
Attack Semantics for Abstract Argumentation

Serena Villata
INRIA

Sophia Antipolis, France
serena.villata@inria.fr

Guido Boella
Dipartimento di Informatica
Università di Torino, Italia

guido@di.unito.it

Leendert van der Torre
CSC

University of Luxembourg
leendert@vandertorre.com

Abstract
In this paper we conceptualize abstract argumen-
tation in terms of successful and unsuccessful at-
tacks, such that arguments are accepted when there
are no successful attacks on them. We characterize
the relation between attack semantics and Dung’s
approach, and we define an SCC recursive algo-
rithm for attack semantics using attack labelings.

1 Introduction
Dung [1995] conceptualizes abstract argumentation in terms
of attacks among arguments, together with the distinction
among acceptable and unacceptable arguments. In this paper
we raise the following question.

Research question. How to conceptualize argumentation in
terms of successful and unsuccessful attacks, such that
arguments are accepted if and only if there are no suc-
cessful attacks on them?

For example, if “a suspect is innocent since he was on holi-
days” is attacked by “a witness saw him at the crime scene”
and the suspect is not found guilty, then we say that the ar-
gument of the defense was accepted, because attacks on the
innocence of the suspect were not successful.

We address several challenges. First, attacks are not only
successful if they come from accepted arguments, since when
two arguments attack each other, then it may be that neither
argument is accepted, and thus that both attacks are success-
ful. Therefore we may have that an argument is not accepted
but its attacks are successful, which corresponds to the notion
of undecided arguments in argument labelings [Caminada,
2006]. The following example illustrates the basic concepts
and their relations.

Example 1 Consider the argumentation framework with ar-
guments {a, b, c}, attacks a → a, a → b, b → c, c → b and
extension {c}, visualized in Figure 1. Argument semantics
says that a and b are rejected and c is accepted, and labeling
semantics says that a is undecided, b is out and c is in. Attack
semantics says that a→ a, a→ b, and c→ b are successful,
and the other attack is unsuccessful. Argument c is accepted
since there are no successful attacks on it. The attacks by the
in and undecided arguments are successful.

a b

c

a b

c

a b

c
Argument Semantics Labelling Semantics

UNDECIDED

IN

OUT

Attack Semantics

SUCCESSFUL
SUCCESSFUL

SUCCESSFUL

NOT
SUCCESSFULACCEPTED

REJECTED

REJECTED

Figure 1: Successful attacks by in and undecided arguments.

Second, in attack semantics an argument is accepted when
there are no successful attacks on it, but this is too weak to
characterize admissibility semantics. Consider an argumen-
tation framework with a single argument and an empty attack
relation. There are two admissible extensions, since the single
argument can be accepted or rejected in admissibility seman-
tics. However, since there are no attacks, the distinction be-
tween these two admissible extensions cannot be represented
by attack semantics. We therefore start with a general ap-
proach called argument - attack semantics, and we restrict
attack semantics to complete and stronger semantics.

Third, Baroni et al. [2005] observe that “SCC-
recursiveness can be assumed as a basic unifying concept in
argumentation theory.” Moreover, the SCC recursive scheme
uses a generalization of Dung’s semantics, in which the ac-
ceptability of arguments is considered with respect to what
we call the qualified arguments. This raises the question how
to define a recursive scheme for attack semantics, and how to
define a corresponding generalization for attack semantics.
Our generalization represents the unqualified arguments as
arguments which are attacked from outside the argumentation
framework. Moreover, we define also a constructive algo-
rithm for SCC. We introduce an attack labeling approach for
the algorithm, distinguishing among attacks which are suc-
cessful because their attacking argument is accepted, and at-
tacks which are successful although their attacking argument
is not accepted. An attack is in when its attacker is in, un-
decided when its attacker is undecided, and out when its at-
tacker is out. Consequently, an attack is successful when it is
in or undecided, and unsuccessful when it is out.

The paper is organized as follows. Section 2 recalls Dung’s
argument semantics and introduces attack semantics and la-
beling, and Section 3 introduces the constructive SCC recur-
sive procedure for attack semantics.

2 Semantics
Section 2.1 recalls Dung’s semantics, distinguishing among
accepted and rejected arguments. Our terminology differs
from the usual one to contrast the standard approach with the
new attack semantics explained in the following, distinguish-
ing among successful and unsuccessful attacks. We start Sec-
tion 2.2 with a combined argument - attack semantics for the
general case, and Section 2.3 introduces attack semantics for
complete and stronger semantics. In Section 2.4 we discuss
attack labelings, which we use to define Algorithm 2 in Sec-
tion 3.

2.1 Argument semantics
Dung [1995] introduces what we call here argument seman-
tics, associating with each graph a set of so-called argument
extensions, which are subsets of the nodes of the graph. Some
authors therefore call it extension based semantics [Baroni
and Giacomin, 2007].

Our presentation follows Baroni et al. [2005], where the
acceptability of arguments is considered with respect to a des-
ignated subset of arguments, since we need this generaliza-
tion to define the SCC recursive algorithm in Section 3. This
set, which we call the set of qualified arguments, contains
the arguments that an extension may consist of. Intuitively, it
is used to filter out arguments that do not qualify for accep-
tance. This is necessary when we evaluate only a subset of
arguments, but at the same time know that some arguments in
this subset cannot be accepted due to attacks from outside the
subset.

Definition 1 assumes an underlying mechanism of argu-
ment generation defining a set of arguments [Baroni and Gi-
acomin, 2007], which is typically infinite, and which we call
the universe of arguments and represent by U . An acceptance
function E is a function that associates sets of acceptable ar-
guments with a finite set of arguments A ⊆ U , a set of ar-
guments produced by a reasoner at a given instant of time, a
binary relation →⊆ A × A, representing the attack relation
among these arguments, and what we call here the qualified
arguments Q ⊆ A.

Definition 1 (Argument semantics) Let U be the universe
of arguments. An acceptance function

E : 2U × 2U×U × 2U → 22
U

is a partial function which is defined for each argumentation
framework 〈A,→〉 with finite A ⊆ U and →⊆ A × A, to-
gether with qualified arguments Q ⊆ A, and which asso-
ciates with argumentation framework 〈A,→〉 and qualified
arguments Q sets of subsets of A: E(〈A,→〉, Q) ⊆ 2A. If
a → b we say that a attacks b, a is an attacker of b, or b is
attacked by a. If E ∈ E(AF,Q), then we say that E is an
extension of AF and Q under the E semantics, and we say
that the arguments in E are accepted and the arguments not
in E are rejected.

Admissibility semantics in Definition 2 accepts only argu-
ments that are defended by other accepted arguments, and
therefore E(〈A,→〉, Q) ⊆ 2Q. Other authors have introduced
semantics for which this property does not hold, e.g., Baroni

et al. [2005] introduced CF1 and CF2 semantics. They ob-
serve also that Dung’s semantics can be recovered by setting
Q to A.

Definition 2 (Admissibility semantics) Let AF = 〈A,→〉
be an argumentation framework, and let Q ⊆ A and E ⊆ Q
be sets of arguments. cf(E) if and only if there are no argu-
ments a, b ∈ E such that a → b. E defends a if and only
if ∀b ∈ A such that b → a, ∃c ∈ E such that c → b. Let
D(E) = {a ∈ Q | E defends a}.
• E ∈ Eadmiss(AF,Q) if and only if cf(E) and
E ⊆ D(E).

• E ∈ Ecompl(AF,Q) if and only if cf(E) and
E = D(E).

• E ∈ Eground(AF,Q) if and only if E is smallest in
Ecompl(AF,Q) w.r.t. set inclusion.

• E ∈ Epref(AF,Q) if and only if E is largest in
Eadmiss(AF,Q) w.r.t. set inclusion.

• E ∈ Estable(AF,Q) if and only if cf(E) and
∀b ∈ A\E ∃a ∈ E : a→ b.

If E ∈ Eadmiss(AF,Q) we say that E is an admissible ex-
tension of AF and Q, etc.

Example 2 Consider AF = 〈A,→〉 with A = {a, b, c, d, e}
and {a→ b, b→ a, b→ c, c→ d, d→ e, e→ c} visualized
in Figure 2. The complete extensions are Ecompl(AF,A) =
{∅, {a}, {b, d}}. ∅ is the unique grounded extension, {a} and
{b, d} are the preferred extensions, and {b, d} is the stable
extension. In the complete extension ∅ the arguments are re-
jected, because they are not defended. In the extension {b, d}
the other arguments are rejected, because they are attacked
by an accepted counterargument.

a b c
d

e

Figure 2: The argumentation framework of Example 2.

2.2 Attack - argument semantics
We generalize the argument semantics by selecting from the
graph not only a set of nodes, but also a set of edges. This rep-
resents intuitively that attacks can be successful or unsuccess-
ful. A similar kind of intuition is formalized in extended ar-
gumentation frameworks with second or higher order attacks
by [Barringer et al., 2005; Modgil and Bench-Capon, 2008;
Boella et al., 2009; Baroni et al., 2011b], where attacks are
treated as arguments which can be accepted and rejected too.
In this paper we do not consider second or higher order at-
tacks, though our generalization may be of use for such ex-
tended argumentation frameworks too.

Definition 3 represents argument - attack semantics by a
function associating with each graph a set of its so-called

argument-attack extensions, which are sets of nodes and sets
of edges from the graph. An argument-attack extension can
contain an edge between arguments a and b, without contain-
ing the arguments a and b themselves. In other words, the
argument attack extensions do not have to be subgraphs.

Since we aim to rephrase all concepts in terms of attack, the
qualified arguments are implicitly represented as arguments
not attacked from outside the argumentation framework:
Q = {a ∈ A |6 ∃b ∈ U \ A : b → a}. We therefore ex-
tend→ to range over U × A, and we do not add Q as a third
parameter to the acceptance function F .

Definition 3 (Argument - attack semantics) An accep-
tance function F : 2U × 2U×U → 22

U∪2U×U

is a partial
function which is defined for each argumentation framework
〈A,→〉 with finite A ⊆ U and→⊆ U ×A, which associates
with argumentation framework 〈A,→〉 sets of subsets of A
and →: F(〈A,→〉) ⊆ 2A∪→. For each attack a → b, we
say that a is the attacking argument, and b is the attacked
argument. Moreover, for an argument a, we say that all its
attacks are the attacks a→ b, and we say that all the attacks
on a are all attacks b→ a.

We can enforce additional constraints on argument attack
semantics, just as additional constraints are sometimes en-
forced on argument semantics. The qualified constraint says
that the accepted arguments depend only on whether an argu-
ment is attacked by an argument outside ofA, not on the iden-
tity of the attackers outside the argumentation framework.
The attacker dependence constraint says that if one attack by
an argument is successful, then all attacks by this argument
are successful. The successful attack constraint says that at-
tacks by accepted argument are successful (but not necessar-
ily vice versa). The unsuccessful attack constraint says that
the attacks by arguments which are attacked by an accepted
argument, are not successful. The defended attack constraint
says that if there is no accepted argument attacking the at-
tacker of an attack, then the attack is successful. The success
of an attack in terms of the acceptance of arguments con-
straint says that an attack b → c is unsuccessful if and only
if there is an accepted argument a attacking b. Therefore, an
attack b → c is successful if and only if either its attacking
argument b is accepted, or for all arguments a attacking argu-
ment b, argument a is rejected.

Definition 4 (Constraints)
Qualified For all 〈A,→1〉 and 〈A,→2〉, if same attacks

in A: →1 ∩(A×A) =→2 ∩(A×A) and same at-
tacked from outside: {a ∈ A | ∃b ∈ U \A : b→1 a} =
{a ∈ A | ∃b ∈ U \ A : b →2 a}, then same accepted
arguments F(〈A,→1〉) ∩A = F(〈A,→2〉) ∩A.

Attacker dependence ∀E∪↪→ ∈ F(〈A,→〉): If a → b and
a → c, then either both attacks are successful, or none
of them.

Successful attack ∀E∪↪→ ∈ F(〈A,→〉): if both a ∈ E and
a→ b, then a ↪→ b;

Unsuccessful attack ∀E∪↪→ ∈ F(〈A,→〉): if a ∈ E,
a→ b and b → c, then we do not have b ↪→ c, i.e.
b 6↪→ c;

Defended attack ∀E∪↪→ ∈ F(〈A,→〉): if b → c and
6 ∃a ∈ E : a→ b, then b ↪→ c;

Success in terms of acceptance ∀E∪↪→ ∈ F(〈A,→〉):
b ↪→ c if and only if b→ c and 6 ∃a ∈ E : a→ b.

Proposition 1 Success in terms of acceptance implies at-
tacker dependence, successful attack, unsuccessful attack,
and the defended attack constraint.

In the following, we consider argument attack semantics
together with the constraint that defines success in terms of
acceptance. However, this does not necessarily imply that
also acceptance can be defined in terms of success. For ex-
ample, consider again the argumentation framework with a
single argument and an empty attack relation. There may be
two extensions under the success in terms of acceptance con-
straint, since the single argument can be accepted or rejected.
However, since there are no attacks, the acceptance of this
argument cannot be represented by the success of attacks.

The following definition uses the constraint to relate argu-
ment semantics to argument attack semantics.
Definition 5 (Relation) The argument semantics E and ar-
gument attacks semantics F are equivalent, written as
E = F , if E∪↪→ ∈ F(〈A,→〉) if and only if
• E ∈ E(〈A,→ ∩A×A〉, Q), for qualified arguments
Q = {a ∈ A |6 ∃b ∈ U \A : b→ a}, and
• b ↪→ c⇔ b→ c∧ 6 ∃a ∈ E : a→ b.

We write Fadmiss for the acceptance function equivalent to
Eadmiss, etc.

The following example illustrates grounded, preferred and
stable semantics using argument attack semantics.
Example 3 (Continued from Example 2) The grounded
extension ∅ has only successful attacks, the preferred
extension {a} has {a ↪→ b, c ↪→ d, d ↪→ e, e ↪→ c} as
successful attacks, and the stable extension {b, d} has
{b ↪→ a, b ↪→ c, d ↪→ e} .

Proposition 2 If the universe of arguments U is infinite, then
for every E , there is an F equivalent to it.
Proof. By construction. Assume U is infinite, and consider
〈A,→1〉 andQ. Since U is infinite andA is finite, there exists
an argument a inU\A. Let→2=→1 ∪{a→2 b | b ∈ A\Q}.
Proposition 3 If the universe of arguments U is infinite, then
for everyF with success in terms of acceptance, and the qual-
ified constraint, there is precisely one E equivalent to it.
Proof (sketch). The construction in Proposition 2 maps each
element in E to an F satisfying the two constraints.

Proposition 4 characterizes defense and reinstatement as
the failure of attacks from arguments which are attacked by
accepted arguments: if an argument a is accepted, then for all
arguments b attacked by a, the attacks of b are unsuccessful.
Proposition 4 (Defense) If E∪↪→ ∈ E(〈A,→〉), then for all
arguments a, b, c we cannot have a ∈ E, a→ b and b ↪→ c.
Proof. Assume a ∈ E and a → b. Since E is conflict free,
6 ∃a′ ∈ E : a′ → a, and consequently a ↪→ b due to the
successful in terms of acceptance constraint. Therefore we
cannot have b ↪→ c due to the same constraint.

Proposition 5 shows that attacks from outside the argumen-
tation framework are always successful.

Proposition 5 (Context) If E∪↪→ ∈ E(〈A,→〉), then for all
arguments a and b we have that a → b and a 6∈ A implies
a ↪→ b.
Proof (sketch). Follows from the fact that there are no attacks
on arguments outside A, together with the success in terms of
acceptance constraint.

The following theorems are proven directly from the def-
initions presented thus far, but could also have been proven
via the alternative characterization using labeling semantics
discussed in Section 2.4. An extension is admissible if and
only if for all accepted arguments, none of the attacks on it
are successful.

Theorem 1 (Admissible) E∪↪→ ∈ Fadmiss(AF) if and
only if cf(E) and ∀a ∈ E 6 ∃b ∈ U : b ↪→ a.
Proof. ⇒: follows directly from the success in terms of ac-
ceptance constraint. ⇐: We prove the contrapositive. As-
sume the extension E∪↪→ is not admissible, then there is an
accepted argument a ∈ E which is not defended against an
attack from argument b: b → a and 6 ∃c ∈ E : c → b. From
the definition of successful attack, this implies that the attack
of b on a is successful: b ↪→ a.

A complete extension is an admissible extension, in which
an argument is accepted if and only if none of the attacks on
it are successful.

Theorem 2 (Complete) E∪↪→ ∈ Fcompl(AF) if and only
if cf(E) and a ∈ E ⇔6 ∃b ∈ U : b ↪→ a.
Proof. By Definition 2, E is a set of arguments c such that
for all arguments b attacking c there is an argument a ∈ E
attacking b. ⇔ E is a set of arguments c such that there is no
argument b attacking c for which there is no argument a ∈ E
attacking b. ⇔ E is the set of arguments for which there is no
argument b successfully attacking it. The latter step follows
directly from success in terms of acceptance.

Theorem 3 characterizes complete semantics in terms of
the success of attacks, which is the basis for the attack seman-
tics in Section 2.3. In complete semantics, an attack c → d
is successful if and only if for each successful attack b → c,
there is a successful attack a→ b.

Theorem 3 (Complete: Success propagation)
E∪↪→ ∈ Fcompl(AF) if and only if for each c → d

we have c ↪→ d if and only if for each b ↪→ c we have an
a ↪→ b.
Proof (sketch). Follows from Theorem 2 together with the
success in terms of acceptance.

A grounded extension is a complete extension with a max-
imal set of successful attacks.

Theorem 4 (Grounded) E∪↪→ ∈ Fground(AF) if
and only if E∪↪→ ∈ Fcompl(AF) and there is no
E′∪ ↪→′∈ Fcompl(AF) with ↪→⊂↪→′.
Proof (sketch). Follows from Proposition 2,3 and Theorem 2.

A preferred extension is an admissible extension with a
minimal set of successful attacks.

Theorem 5 (Preferred) E∪↪→ ∈ Fpref(AF) if and
only if E∪↪→ ∈ Fadmiss(AF) and there is no
E′∪ ↪→′∈ Fadmiss(AF) with ↪→′⊂↪→.
Proof (sketch). Follows from Proposition 2,3 and Theorem 2.

A stable extension has no successive attacks.

Theorem 6 (Stable) E∪↪→ ∈ Fstable(AF) if and only if
cf(E) and there are no arguments a, b, c with a ↪→ b and
b ↪→ c.
Proof (sketch). Follows from Proposition 2,3 and Theorem 2.

2.3 Attack semantics
From now on, in this paper we consider only complete seman-
tics or one of its refinements, such as grounded, preferred or
stable semantics. We introduce the following attack seman-
tics, a function that associates with each graph a set of its
attack extensions, which are sets of edges from the graph.

Definition 6 (Attack semantics) An acceptance function
A : 2U × 2U×U → 22

U×U

is a partial function which is
defined for each argumentation framework 〈A,→〉 with
finite A ⊆ U and →⊆ U × A, which associates with
argumentation framework 〈A,→〉 sets of subsets of →:
A(〈A,→〉) ⊆ 2→. If a → b and b → c we say that a → b
is a predecessor of b → c, and that b → c is a successor of
a→ b.

Theorem 3-6 can be rephrased in terms of attack seman-
tics, because for complete semantics (and stronger) an argu-
ment is accepted when there are no successful attacks on it
(Theorem 2).

Corollary 1 (Complete Attack Semantics)
↪→∈ Acompl(AF) if and only if for each c → d we have

c ↪→ d if and only if for each b ↪→ c we have an a ↪→ b.
↪→∈ Aground(AF) if and only if ↪→∈ Acompl(AF) and

there is no ↪→′∈ Acompl(AF) with ↪→⊂↪→′.
↪→∈ Apref(AF) if and only if ↪→∈ Acompl(AF) and

there is no ↪→′∈ Acompl(AF) with ↪→′⊂↪→.
↪→∈ Astable(AF) if and only if ↪→∈ Acompl(AF) and

there are no arguments a, b, c with a ↪→ b and b ↪→ c.

Example 4 Consider the argumentation framework
AF = 〈A,→〉 with arguments A = {a, b, c, d, e, f}
and attacks {a → b, b → a, b → c, c → d, d → e, e → f},
visualized in Figure 3. Assume that we know that a and b are
rejected. Then the attacks a → b and b → a are successful,
and consequently we can derive by attack propagation that
all attacks are successful.

a b c d e f

Figure 3: The argumentation framework of Example 4.

2.4 Labeling semantics
In this section we show how to use labelings [Jakobovits and
Vermeir, 1999; Caminada, 2006] to make the relation be-
tween argument and attack semantics more precise, which is
useful for Algorithm 2 in Section 3. We consider the set of
labelings of an argumentation framework satisfying the fol-
lowing conditions: an argument is in if and only if all its at-
tackers are out, an argument is out if and only if there is an
attacker that is in, and an argument is undecided if and only
if none of its attackers is in, and at least one of its attackers is
undecided.

We now introduce an attack labeling semantics. Whereas
argument labelings partition rejected arguments into out and
undecided arguments, attack labelings partition successful at-
tacks into in and undecided attacks. Intuitively, an undecided
attack is like a threat: it is not based on an accepted attack-
ing argument, but it can still be used to reject the attacked
argument.

Definition 7 (Attack labeling semantics) Let U be the uni-
verse of arguments, and let L be the set of functions from
relations over arguments →⊆ U × U to {in, out, und}. An
acceptance function E : 2U × 2U×U → 2L(U×U) is a partial
function which is defined for each argumentation framework
〈A,→〉 with finite A ⊆ U and →⊆ U × A, which asso-
ciates with argumentation framework 〈A,→〉 sets of label-
ings of→: E(〈A,→〉) ⊆ L(→).

We define attack labeling analogous to argument labeling.
An attack is in when its attacking argument is in, an attack is
undecided when its attacking argument is undecided, and an
argument is out when its attacking argument is out. An attack
is successful when it is in or undecided, whereas an argument
is accepted when it is in. For example, if an argument is re-
jected, but at least one of its attacks is successful, then the
argument is undecided.

Example 5 (Continued from Example 3) The grounded
extension ∅ has only undecided attacks, the preferred ex-
tension {a} has in attack a ↪→ b and undecided attacks
c ↪→ d, d ↪→ e, e ↪→ c, and the stable extension {b, d} has in
attacks b ↪→ a, b ↪→ c, d ↪→ e and no undecided attacks.

We now rephrase the argument labeling conditions in terms
of attack labeling. For complete semantics, each labeling cor-
responds to a complete extension, where the in arguments
of the labeling are the accepted arguments of the extension.
Analogously, an attack is in if and only if all its predecessors
are out, an attack is out if and only if there is a predecessor
that is in, and an attack is undecided if and only if none of
its predecessors is in, and at least one of its predecessors is
undecided.

Theorem 7 Complete semantics is characterized by the fol-
lowing two conditions.

1. For all b and c we have L(b → c) =out, if and only if
there is an a such that we have L(a→ b) =in.

2. For all b and c we have L(b→ c) =in, if and only if for
all a we have L(a→ b) =out.

3 SCC recursive algorithm
3.1 SCC-recursive argumentation semantics
In this subsection, we describe [Baroni et al., 2005]’s SCC-
recursive scheme which is based on the graph theoretical
notion of strongly connected component, i.e., SCCs pro-
vide a unique partition of a directed graph into disjoint parts
where all nodes are mutually reachable. The authors ob-
serve that “the underlying basic ideas can be summarized
as follows: (1) the argumentation framework is partitioned
into its strongly connected components; they form a par-
tial order which encodes the dependencies existing among
them according to the directionality principle; (2) the pos-
sible choices for extensions within each initial strongly con-
nected component are determined using a semantic-specific
base function which returns the extensions of argumentation
frameworks consisting of a single strongly connected com-
ponent; (3) for each possible choice determined at step 2,
according to the reinstatement principle, the nodes directly
attacked within subsequent strongly connected components
are suppressed and the distinction between defended and un-
defended nodes is (possibly) taken into account; (4) the steps
1–3 above are applied recursively on the restricted argumen-
tation frameworks obtained at step 3.”

Most presentations of the SCC recursive scheme
(e.g., [Baroni and Giacomin, 2009; Baroni et al., 2011a])
present only the following definition, and they observe that
it is well founded. They also observe that it is quite compli-
cated and its detailed illustration is beyond the scope of the
paper; we also do not attempt to present it here in further de-
tail, but refer the reader to [Baroni et al., 2005].

Definition 8 ([Baroni et al., 2005], Definition 20) A given
argumentation semantics is SCC − recursive if and only if
for any argumentation frameworkAF = 〈A,→〉, ES(AF) =
GF (AF,A), where for any AF = 〈A,→〉 and for any set
C ⊆ A, the function GF (AF,C) ⊆ 2A is defined as follows:
for any E ⊆ A, E ∈ GF (AF,C) if and only if

• in case |SCCSAF | = 1, E ∈ BFS(AF,C),

• otherwise, ∀S ∈ SCCSAF we have (E ∩ S) ∈
GF (AF ↓UPAF (S,E), UAF (S,E) ∩ C),

where

• SCCSAF denotes the set of strongly connected compo-
nents of AF (a maximal set such that in the transitive
closure of→, each argument of an SCC attacks all other
ones),

• BFS(AF,C) is a function, called base function, that,
given an argumentation framework AF = 〈A,→〉 s.t.
|SCCSAF | = 1 and a set C ⊆ A, gives a subset of 2A,

• UPAF (S,E) = {a ∈ S |6 ∃b ∈ E : b 6∈ S, b → a},
all arguments that are not attacked by an accepted argu-
ment outside of S,

• UAF (S,E) = {a ∈ UPAF (S,E) | ∀b 6∈ E : b 6∈
S, b→ a⇒ ∃c ∈ E : c 6∈ S, c→ b}, all arguments that
are defended against attacks from outside of S, and

• AF ↓ S = 〈S,→ ∩E ×E)〉, the restriction of AF to S.

Baroni et al. [2005] show also that the base function for
admissible, grounded, preferred and stable semantics are the
ones given in Definition 2, and therefore that all these seman-
tics are SCC recursive.

Example 6 (Continued from Example 2) Consider again
the example visualized in Figure 2. There are two SCC {a, b}
and {c, d, e}. The SCC {a, b} is not attacked by anything,
{a} and {b} are the complete extensions of this SCC. Consid-
ering {a}, the SCC we get is {c, d, e}. Considering, instead,
{b, d}, since b is in, the SCC {c, d, e} goes into recursion and
becomes {d, e}, which consists of two SCCs, {d} and {e}.

3.2 Iterative procedure
Baroni et al. [2005] observe that Definition 8 has also a
straightforward constructive interpretation, but they do not
give a procedure. We believe that Algorithm 1 is easier to un-
derstand than Definition 8. The X label stands for unlabeled
arguments in a partial labeling. Line 2 starts a loop where par-
tial labelings are extended by first in lines 4-7 applying the so-
called characteristic function, and then in lines 11-19 apply-
ing the base functionBF . The characteristic function in lines
4-7 assigns the in label to the arguments attacked only by out
arguments, and out to arguments attacked by at least one in
argument, following [Caminada, 2006]. Lines 8-10 assign the
label und to those arguments which are attacked by out and
und arguments only (and therefore at least by one und argu-
ment, otherwise it would already have been labeled in); these
lines are not strictly necessary, but speed up the algorithm. In
line 11, SCC(〈A,→〉, L) returns the sets of X-labeled argu-
ments of A that (1) are maximal strongly connected compo-
nents and (2) are not attacked by any X-labeled arguments. If
such a set exists, then BF (〈A,→〉, C) applies the base func-
tion to 〈A,→〉 where C corresponds to arguments which are
defended against attacks from outside of 〈A,→〉.

Theorem 8 (Soundness and completeness) The iterative
procedure is sound and complete with respect to the SCC
recursive scheme, in the sense that it returns all labelings
that can be reconstructed using the base function.

3.3 SCC for attack semantics
For argument semantics, the SCC scheme partitions a SCC
into defended and undefended arguments. For attack seman-
tics, instead, an SCC consists in a set of attacks, together
with attacks from outside the SCC. Algorithm 2 is the coun-
terpart of Algorithm 1 for attack semantics by using the re-
lations shown in Section 2. Line 2 starts a loop where par-
tial labelings are extended by first in lines 4-10 applying the
characteristic function, and then in lines 14-21 applying the
base function for attack semantics BFAtt. The characteris-
tic function in lines 4-10 assigns the label in to the attacks
whose predecessors are labeled out, and attacks with a pre-
decessor which is labeled out are labeled in. In lines 11-13,
the attacks whose predecessors are not X-labeled get the la-
bel und; also for attack semantics these lines are not strictly
necessary, but speed up the algorithm. Finally, similarly to
Algorithm 1, SCCAtt(AF,L) returns the sets of X-labeled
attacks that (1) form a SCC together with those attacks on

Input: AF = 〈A,→〉, BF
Output: L

1 L := {L = {L(a) = X|a ∈ A}}
2 while ∃L ∈ L : ∃a ∈ A : L(a) = X do
3 L = L \ {L};
4 while ∃a ∈ A : L(a) = X ∧∀b→ a : L(b) = out do
5 L(a) := in;
6 ∀b : a→ b⇒ L(b) := out;
7 end
8 while ∃a ∈ A : L(a) = X ∧ ∀b→ a : L(b) =

out ∨ L(b) = und do
9 L(a) := und;

10 end
11 if ∃S ∈ SCC(AF,L) then
12 foreach E ∈ BF (AF ↓ S, {s ∈ S :6 ∃b ∈

A \ S : b→ s ∧ L(b) = und}) do
13 L′ := L;
14 ∀a ∈ E ⇒ L(a) := in;
15 ∀b ∈ S ∃a ∈ E : a→ b⇒ L(b) := out;
16 ∀b ∈ S : L(b) = X ⇒ L(b) := und;
17 L := L ∪ {L′};
18 end
19 end
20 end

Algorithm 1: The SCC algorithm for argument semantics.

Input: AF = 〈A,→〉, BFAtt

Output: Lab
1 L = {L = {L(a) = X|a ∈→}}
2 while ∃L ∈ L : ∃a→ b : L(a→ b) = X do
3 L = L \ L;
4 while ∃a→ b : L(a→ b) = X do
5 while ∃a→ b : L(a→ b) = X ∧ ∀c→ a :

L(c→ a) = out do
6 L(a→ b) := in;
7 while ∃a→ b : L(a→ b) = X ∧ ∃c→ a :

L(c→ a) = in do
8 L(a→ b) := out;
9 end

10 end
11 while ∃a→ b : L(a→ b) = X ∧ ∀c→ a :

L(c→ a) 6= X do
12 L(a→ b) := und;
13 end
14 if ∃〈A′,→′〉 ∈ SCCAtt(AF,L) then
15 foreach ↪→′∈ BFAtt(〈A′,→′〉) do
16 L′ := L;
17 ∀a→′ b : a 6↪→ b⇒ L(a→ b) := out;
18 ∀a ↪→ b : ¬∃c ↪→ a⇒ L(a→ b) := in;
19 ∀a→′ b : L(a→ b) = X ⇒ L(a→

b) := und;
20 L := L ∪ {L′};
21 end
22 end
23 end
24 end

Algorithm 2: The SCCAtt algorithm for attack semantics.

it labeled und, and that (2) do not have an X-labeled prede-
cessor, and BFAtt(〈A,→〉, C) is the base function for attack
semantics, as given in Corollary 1 for various kinds of seman-
tics. We illustrate how algorithm SCCAtt works by means of
Example 7.

Example 7 (Continued) Consider again the argumentation
framework visualized in Figure 2. We start with the follow-
ing situation, where L and L are the partial labeling and the
set of starting partial labelings for the SCCAtt algorithm,
respectively:
• L = {L};

• a→ b b→ a b→ c c→ d d→ e e→ c;
L X X X X X X

• SCCAtt(.) = {{a→ b, b→ a}};
• BFAtt(.) = {{a→ b, b→ a}, {a→ b}, {b→ a}};

We obtain the following partial labelings:
• L = {L1, L2, L3};

•
a→ b b→ a b→ c c→ d d→ e e→ c;

L1 und und X X X X
L2 in out X X X X
L3 out in X X X X

Now, we select the first partial labeling, L1, in order to com-
pute a complete labeling:
• L = {L1, L2, L3};

•
a→ b b→ a b→ c c→ d d→ e e→ c;

L1 und und X X X X
L1 und und und X X X

• SCCAtt(.) = {{c→ d, d→ e, e→ c}};
• BFAtt(.) = {{c→ d, d→ e, e→ c}};

• a→ b b→ a b→ c c→ d d→ e e→ c;
L1 und und und und und und

L1 is the first attack labeling we get. Then, we consider the
other two partial labelings. We start with L2.

•
a→ b b→ a b→ c c→ d d→ e e→ c;

L2 in out X X X X
L2 in out out X X X

• SCCAtt(.) = {{c→ d, d→ e, e→ c}};
• BFAtt(.) = {{c→ d, d→ e, e→ c}};

• a→ b b→ a b→ c c→ d d→ e e→ c;
L2 in out out und und und

Then we consider the last partial labeling, L3.

•

a→ b b→ a b→ c c→ d d→ e e→ c;
L3 out in X X X X
L3 out in in X X X
L3 out in in out X X
L3 out in in out in X
L3 out in in out in out

Theorem 9 follows for complete semantics, when we have
a one to one correspondence between argument labelings and
attack labelings.

Theorem 9 (Soundness and completeness) For complete
semantics and its refinements, Algorithm 2 returns the set of
all attack labelings.

3.4 Implementation
The two algorithms above have been implemented, and we
are collecting and evaluating preliminary results. The source
code and additional information can be found at:

http://argumentationpatterns.com

The prototype has been developed using Python program-
ming language v2.6., an interpreted, general-purpose high-
level programming language, whose reference implementa-
tion (CPython) is an open source software. In particular, we
developed the Python prototype, using the python.graph
package1 and exploiting its inner built-in features (e.g., search
and traversal algorithms, cycle detection). In our implemen-
tation, the argumentation framework is a directed graph and
the available SCCs are associated to the arguments attacking
them, using dictionaries and lists.

The argumentation framework is characterized by the fol-
lowing structures:

1. a directed graph called digraph;

2. a list of strongly connected components. This is repre-
sented by means of a list of lists, each of them containing
the nodes of the SCC itself;

3. a dictionary implementing the base function. The SCCs
are the keys of the dictionary, and the arguments attack-
ing each SCC are its values.

We use two algorithms classes provided by
python.graph, concerning searching (e.g.,
depth first searching used for breadth-first search)
and accessibility. The base function BF is computed starting
from the attackers of a SCC from outside the SCC itself.
After the graph is built and the BF is computed, the labeling
can start by iterating on each label to be set. First of all, all
arguments are labelled X . Then, each argument is labelled
IN or OUT according to:

• being part of an attacked SCC;

• attacking a SCC;

• attacking/being attacked by a labelled argument;

At the end, remaining unlabeled arguments are labelled as
UND, and the final set of labels is returned.

The algorithm always converges in a few steps, depending
on the number of the attacked SCCs and on the number of at-
tack relations. Preliminary results show also that maintaining
a cache for intermediate labelings leads to a benefit in terms
of number of operations (around 10% less operations of graph
access).

Future work will be described on the website. For example,
we are now exploring how to modify the algorithms for cre-
ating, accessing and manipulating graphs (e.g., by adopting
NetworkX, a Python package for the creation, and manipula-
tion of complex networks), in order to avoid cross checks in
graph cycles management.

1http://code.google.com/p/python-graph/

4 Concluding remarks
To represent and reason with argumentation there is a choice
between Dung’s two valued argument evaluations [Dung,
1995] and three value labelings [Caminada, 2006]. Some
people find it easier to work with the former, because it is the
simplest model, and some other people find it easier to work
with the latter, because the value of a label depends on the
value of its attackers only. We find it more natural to concep-
tualize argumentation and dialogue in terms of successful and
unsuccessful attacks, and we suspect that some other people
might find it useful to use combinations of these approaches.

In this paper we therefore introduce attack semantics, that
conceptualizes argumentation in terms of successful and un-
successful attacks, such that arguments are accepted if and
only if there are no successful attacks on them. We introduce
also attack labeling semantics and general argument attack
semantics. We compare these semantic approaches in detail
with Dung’s traditional extension based semantics, which we
call argument semantics to contrast it with our attack seman-
tics, and Jakobovits-Vermeir-Caminada labeling semantics.
Since we focus on attack semantics coinciding with tradi-
tional semantics, there exist meaningful instantiations of our
abstract theory. We discuss also limitations of attack seman-
tics, in particular it cannot be used for admissible semantics
(here, argument attack semantics or argument attack labelings
must be used).

Moreover, in this paper we introduce a constructive SCC
recursive procedure for attack semantics. In our opinion,
SCC techniques are not useful only for computational rea-
sons, but in particular also for conceptual reasons. For in-
stance, as discussed extensively by Baroni et. al [2005], SCC
techniques can be used to implement directionality. We be-
lieve this may be useful, when argumentation theory is further
generalized to partial acceptance and partial success.

Extended argumentation frameworks with second or higher
order attacks by [Barringer et al., 2005; Modgil and Bench-
Capon, 2008; Boella et al., 2009; Baroni et al., 2011b] treat
attacks as arguments which can be accepted and rejected too.
Assume, for instance, the AFRA based argument α repre-
senting the attack a → b. The acceptance of α corresponds
to the success of the attack a → b. Moreover, in meta-
argumentation [Boella et al., 2009] the attack a → b is flat-
tened into four arguments accept(a), Xab, Yab and accept(b)
with accept(a) → Xab, Xab → Yab, and Yab → accept(b).
If there are no other arguments attacking the auxiliary argu-
ments Xab and Yab, then we have that the label of the attack
argument Yab is identical to the label of accept(a).

Concerning further research, one may consider a common
framework for iterated belief revision and abstract argumen-
tation, such that the revision of b by a corresponds to attacks
of a on b. In particular, one could define generalizations of
belief revision with revision cycles. In iterated belief revi-
sion there are no revision cycles, but in argumentation theory
there can be attack cycles among the arguments. Therefore
the challenge is to introduce cycles in iterated belief revision
too, and give them an intuitive explanation. Moreover, an-
other challenge consists in introducing partial acceptance and
success in abstract argumentation.

Acknowledgements
The first author acknowledges support of the DataLift Project
ANR-10-CORD-09 founded by the French National Re-
search Agency.

References
[Baroni and Giacomin, 2007] Pietro Baroni and Massim-

iliano Giacomin. On principle-based evaluation of
extension-based argumentation semantics. Artif. Intell.,
171(10-15):675–700, 2007.

[Baroni and Giacomin, 2009] Pietro Baroni and Massimil-
iano Giacomin. Semantics of abstract argument systems.
In I. Rahwan and G. Simari, editors, Argumentation in Ar-
tificial Intelligence, pages 25–44, 2009.

[Baroni et al., 2005] Pietro Baroni, Massimiliano Giacomin,
and Giovanni Guida. Scc-recursiveness: a general schema
for argumentation semantics. Artif. Intell., 168(1-2):162–
210, 2005.

[Baroni et al., 2011a] Pietro Baroni, Martin Caminada, and
Massimiliano Giacomin. An introduction to argumenta-
tion semantics. Knowledge Engineering Review, 2011.

[Baroni et al., 2011b] Pietro Baroni, Federico Cerutti, Mas-
similiano Giacomin, and Giovanni Guida. AFRA: Argu-
mentation framework with recursive attacks. Int. J. Ap-
prox. Reasoning, 52(1):19–37, 2011.

[Barringer et al., 2005] Howard Barringer, Dov M. Gabbay,
and John Woods. Temporal dynamics of support and at-
tack networks: From argumentation to zoology. In Mech-
anizing Mathematical Reasoning, Essays in Honor of Jörg
H. Siekmann on the Occasion of His 60th Birthday, LNCS
2605, Springer, pages 59–98, 2005.

[Boella et al., 2009] Guido Boella, Dov M. Gabbay, Leen-
dert van der Torre, and Serena Villata. Meta-
argumentation modelling I: Methodology and techniques.
Studia Logica, 93(2-3):297–355, 2009.

[Caminada, 2006] Martin Caminada. On the issue of rein-
statement in argumentation. In Procs. of Logics in Ar-
tificial Intelligence, 10th European Conference, JELIA,
LNCS 4160, Springer, pages 111–123, 2006.

[Dung, 1995] Phan Minh Dung. On the acceptability of ar-
guments and its fundamental role in nonmonotonic reason-
ing, logic programming and n-person games. Artif. Intell.,
77(2):321–358, 1995.

[Jakobovits and Vermeir, 1999] Hadassa Jakobovits and
Dirk Vermeir. Robust semantics for argumentation
frameworks. J. Log. Comput., 9(2):215–261, 1999.

[Modgil and Bench-Capon, 2008] Sanjay Modgil and Trevor
J. M. Bench-Capon. Integrating object and meta-level
value based argumentation. In Procs. of Computational
Models of Argument, COMMA, Frontiers in Artificial In-
telligence and Applications, vol. 172, IOS Press, pages
240–251, 2008.

