strategy {1, 1} is in the
core. This kind of representation is called offensive because it is assumed
that for a certain coalition D, the agents in A \D work in order to minimize
the outcomes of D. On the contrary if we adopt a defensive representation
where the primary aim of the agents is to maximize their own utility, the
SNE represents the core of the corresponding cooperative game. Note that
if we change the goal to ¬a∨ ¬b, then we get (3, 3) for ¬a,¬b, and (0, 0) for
a, b thus (3, 3) is in the core. The question is what about if the meaning of
the action a and b is of the kind “to refrain to do . . . ”? If we consider the
positive representation of the actions we get the results shown before while if
we take into account the negative one, we get different results. The analysis
and discussion of the negative representation of the actions is left for future
research.

As notion of stability for cooperative boolean games, the core is appealing
but there are cases in which it would be empty. Example 1 is a example of
game with an empty core. However, there are a number of cases in which
the core is not empty. Let us consider the following example:

Example 2. Consider a game where we have four agents (A = {1, 2, 3, 4})
who want to go on holidays to the seaside or to the mountains. We repre-
sent with the boolean variable a to go to the seaside and with b to go to the
mountains. Agent i going to the seaside is represented by setting ai to true
whereas the holiday to the mountains is represented by bi. For each agent i,
cost(ai) = 2 and cost(bi) = 1. Agent 1 is in love with agent 2 and he wants to
go everywhere with her, thus his goal is represented by γ1 = (a1∧a2)∨(b1∧b2).
Agent 2 is in love with agent 1 but she cannot tolerate the change of temper-
ature of the mountains thus her goal is γ2 = a1 ∧ a2. Agent 3 is in love with
2 and, as he is jealous of agent 1, he would like to stay with 2 without the
presence of 1, so his goal is γ3 = (a2 ∧ a3 ∧¬a1)∨ (b2 ∧ b3 ∧¬b1). Agent 4 is
in love with agent 3, who does not like her, but she is not able to swim thus
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her goal is γ4 = b3 ∧ b4. Let us say that agent i is satisfied given a valuation
ξ if ξ |= γi, i.e., if agent i’s goal is satisfied. It can be verified that {a1, a2}
is in the core.

We focus now on the problem of computing the core of a CBG. In gen-
eral, this problem can be seen as a generation and test problem: generate a
strategy, then check whether it belongs to the core according to Definition 3.
Thus, it is useful in the following to consider a generation space, that is the
set of strategies ξ we need to check for core-membership, and a test space,
the set of strategies ξ′ we search to establish whether ξ belongs to the core.

Clearly, if no optimization is implemented both the generation and the
test space consist in the set of all strategies and unfavorable they have a
cardinality equal to 2|Φ|. However, in the following sections we study several
optimization techniques which enable to reduce both the generation and the
test space.

3. Reducing the generation space

In this section we present two optimization techniques that enable to
reduce the generation space. Both of them are based on the notion of depen-
dence networks that can be defined starting from a CBG. These networks,
on the one hand, explicitly represent the inter-dependencies among agents
according to their goals, on the other hand they abstract from the quanti-
tative aspects of a game associated to the cost function. In particular, the
first type of dependence network, we named Abstract Dependence Networks,
is the same already used in Bonzon et al. [4] as decomposition method for
the Nash Equilibrium in Boolean Games without costly actions. Here, we
essentially extend the results in Bonzon et al. [4] to the framework defined
in Dunne et al. [1].

Abstract Dependence Networks describe only which agents can play a role
in the satisfaction of an agent’s goal, therefore they abstract from how they
can contribute and in particular if they have to execute a costly action. As
this information may help in the study of the core and reduce the generation
space, we define another type of dependence network, Refined Dependence
Networks, which, as the name suggests, refines Abstract Dependence Net-
works by representing how agents contribute to the satisfaction of a goal
and whether this involves a positive cost (without quantifying it). Starting
from Refined Dependence Networks, we define a method called ∆-reduction
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to reduce the admissible strategies and we prove the completeness of the
∆-reduction with respect to the computation of the core.

3.1. Abstract Dependence Networks

As in Bonzon et al. [4], in order to correctly establish the dependencies
among agents we need to define which variables are relevant for the satisfac-
tion of the agents’ goal. A variable p is said irrelevant for a formula φ in case
there exists an equivalent formula φ′ where p does not occur. With RVG(i)
we represent the set of all variables p ∈ Φ that are relevant for γi, whereas
RAG(i) is the set of agents j ∈ A such that j controls at least one relevant
variable of i. The notions of relevant agent and relevant variable are crucial
in what follows since they allow to define dependence networks and the way
to prune them. Using the notion of relevant agents, we define a dependence
network where nodes represent agents and an edge from i to j represents the
dependence of i on j (j ∈ RAG(i)).

Definition 4 (Abstract Dependence Network).
Given the cooperative boolean game G = 〈A, Φ, cost, γ1, ..., γn, Φ1, ..., Φn〉, the
abstract dependence network of G is the directed graph ADN(G) = 〈N, R〉
such that the set of nodes N correspond to the agents in G, N = A, and (i, j) ∈
R if and only if j ∈ RAG(i).

As in Bonzon et al. [4] we say that a set of agents in ADN(G) is stable in
case it is closed under the relation R. R(C) is the set of players from which
C may need some action in order to be satisfied.

Definition 5 (Stable set).
Given a directed graph 〈N, R〉, C ⊆ N is stable if and only if R(C) ⊆ C, i.e.
for all i ∈ C, for all j such that (i, j) ∈ R then j ∈ C.

Note that the notion of stable set is not related to the strategic criterion
with the same name originally introduced by von Neumann and Morgen-
stern [7].

Definition 6 (ADN Projection).
Let G = 〈A, Φ, cost, γ1, ..., γn, Φ1, ..., Φn〉 be a cooperative boolean game,
ADN(G) = 〈N, R〉 be the corresponding abstract dependence graph and
C = {i1, . . . , im} ⊆ N be a stable set, the projection of G on C is defined
by GC = 〈C, ΦC , costC, γi1, ..., γim , Φi1 , ..., Φim〉, where costC : ΦC → ℜ+ is
the restriction of cost on ΦC .
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By definition the goals occurring in the projection of a cooperative boolean
game on a stable set C do not contain variables controlled by agents outside
C, therefore the projection is itself a cooperative boolean game.

In Bonzon et al. [4] the authors claim, by restricting a boolean game G
to the projection GC of a stable set C, that if a strategy profile ξC in GC

is not a Nash equilibrium, then all of its extensions in G are not a Nash
equilibrium. Here we extend this result to the case of the core in cooperative
boolean games with costly actions.

Proposition 1.
Given a stable set C, if ξ is in core(G), then ξC is in core(GC), where ξC is
the projection of ξ on the variables controlled by C, ξC = ξ ∩ ΦC.

Proof 1. Let ξ̄ be a generic valuation in G and ξ̄C the projection of ξ̄ on
the variables controlled by C. Clearly, for all i ∈ C, costi(ξ̄) = costi(ξ̄C).
Furthermore, as C is stable, for all i ∈ C, RVG(i) = RVGC

(i) and hence
ξ̄ |= γi if and only if ξ̄C |= γi. This entails that for two generic valuations ξ̄
and ξ̂ and for all i ∈ C, ui(ξ̄) ≤ ui(ξ̂) if and only if ui(ξ̄C) ≤ ui(ξ̂C).

Assume that there exists a valuation ξ′C that blocks ξC, i.e. there exists
a C ′ ⊆ C such that ξ′C = ξC mod C ′ and for all i ∈ C ′ ξ′C ≻i ξC. Now let
ξ−C = ξ ∩ ΦA\C and ξ′ = ξ′C ∪ ξ−C. Clearly, ξ′ = ξ mod C ′ and, since for
all i ∈ C ui(ξ) ≤ ui(ξ

′) if and only if ui(ξC) ≤ ui(ξ
′
C), ξ is blocked by C ′

through ξ′.

Finally, given two coalitions D1 and D2, we say that two relative strate-
gies ξD1

and ξD2
are consistent if and only if for each agent i ∈ D1 ∩ D2,

Φi ∩ ξD1
= Φi ∩ ξD2

. The following two propositions hold - the proof is
straightforward and it is left to the reader.

Proposition 2.
Let ξ be a strategy blocked by a coalition D through ξ′ and C be a stable set
such that C ′ = C ∩D 6= ∅, then ξ is blocked by C ′ through ξ′C.

Proposition 3.
Given the stable sets C1, . . . , Cn and the relative strategies ξC1

, . . . , ξCn
de-

pending on the stable sets, if

1. for all 1 ≤ i ≤ n, ξi ∈ core(GCi
);

2. ξC1
, . . . , ξCn

are consistent;
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Figure 1: Abstract Dependence Network of Example 3 with the stable set C.

3. A =
⋃n

i=1 Ci,

then
⋃n

i=1 ξi ∈ core(G).

Propositions 1 and 3 provide a way to decompose the problem of determining
the core of a CBG G into the subgames GCi

, where C1, . . . , Cn are stable sets
that involve all the agents in G. Then, once each core(GCi

) is determined, it
remains to gather any union ξ of consistent strategies ξCi

∈ core(GCi
), with

1 ≤ i ≤ n. Due to Proposition 3, ξ ∈ core(G), whereas, Proposition 1 ensures
that in this way we find all the elements in core(G), indeed if ξ′ ∈ core(G),
then ξ′Ci

∈ core(GCi
), with 1 ≤ i ≤ n and hence ξ′ is the union of consistent

solutions in each GCi
.

Example 3 (Continued). Let us consider the abstract dependence network
of the game presented in Example 2: ADN = 〈N, E〉 where N = {1, 2, 3, 4}
and R = {(1, 2), (2, 1), (3, 1), (3, 2), (4, 3)} (see Figure 1). Following Defini-
tion 5 the set C composed by agents 1 and 2 is a stable set (all the edges
that go out from agent 1 enter in agent 2 and converse), so we can consider
first the projection of the game on C following Definition 6. Valuations are
represented as uvyz ∈ {0, 1}4, where u is the value of a1, v that of a2, y the
value of b1 and z that of b2. Following Definition 6, it can be found that 1100
is the only strategy in the core. Due to Propositions 1, also in the complete
game all the strategies containing either b1 or b2 and not containing one of
a1 and a2 are blocked.

3.2. Refined Dependence Networks

As seen before, Abstract Dependence Networks can be safely used to
split the original problem in subproblems without loosing solutions. How-
ever, Abstract Dependence Networks may hide some useful information that
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can also be used to prune some strategies that cannot belong to the core
- and hence to reduce the search space. For this reason we define another
notion of dependence network at a lower level of abstraction and we call it
Refined Dependence Networks (RDNs). These networks may seem actually
equivalent to the boolean game itself, except for the cost of the variables.
These costs, however, are not a minor point since two boolean games that
result in the same RDN can have different solutions depending in these costs.

A Refined Dependence Network represents how the goals can be satisfied
by means of AND-arcs among the agents whose single edges are labeled with
literals. Furthermore, costly actions are marked in a set ∆.

Definition 7 (Refined Dependence Network).
A Refined Dependence Network is an AND-dependence graph

〈N, Φ, ∆, E, Φ1, ..., Φn〉

where N is the set of nodes, Φ is the set of boolean variables, ∆ ⊆ Φ is
the subset of variables p with cost(p) > 0, E ⊆ N × 2(N×Litt(Φ)) where
Litt(Φ) = Φ ∪ {¬p|p ∈ Φ} and Φi ⊆ Φ where n is the cardinality of N .

In the following, given a literal l, we denote by |l| the corresponding boolean
variable, that is if l ∈ Φ, then | l |= l whereas if l = ¬p, | l |= p. Furthermore,
to simplify the formalism, we represent an AND-arc (i, {(j1, l1), . . . , (jm, lm)})
as the set of triples {(i, j1, l1), . . . , (i, jm, lm)}. Of course, a set as {(1, 3, p),
(3, 4, q)} has no meaning in our context.

As already done for Abstract Dependence Networks, we use Refined
Dependence Networks to reveal the structure of interdependencies among
agents. First, we assume that the goals of the agents do not contain irrele-
vant variables and are given in disjunctive normal form, i.e. γi = γi1∨· · ·∨γim

where each γij is a conjunction of literals. To simplify again the formalism
we describe respectively γi as a set of γij and each γij as a set of literals
- the empty set has the usual meaning respectively of ⊥ referred to γi and
⊤ referred to the γij . Roughly, each AND-arc e outgoing the agent i corre-
sponds to a γij ∈ γi, where each single edge that composes e is labeled with a
literal occurring in γij and reaches the agent that controls the corresponding
variable. The set ∆ consists of the actions that have a strictly positive cost.

Definition 8 (From CBGs to RDNs).
Given the cooperative boolean game G = 〈A, Φ, cost, γ1, ..., γn, Φ1, ..., Φn〉,
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RDN(G) = 〈N, Φ, ∆, E, Φ1, ..., Φn〉 is such that N = A, ∆ = {p ∈ Φ |
cost(p) > 0} and {(i, j1, l1), . . . , (i, jm, lm)} ∈ E if and only if {l1, . . . , lm} ∈ γi

and for all 1 ≤ h ≤ m, | lh |∈ Φjh
.

Example 4. Let G be a cooperative boolean game defined by A = {1, 2, 3, 4},
Φ = {a, b, c, d, e}, cost(a) = cost(b) = cost(c) = cost(d) = cost(e) = 1, γ1 = a,
γ2 = c ∧ e, γ3 = b ∧ c, γ4 = d, Φ1 = {b, e}, Φ2 = {d}, Φ3 = {a}, Φ4 = {c}.
The associated refined dependence network RDNG = 〈A, Φ, ∆, E, Φ1, ..., Φ4〉,
where E is composed by the following dependencies: {(1, 3, a)}, {(3, 1, b),
(3, 4, c)}, {(2, 1, e), (2, 4, c)}, {(4, 2, d)}.

Given a Refined Dependence Network RDN(G) = 〈N, Φ, ∆, E, Φ1, ..., Φn〉,
we mean with RE ⊆ N × N the binary relation such that (i, j) ∈ RE just
in the case there exists an AND-arc e ∈ E that starts from i and reaches j,
i.e. for some literal l, (i, j, l) ∈ e. It is easy to see that ADN(G) = 〈N, RE〉
and hence RDN(G) describes G at a lower level of abstraction with respect
to ADN(G).

We want to use Refined Dependence Networks to impose some constraints
to the set core(G). To this scope some preliminary results are needed. A
boolean variable a ∈ Φi is said to be unfavorable if and only if a ∈ ∆, i.e.
cost(a) > 0, and for each {l1, . . . , lm} ∈ γi, a 6∈ {l1, . . . , lm}. In the following
we denote by [i]− the set of unfavorable variables of the agent i.

Proposition 4.
Given a cooperative boolean game G and an agent i ∈ A, for each a ∈ [i]−,
ξ ∈ core(G) implies a 6∈ ξ.

Proof 2. a ∈ [i]− means that cost(a) > 0 and a does not occur (positive)
in γi. Assume that ξ |= γi, then, for some {l1, . . . , lm} ∈ γi, ξ |= {l1, . . . , lm}.
Since a 6∈ {l1, . . . , lm}, this means that also ξ \ {a} |= {l1, . . . , lm}.

Now it remains to show that if for each ξ, ξ |= γi implies ξ\{a} |= γi, then
ξ ∈ core(G) implies a 6∈ ξ. Assume that a ∈ ξ, clearly ξ \ {a} = ξ mod {i}
as a ∈ Φi. Furthermore, as costi(ξ \{a}) < costi(ξ) and by hypothesis ξ |= γi

implies ξ \ {a} |= γi, then ξ ≺i ξ \ {a}. But this means that ξ is blocked by i
through ξ \ {a}.

Note that, according to Proposition 4, it can be easily seen in Example
4 that, as all the variables are unfavorable, the core can contain only the
empty strategy. We also prove that a goal depending on an unfavorable
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variable a can be reduced into one that does not depend on a without affecting
the possible solutions. More precisely, we define the notion of reduction as
follows.

Definition 9 (∆-reduction).
Given a cooperative boolean game G and an unfavorable variable a ∈ [i]−, we
say that the cooperative boolean game G′ is a ∆-reduction of G just in the
case it is obtained from G applying the following steps:

1. remove a from Φi;
2. remove from each γi any conjunction of type {l1, . . . , a, . . . , ln};
3. replace in each γi any conjunction of type {l1, . . . ,¬a, . . . , ln} with
{l1, . . . , ln}.

Proposition 5.
Let G′ be a ∆-reduction of a cooperative boolean game G, core(G) ⊆ core(G′).

Proof 3. For each valuation ξ that does not contain the unfavorable variable
a, it clearly holds for each agent i that ui(ξ) in G is equal to ui(ξ) in G′.
Therefore, if in G′, ξ′1 is blocked by C through ξ′2, then the same holds in G
and hence core(G) ⊆ core(G′).

Note that the converse does not hold. Consider Example 5:

Example 5. Let G be a cooperative boolean game composed by 3 agents and
such that Φ1 = {a}, Φ2 = {b, c} and Φ3 = {d}, γ1 = b, γ2 = a ∨ (c ∧ d) and
γ3 = c ∧ b, cost(a) = cost(b) = 1 and cost(c) = cost(d) = 2. The boolean
variable a is an unfavorable variable then the ∆-reduced game G′ is such that
Φ1 = ∅, Φ2 = {b, c} and Φ3 = {d}, γ1 = b, γ2 = c ∧ d and γ3 = c ∧ b. The
function cost is the same as in G. It is easy to see that {c, d} ∈ core(G′)
whereas in G it is blocked by {1, 2} through {a, b}.

Note that the previous results do not use quantitative values of the cost
function but only the fact that an action has a strictly positive value, there-
fore they reside in the level of abstraction of RDNs. We can now define a
procedure on RDN(G) which uses unfavorable variables and ∆-reductions to
reduce the search space in finding the core.

Definition 10 (Reduction rule).
Let RDN(G) be a Refined Dependence Network and let ω denoting a valuation
initially set to ∅, the reduction rule RDN(G) is given by applying exhaustively
the following rule:
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Figure 2: Refined Dependence Network of Example 6.

Condition: for some a ∈ Φi∩∆, there does not exist an AND-arc e outgoing
from i such that (i, i, a) ∈ e (i.e. a is unfavorable).

Action: remove any AND-arc e′ such that (j, i, a) ∈ e′, a from Φi and add
a to ω.

Due to Propositions 4 and 5, the valuation ω we obtain from Definition 10
constraints the strategies in core(G) to be also in Φ \ ω.

Example 6 (Continue). Let us consider again the cooperative boolean game
of Example 2. In the corresponding RDN all the actions involve some pos-
itive cost, thus ∆ = Φ. The AND-arcs are shown in Figure 2 (without
connections for simplicity of the figure) and all the edges are labeled with the
boolean variable they represent. By exhaustively applying the rule in Defini-
tion 10, b2 satisfies the given condition, therefore we remove the AND-arc
{(1, 2, b2), (1, 1, b1)} and the AND-arc {(3, 3, b3), (3, 2, b2), (3, 1,¬b1)}. After
these deletions, also the boolean variables b1 and b3 satisfy the condition in
Definition 10, and hence also the AND-arc {(4, 3, b3), (4, 4, b4)} has to be re-
moved. Finally, also b4 satisfies the condition, therefore as output ω is equal
to ¬b1 ∧¬b2 ∧¬b3 ∧¬b4 ∧¬a4, therefore the only strategies that can be in the
core are the subsets of {a1, a2}. The resulting RDN after the application of
the ∆-reduction is depicted in Figure 3.

3.3. Discussion

In this section we discuss additional insights from our study, which on
the one hand may be seen as a kind of criticism to the concept of core, but
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Figure 3: Refined dependence network of Example 6 after the ∆-reduction.

on the other hand also shows how theorems can be used to deal with these
problems.

We have shown so far, and other examples can be found in Dunne et al. [1],
that in some cooperative boolean games the core may not exist. In such cases
it could be useful to identify the reason why the core does not exist, to ob-
tain at least some partial answers. For example, consider the game given by
the union of two unrelated games, such as Examples 1 and 2. In economics
this may be seen just as a misrepresentation of the scenario, because we are
joining two unrelated games but Proposition 1 tells us that the lack of a core
in the sub-game of Example 1 leads to the lack of a core in the combined
game of Examples 1 and 2, even if Example 2 has a nonempty core.

On the positive side, an analysis based on dependence networks also in-
dicates a way to deal with the lack of a core. The ADN of two groups, which
do not interact with each other, is composed of two disconnected sub-graphs.
Therefore, it makes sense to calculate the sub-games corresponding to each
disconnected component, and compute the core for these sub-games. The
lack of a core in a sub-game could lead to a warning. If there is a strategy
in one of the sub-games that is in the core of the sub-game, then this could
be a partial solution to the game.

The notion of core used in coalitional games models solutions which in-
volve some kind of reciprocity. However, there are also many examples where
reciprocity is apparent, but the core does not identify it as a solution. For
example, if you buy a book on eBay, then the transaction of sending money
and receiving the book is a basic kind of reciprocity. It can be modeled by
a goal of the buyer to receive the book, and the goal of the receiver to re-
ceive money, both goals make the agent dependent on the other agent, and
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the cycle represents that there is a possibility to cooperate. However, due
to Proposition 5 if a costly action does not play a role in the satisfaction
of the owner agent that it will never do, so even simple exchanges are not
admissible. In other words, according to the core, such a solution will never
be done, because an agent would be better off by not sending the book (or
not sending the money). Again, it may be argued that this example should
not be modeled in this way. But it seems to be a natural way to model it,
and it is the way it is typically modeled in dependence networks.

The solution would be to rewrite such games into new games such that
the core and thus CBGs can be used in a wider set of situations. Typically,
if two agents want to do a transaction, then there is a way to enforce this
transaction. The game can be rewritten in a way such that both agents desire
both the satisfaction of their own goal and the goal of the other agent. If the
buyer and the seller both want the exchange, i.e. not only to receive the book
but to receive the book together with paying for it, then the exchange will
be incorporated in the core. Alternatively, it also suggests a revised notion
of core where such reciprocity cycles are taken into account.

4. Reducing the test space

In the previous section, we have seen how to determinate the set of unfea-
sible actions ω such that the generation space becomes the powerset of Φ\ω.

However, even if core-membership has to be checked just for one strategy
(for example the empty strategy ∅ ⊆ Φ \ ω), the test space still remains
the set of all strategies ξ′ ⊆ Φ, which is exponentially large in the size
of a cooperative boolean game. For this reason, in this section we study
optimization techniques that reduce the test space.

Before studying new optimization techniques, it is reasonable to look for
previous results that can be reused for our end. In particular, two properties
shown in Dunne et al. [1] can be taken into account. Let contrib(ξ) be the set
of agents that incur some positive cost in ξ (contrib(ξ) = {i | ∃a ∈ ξ s.t. a ∈
Φi and cost(a) > 0}) and ben(ξ) the beneficiaries of ξ (ben(ξ) = {i | ξ |= γi}).
Furthermore, we write ξ ⊂C ξ′ if ξ∩ΦC ⊂ ξ′∩ΦC and say that ξ is C minimal
for φ in case ξ |= φ and no ξ′ ⊂C ξ, ξ′ |= φ. Then, the following properties
hold:

1. ξ ∈ core(G) =⇒ contrib(ξ) ⊆ ben(ξ)

2. ξ ∈ core(G) =⇒ ξ is contrib(ξ) minimal for γcontrib(ξ)

16



Each ξ in the generation space such that either contrib(ξ) 6⊆ ben(ξ) or it is not
contrib(ξ) minimal for γcontrib(ξ) can be discarded without checking whether
it is blocked, thus, both the properties attempt to reduce the test space to the
empty set. Whether they can be profitably used as optimization technique
clearly depends on the computational complexity.

Since the condition contrib(ξ) 6⊆ ben(ξ) can be easily computed, the first
property is a possible optimization technique (actually it has been imple-
mented in our framework). On the contrary, with a proof that is essentially
the same as Theorem 1 in Dunne et al. [1], checking that ξ is not contrib(ξ)
minimal for γcontrib(ξ) has the same computational complexity as checking
that ξ belongs to the core (coNp-complete). Therefore, it has not been con-
sidered as a possible candidate.

Note that, since contrib(∅) = ∅, the empty strategy cannot be discarded
according to the first property for at least one strategy we still have a test
space of exponential size. For this reason, we consider some other criterion
to reduce the test space. Clearly, as in the case of unfeasible actions, we need
a computationally easy way to select a subset of 2Φ that is complete with
respect to the core-membership problem.

On the one hand, when a strategy ξ is optimal for an agent i, i.e. ξ =
argmaxξ̄ ui(ξ̄), no other strategy can be strictly more profitable for i, and
hence i does not have any incentive to participate to a coalition D in order
to block ξ. On the other hand, assume that ξ satisfies the goal γi, and for
a given a ∈ Φi, cost(a) > costi(ξ), then i has no incentive to perform a.
The following proposition expresses these two considerations, the proof is
straightforward and it is left to the reader.

Proposition 6.
Given a cooperative boolean game G, a strategy ξ and an agent i. Assume
that D blocks ξ through ξ′. We have that:

1. ξ = argmaxξ̄ ui(ξ̄) =⇒ i 6∈ D;

2. ξ |= γi, a ∈ Φi and cost(a) > costi(ξ) =⇒ a 6∈ ξ′.

Proposition 6 can be used to reduce the test space as follows. If ξ is optimal
for the agents O = {i1, . . . , im}, then a strategy ξ′ that blocks ξ is such
that ξ∩Φj = ξ′∩Φj , for all j ∈ O. Thus, the test space is reduced to

⋃

h 6∈O Φh.
Furthermore, if cost(a) > costi(ξ), the test space can be further reduced to
those strategies ξ′ such that a 6∈ ξ′.
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Finally, note that to decide whether a strategy ξ is optimal for an agent i
does not require to check for all the other strategies ξ̄ that ui(ξ) ≥ ui(ξ̄). As
we are considering goals in disjunctive normal form, i.e. γi = {γi1, . . . , γim},
we just have to consider the strategies ξij = {a ∈ Φ | a ∈ γij}. Then,
the maximal value um

i of the ui(ξij ), with 1 ≤ j ≤ m, corresponds to the
maximal utility the agent i can obtain. Therefore, we simply have to check
that ui(ξ) = um

i .

5. Algorithms

We have used the results of Sections 3 and 4 to implement in Pro-
log a procedure find core that, given as input a cooperative boolean game
G, returns core(G). A procedural description of find core is given in Fig-
ure 4. Essentially, find core consists of two procedures, FIND CORE and
CORE MEM.

In FIND CORE, the ADN of G is instantiated and it is partitioned in
its smallest subgraphs A = {A1, . . . , An} that are pairwise disconnected.
Clearly, each Ai represents a stable coalition and no agent occurs in two
distinct Ai and Aj (lines 2-3).

For each A ∈ A, the projection G′ of A is computed (line 6) and the core
of G′ is determined as follows. First, the RDN of G′ is instantiated and, ac-
cording to Definition 10, DELTA RED applies the ∆-reduction by calculating
the set ω of unfeasible actions. Then, for each ξ not containing actions in ω,
the core-membership of ξ is decided by CORE MEM. If ξ ∈ core(G′), then it
is added to CORE

′.
According with Propositions 1 and 3 the core of G is computed by gath-

ering any union of strategies in each core(G′). This is done incrementally in
line 14.

In CORE MEM, first it is checked whether contrib(ξ) 6∈ ben(ξ), in affir-
mative case ξ cannot belong to the core and hence false is returned. Line 4
computes the set of agents O such that ξ is optimal. According to Proposi-
tion 6, such agents do not have any incentive in modifying their strategies.
Thus, their strategies are freezed in ξO. Then, given the actions TA of the
remaining agents, actions a of the beneficiary agents with cost(a) > cost(ξ)
are discarded – again according to Proposition 6.

After this last optimization, the core membership is brutally computed
and a strategy blocking ξ is searched in the set of strategies ξO ∪ ξ′, where ξ′

is a subset of the resulting TA.
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Input: A cooperative boolean game G = 〈A,Φ, cost, γ1, ..., γn,Φ1, ...,Φn〉
Output: core(G)
CORE← {∅};1

ADN← CONVERT ADN(G);2

A← PAIRWISE DIS(ADN);3

forall A ∈ A do4

CORE
′ ← ∅;5

G′ ← PROJECT CBG(G,A);6

RDN← CONVERT RDN(G′);7

ω ← DELTA RED(RDN);8

forall ξ ⊆ Φ[G′] \ ω do9

if CORE MEM(ξ,G′) then10

CORE
′ ← CORE

′ ∪ {ξ}11

end12

end13

CORE← {ξ | ξ = ξ1 ∪ ξ2 where ξ1 ∈ CORE and ξ2 ∈ CORE
′}14

end15

return CORE;16

Algorithm 1: FIND CORE

Input: A cooperative boolean game G and a strategy ξ

Output: True if ξ ∈ core(G), false otherwise.
if contrib(ξ) 6⊆ ben(ξ) then1

return false;2

end3

O ← {i | ξ = argmaxξ̄ ui(ξ̄)};4

ξO ← ξ ∩
⋃

i∈O Φi;5

TA←
⋃

j 6∈O Φj ;6

forall j ∈ ben(ξ) \O do7

TA← TA \ {a | a ∈ Φj and cost(a) > costj(ξ)};8

end9

forall ξ′ ⊆ TA do10

if BLOCKED(ξ, ξO ∪ ξ′) then11

return false;12

end13

end14

return true;15

Algorithm 2: CORE MEM

Figure 4: The find core algorithm
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As noted in Bonzon et al. [4], a further optimization could be in principle
possible by removing some arc (i, j) in ADN(G) in case all the actions of j
that occur in γi are irrelevant. However, selecting irrelevant variables a in
a formula φ means to check the validity of φ⊤ ↔ φ⊥, where φ⊤ and φ⊥ are
obtained by substituting each occurrence of a in φ with ⊤ and ⊥ respectively.
Thus, this would add a coNP-complete step just to deal with a few cases of
pathological goals and without being sure that, by removing an edge, two
subgraphs result disconnected. For this reason, ADN(G) is instantiated from
the initial goals, without determining irrelevant variables.

6. Experimental results

We have implemented a generator that enables to instantiate CBGs of
different shapes. The generator takes as input 6 parameters: the number of
agents NA, the number of actions per agent NAc, the number of disjuncts
ND, the number of conjuncts NC , the minimal and maximal cost values
Cmin and Cmax. As output we obtain a CBG with NA agents that control
NAc variables each. An agent’s goal takes the form γ1 ∨ · · · ∨ γND

where
each γi consists in a conjunction l1∧ · · ·∧ lNC

of randomly generated literals.
Finally, an integer cost value from Cmin to Cmax is randomly assigned to each
propositional variable. In the figures below, the ordinate axis represents the
run-time expressed in seconds where, for each input setting, the reported
results correspond to the mean over 20 runs of find core.

In Figure 5 (top), the number of actions per agent as well as the struc-
ture of goals remain fixed (NAc = ND = NC = 2). Also, Cmin is fixed to 0
whereas the X axis corresponds to the number of agents NA. Different lines
correspond to different values of the maximal cost Cmax. As can be seen,
performances strongly depend on Cmax and the framework behaves better by
increasing it. This is only apparently surprising since costless actions cannot
be discarded by applying ∆-reduction or in lines 7-9 of CORE MEM. Now,
as the cost of each action a is randomly chosen in the range 0, . . . , Cmax, the
smaller Cmax is the higher is the probability that cost(a) = 0. In particular,
for Cmax = 2 approximatively 33% of the actions cannot be unfeasible, this
rate decreases to 25% and 10% for Cmax = 3 and Cmax = 9, respectively. Fur-
thermore, dealing with randomly generated CBGs, by setting ND = NC = 2
the resulting ADNs are very likely to be strongly connected and hence stable
coalitions practically do not affect performances.

20



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 7  7.5  8  8.5  9  9.5  10  10.5  11

T
im

e 
(s

ec
)

Number of agents

[2,2,2,0,2]
[2,2,2,0,3]
[2,2,2,0,9]

 0

 50

 100

 150

 200

 250

 7  8  9  10  11

T
im

e 
(s

ec
)

[2,1,1,1,10]
[2,2,2,1,10]
[2,3,3,1,10]
[2,4,4,1,10]
[2,5,5,1,10]

Figure 5: Experiments varying the costs of variables and the size of goals
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Figure 6: Varying the number of disjuncts and conjuncts in a goal

Figure 5 (bottom) shows how the framework behaves by increasing the
size of goals. As before, NAc = 2 and the X axis corresponds the number of
agents NA, on the contrary the cost range is fixed to 1 − 10 – note that all
variables are costly. Each line corresponds to different goal sizes, ND is set
equal to NC and their value varies from 1 to 5.

With goals composed by a single literal ND = NC = 1, even with 11
agents1, find core returns in 0.2 seconds. By comparing with the previous
figure, one of the factors that improves so much performances is that the
resulting ADNs present quite often two or more disconnected components
and hence stable coalitions actually decompose the original game.

As said before, with NA = NC = 2 stable coalitions practically do not
affect performances anymore. However, by generating random CBGs, goals
are still enough small with respect to the number of possible literals that it is
very likely that all – or all except – actions result to be unfeasible. So, in most

1Note that NA = 11 and NAc = 2 mean 222 ≃ 4 · 106 possible strategies composing
initially both the generation and the test spaces.
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of the cases, the find core reduces the search space to the only empty strategy
and hence basically this setting measures performances of CORE MEM. For
larger values of ND and NC , performances get worse. One reason is that
the probability that a costly action is unfeasible decreases with the number
of literals occurring in a goal. Thus, the ∆-reduction becomes less and less
effective.

In Figure 5, larger goals are obtained by increasing both ND and NC

at the same time, but which of these two values has a higher impact on
performances? Figure 6 shows a set of experiments where the number of
agents, actions per agents and cost range is fixed (respectively NA = 7,
NAc = 3, Cmin = 1 and Cmax = 10). The X axis represents different pairs
of values for (ND, NC) such that the total number of literals composing a
goal is constant, namely (6, 2), (4, 3), (3, 4), (2, 6). As before, we can see a
valuable variability in performances and, to better understand why large
NC jeopardizes more than large ND, we run a version of our framework
with only ∆-reduction on values (6, 2) and (2, 6). The run-times obtained
–respectively 457 and 449 seconds– are very close to the value obtained in the
original framework for (2, 6). This means that the optimizations designed to
decide the core membership perform better with goals composed by several
disjuncts of small size that those with few disjuncts of big size.

Experimental results show somewhat clearly the applicability of the pre-
sented optimizations. On the one hand, large games with hundreds or thou-
sands of agents, such as social networks, cannot be tackled by our approach.
However, considered the Πp

2-completeness of the problem, such games were
not supposed to be affordable. Furthermore, at the best of our knowledge no
other approach has already made any kind of game-theoretical reasoning scal-
able. On the other hand, for medium-sized systems, such as the dependency
graphs defined in TROPOS, the computation of core can be computed in
reasonable time. Evenmore, performances strongly improve when some sim-
ple properties are satisfied: the actions have positive and spreaded costs and
the goals consist in disjuncts of small size. This means that the input games
can be easily inspected to foresee the effectiveness of our technics.

7. Related Work

Boolean games are a particular kind of games for expressing compactly
two-players zero-sum static games where players’ utility functions are binary
and described by a single boolean formula, and the strategies available to
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a player consist of truth assignments to each of a given set of propositional
variables controlled by the player. The classical solution concept of these
games consists in the Nash equilibrium. This kind of games has been pre-
sented the first time and, then, deeply analyzed by Harrenstein et al. [2] and
Harrenstein [3].

Another class of games is represented by cooperative games [8]. A coop-
erative game is a game where groups of players called coalitions may enforce
cooperative behavior. Thus, the game can be viewed as a competition be-
tween coalitions of players, rather than between individual players. Classical
solution concepts of this kind of games are the stable sets and the core. These
two class of games are based on similar models: in both of them there are
decision variables and they are composed by single agents’ goal represented
by logical formula.

Cooperative Boolean Games derive in part from non-cooperative boolean
games as proposed by Harrenstein et al. [2, 3] and further developed by
Bonzon et al. [4]. In non-cooperative boolean games, as in CBGs, agents
have goals represented by propositional formulae, and control some set of
variables, but there is no cost element, and strategic concerns arise largely
from considerations about how other agents will try to satisfy their goals.
CBGs are also descended from Qualitative Coalitional Games (QCGs) [9]
and Coalitional Resource Games (CRGs) [10]. In a QCG, an agent’s desires
are represented as goals that are either satisfied or unsatisfied and coalitions
have different choices available to them, where each choice allows to achieve
some subset of the overall set of possible goals, and there is no cost element
for achieving goals while CRGs are a generalization of QCGs in which the
accomplishment of goals is assumed to require the consumption of resources
of various kinds. The difference between CBGs and CRGs is that in CRGs
the key issue consists in finding an efficient resource usage, and in highlighting
potential conflicts between coalitions with respect to resource bounds while
in CBGs these issues are not involved since no resource bound exists.

In Dunne et al. [1], they concentrate their attention on the solution con-
cept of the core and the stable sets. On the one hand, complexity issues
are investigated and, in particular, several decision problems, such as core-
emptiness, are shown to be Πp

2-complete. On the other hand, Dunne et al. [1]
prove that the core of a game satisfies some general properties, but a discus-
sion whether these properties can be used to optimize the computation of
the core is missed.

Dependence networks, firstly defined by Emerson [11], have been devel-
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oped in the context of multiagent systems by Conte and Sichman [12] as a
kind of social network representing how each agent depends on other agents to
achieve the goals she cannot achieve alone. The notion of agent dependence
used to define dependence networks is related to the concept of social power,
introduced in the field of Artificial Intelligence by Castelfranchi [13]. As pre-
viously said, it may be possible that two (or more) agents cannot achieve
their goals independently or they can achieve their goals independently but
collaborating they obtain a cost reduction. In these cases, we can represent
this collaboration by means of dependencies, depicted using the dependence
networks of Conte and Sichman [12]. Informally, an agent a depends on an
agent b if there is at least a boolean variable under the control of b which is
included in the propositional formula composing the goal of agent a. Agent b
has the power to see to the goal of agent a since the one (or more) of the
boolean variables composing the goal of a is under her control. Sichman [14]
presents coalition formation using a dependence-based approach. This model
introduces the notion of dependence situation, which allows an agent to eval-
uate the susceptibility of other agents to adopt her goals, since agents are
not necessarily supposed to be benevolent and therefore automatically adopt
the goals of each other. In this dependence-based model, coalitions can be
modeled using dependence networks. Another approach using dependence
networks, with the support of argumentation theory, for coalition formations
has been presented by Boella et al. [15, 16].

Boella et al. [17] and Sauro [18] show how to use dependence networks to
discriminate among different potential coalitions during the coalition forma-
tion process. In these works, they assume that a coalition is effectively formed
only when all its members agree on it and they cannot deviate from what
was established in the agreement, once they decide to enter it. They develop
a criterion of admissibility called, from latin, do-ut-des property describing
a condition of reciprocity: an agent gives a goal only if this fact enables
it to obtain, directly or indirectly, the satisfaction of one of its own goals.
Moreover, they define another criterion, called the indecomposable do-ut-des
property, which strengthens the previous one. In the indecomposable do-ut-
des property, differently from the do-ut-des property, the decomposability
of a coalition in independent sub-coalitions is considered as a discriminant
for the admissibility of the coalition itself. These two criteria have only a
qualitative connotation and thus, they [17, 18] cannot be directly applied
to the solutions developed in game theory. In this approach goals are not
structured and they do not represent explicitly the costs of the actions.
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The first attempts to use dependence networks to represent and simplify
the computation of the solution concepts for boolean games are given by
Bonzon [19] and Bonzon et al. [4]. Representing these dependencies on a
graph, they show how to compute pure-strategy Nash equilibria in a simpler
way, without enumerating all combinations of strategies. The notion of de-
pendency between players and variables is used to split up a game into a set
of interacting smaller games, which can be solved more or less independently.
These properties do not only hold for the standard version of boolean games
(with propositional goals and dichotomous preferences) but also for general-
ized boolean games, where players’ preferences are expressed in a compact
representation language. This work does not consider costly actions and de-
pendence networks are graphs without labels on the edges representing the
variables on which the agents are dependent on. While in Bonzon et al.
[4] there is not a definition of coalition, in Bonzon [19] the author defines
a coalition as a group of players. A coalition is called efficient if the set of
players of the coalition have a common strategy allowing them to achieve
their goals. The author [19] studies the properties of efficient coalitions and
address computational complexity issues. In Bonzon et al. [20], they extend
their previous results with a generalization to non-dichotomous preferences,
where agents can not only express plain satisfaction or plain dissatisfaction,
but also intermediate levels. This generalization suffices to replace the pref-
erence component of a boolean game by an input expressed in a propositional
language for compact preference representation. They [20] focus on compact
representation languages for ordinal preferences defining a propositional lan-
guage L for compact representation for ordinal preferences, equipped with a
function that maps any input of L to a preference relation. They generalize
also the dependency graph between players from boolean games to L-boolean
games, for an arbitrary language L.

Koller and Milch [21] introduce a new representation language for multi-
player games called multi-agent influence diagrams (MAIDs). This repre-
sentation language extends the graphical models developed for probability
distributions to a multiagent decision-making context. Like in dependence
networks, these diagrams explicitly encode a structure involving the depen-
dence relationships among variables. The authors define a notion of strategic
relevance of one decision variable to another: a decision variable x is strate-
gically relevant to a decision variable y when, to optimize the decision rule
at y, the agent has to take into account the decision rule at x. They provide
a graph-based criterion, called s-reachability, for determining strategic rele-
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vance based purely on the graph structure. The paper shows how strategic
relevance can be used to detect structures in the games, allowing a subdi-
vision of a large game into a set of interacting smaller games, which can be
solved in sequence. The decomposition can lead to savings in the computa-
tional cost of computing the Nash equilibria in these games. In multi-agent
influence diagrams the player’s utility is actually expressed in a compact way
as the sum of local utilities, each corresponding to a smaller set of variables.
Dependencies between players and variables in such games naturally induce
a dependency relation between players, in the same way as we do such that
agent i depends on agent j if agent i’s utility table refers to a variable that
is controlled by j. A first difference with our approach is that Koller and
Milch [21] do not consider the structure of cycles if the group of nodes is not
a fully connected graph while we, based on Sauro [18], show that this kind
of structure provides information about the interaction between the agents.
A second difference concerns the fact that [21] refer to the Nash equilibrium
solution concept while we refer to the core solution concept. Finally, our
approach is not based on divide et impera but it provides a way to prune the
search space simplifying the core computation. In Vickrey and Koller [22],
the authors consider structured game representations, where the interaction
between the agents is sparse as in many real-world situations and they con-
sider the relaxed task of finding an approximate equilibrium.

In Sauro et al. [23], abstract and refined dependence networks for cooper-
ative boolean games are introduced and a first version of the ∆-reduction is
presented. In this paper, we extend the results of [23] with the definition of
the algorithm for the application of the ∆-reduction for computing the core
and the experimental results the algorithm allows to achieve.

8. Conclusion

In this paper we present an approach to optimize the computation of the
core in Cooperative Boolean Games [1] which is essentially based on depen-
dence networks [18, 12]. The problem of computing the core of a Cooperative
Boolean Game is a typical generation and test problem. In this paper, we
provide optimization techniques for both the generation phase and the test
one. We use two different kinds of dependence networks, abstract and refined
dependence networks, for the generation phase and we extend some of the
results provided by Dunne et al. [1] for the test phase.
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Concerning experimental results, pros and cons of our approach can be
highlighted. On the one hand, the advantage, shown by the results of Sec-
tion 6, is that, also in the case of games with a number of strategies sized
in an order of some millions, results are obtained in few minutes. On the
other hand, the optimization techniques we propose in this paper are referred
only to actions with a positive cost. Actions with no cost have not been an-
alyzed in order to propose new optimization techniques and this is left for
future research. Finally, the proposed optimization techniques, concerning
the core-membership problem, return satisfactory results if they are applied
to particular kinds of goals in which the disjuncts are small.

Dependency between players and variables in such games naturally in-
troduces a dependency relation between players, in the same way as we and
Bonzon et al. [4] do. For these reasons, it is interesting to perform a compar-
ison of the computational and performance issues of our approach and these
approaches. Our analysis on dependency graphs can remind the experiments
on graphs which are addressed in the area of distributed constraint solving.
Our dependency graphs have a shape similar to the critical phase in SAT
solving. A future research line will investigate the connections between our
approach to Cooperative Boolean Games using dependency graphs and the
approaches developed in the area of distributed constraint solving. Finally,
we can address our methodology and results to the other solution concepts,
for example, instead of Strong Nash equilibrium, we could represent the core
with a less restrictive notion of stability such as the Coalitional-proof Nash
equilibrium. In particular, it has been shown that if a game has only one
Nash Equilibrium, then it is also a Coalitional-proof Nash equilibrium.

References

[1] P. E. Dunne, W. van der Hoek, S. Kraus, M. Wooldridge, Cooperative
boolean games, in: Proceedings of the 7th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2008),
2008, pp. 1015–1022.

[2] P. Harrenstein, W. van der Hoek, J.-J. Meyer, C. Witteveen, Boolean
games, in: Proceedings of the 8th Conference on Theoretical Aspects of
Rationality and Knowledge (TARK-2001), 2001, pp. 287–298.

[3] P. Harrenstein, Logic in conflict, Ph.D. thesis, Utrecht University (2004).

28



[4] E. Bonzon, M.-C. Lagasquie-Schiex, J. Lang, Dependencies between
players in boolean games, in: Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, 9th European Conference (ECSQARU
2007), 2007, pp. 743–754.

[5] H. Keiding, B. Peleg, Representation of effectivity functions in coalition
proof nash equilibrium: A complete characterization, Discussion Pa-
pers 99-21, University of Copenhagen. Department of Economics (Mar.
1999).

[6] R. B. Myerson, Game Theory, Harvard University Press, 1997.

[7] J. Neumann, O. Morgenstern, Theory of Games and Economic Be-
haviour, Princeton Univeristy Press, 1944.

[8] T. Agotnes, W. van der Hoek, M. Wooldridge, On the logic of coalitional
games, in: Proceedings of the 5th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2006), 2006, pp.
153–160.

[9] M. Wooldridge, P. E. Dunne, On the computational complexity of qual-
itative coalitional games, Artif. Intell. 158 (1) (2004) 27–73.

[10] M. Wooldridge, P. E. Dunne, On the computational complexity of coali-
tional resource games, Artif. Intell. 170 (10) (2006) 835–871.

[11] R. Emerson, Power-dependence relations, American Sociological Review
27 (1962) 31–41.

[12] J. S. Sichman, R. Conte, Multi-agent dependence by dependence graphs,
in: Proceedings of the 1st International Joint Conference on Au-
tonomous Agents & Multiagent Systems (AAMAS 2002), 2002, pp. 483–
490.

[13] C. Castelfranchi, The micro-macro constitution of power, Protosociology
18 (2003) 208–269.

[14] J. S. Sichman, Depint: Dependence-based coalition formation in an open
multi-agent scenario, J. Artificial Societies and Social Simulation (1998)
1 (2).

29



[15] G. Boella, L. van der Torre, S. Villata, Social viewpoints for arguing
about coalitions, in: T. D. Bui, T. V. Ho, Q.-T. Ha (Eds.), PRIMA,
Vol. 5357 of Lecture Notes in Computer Science, Springer, 2008, pp.
66–77.

[16] G. Boella, L. van der Torre, S. Villata, Analyzing cooperation in iterative
social network design, J. UCS 15 (13) (2009) 2676–2700.

[17] G. Boella, L. Sauro, L. van der Torre, Strengthening admissible coali-
tions, in: Proceedings of the 17th European Conference on Artificial
Intelligence (ECAI 2006), 2006, pp. 195–199.

[18] L. Sauro, Formalizing admissibility criteria in coalition formation among
goal directed agents, Ph.D. thesis, University of Turin (2005).

[19] E. Bonzon, Modelisation des interactions entre agents retionnels: les
jeux booleens, Ph.D. thesis, Universite Paul Sabatier, Toulouse (2007).

[20] E. Bonzon, M.-C. Lagasquie-Schiex, J. Lang, Dependencies between
players in boolean games, Int. J. Approx. Reasoning 50 (6) (2009) 899–
914.

[21] D. Koller, B. Milch, Multi-agent influence diagrams for representing and
solving games, Games and Economic Behavior 45 (1) (2003) 181–221.

[22] D. Vickrey, D. Koller, Multi-agent algorithms for solving graphical
games, in: Proceedings of the Eighteenth National Conference on Arti-
ficial Intelligence (AAAI 2002), 2002, pp. 345–351.

[23] L. Sauro, L. van der Torre, S. Villata, Dependency in cooperative
boolean games, in: A. H̊akansson, N. T. Nguyen, R. L. Hartung, R. J.
Howlett, L. C. Jain (Eds.), KES-AMSTA, Vol. 5559 of Lecture Notes in
Computer Science, Springer, 2009, pp. 1–10.

30


