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Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques; G.3 [Proba-

bility and Statistics]: Queueing theory, Renewal theory, Stochas-

tic processes; G.1.6 [Numerical Analysis]: Optimization—Con-

strained optimization, Nonlinear programming; C.2.5 [Computer-

Communication Networks]: Local and Wide-Area Networks—

Access schemes

General Terms

Performance, Theory

1. INTRODUCTION ANDMODEL
We shall analyze and optimize the parameters of the following

two types of power saving of IEEE 802.16e in presence of downlink

traffic:

(i) Type I classes: Under the sleep mode operation, sleep and

listen windows are interleaved as long as there is no downlink traf-

fic destined to the node. During listen windows, the node checks

with the base station whether there is any buffered downlink traffic

destined to it in which case it leaves the sleep mode. Each sleep

window is twice the size of the previous one but it is not greater

than a specified final value. The initial sleep window is Tmin, the

multiplicative factor is a (a = 2 in the standard) and the final value

alTmin depends on the exponent l.
(ii) Type II classes: All sleep windows are of the same size as

the initial window (i.e. a = 1). Sleep and listen windows are

interleaved as in type I classes.

To model these classes, we analyze an M/G/1 queue in which

the server begins a vacation of random length each time that the

system becomes empty. If the server returns from a vacation to find

an empty queue, a new random vacation initiates; otherwise, the

server works until the system empties (exhaustive service regime).

Request arrivals are assumed to form a Poisson process with pa-

rameter λ. Let σ denote a generic random variable having the same

(general) distribution as the queue service times. The queue regen-

erates each time it empties and the cycles are i.i.d. Each regenera-

tion cycle consists of (see Fig. 1):
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Figure 1: Sample trajectory of the queue size during a regener-

ation cycle.

(i) an idle period; let I denote a generic random variable having

the same distribution as the queue idle periods, a generic idle period

I consists of ζ vacation periods denoted V1, . . . , Vζ ;

(ii) a warm-up period; it is a fixed duration denoted Tw during

which the server is warming up to start serving requests;

(iii) a busy period; let B denote a generic random variable having

the same distribution as the queue busy periods.

Let X(t) denote the queue size at time t. Define

(i) V̂i: the end of the ith vacation period, i = 1, . . . , ζ; the idle pe-

riod ends at V̂ζ ; we have V̂i =
Pi

j=1 Vj and I = V̂ζ =
Pζ

i=1 Vi;

(ii) TZ : the start of the busy period B; let Z := X(TZ), the queue

size at the beginning of a busy period;

(iii) Ti: the first time the queue size decreases to the value i (i.e.

X(Ti) = i) for i = Z − 1, . . . , 0; the cycle ends at T0.

The times {Ti}i=Z,Z−1,...,0 delimit Z subperiods in B. We can

write B =
PZ

i=1 Bi where Bi = Ti−1 − Ti.

Z is in fact the number of arrivals from t = 0 until time TZ .

Introduce ZI as the number of requests that have arrived up to time

V̂ζ (i.e. during period I) and Zw as the number of arrivals during

the warm-up period Tw. Hence Z = ZI + Zw. Observe that

X(I) = ZI .

2. ANALYSIS
Number of Vacations. Let ζ be the number of vacation periods

during an idle period. Observe that the event ζ ≥ i is equivalent to

the event of no arrivals during any of the periods {Vk}k=1,...,i−1.

Denoting by Lk(s) = E[exp(−sVk)] the Laplace Stieltjes trans-

form of Vk, we have

P (ζ ≥ i) =
i−1
Y

k=1

Lk(λ),



for i > 1, where we have used the fact that arrivals are Poisson

with rate λ.

The Idle and Busy Period. We can write

I =

ζ
X

i=1

Vi =
∞
X

i=1

Vi1l{ζ ≥ i} ⇒ E[I ] =
∞
X

i=1

E[Vi]
i−1
Y

k=1

Lk(λ),

as the vacation period Vi does not depend on the event of no arrivals

during V̂i−1. Define Ia :=
P∞

i=1 V 2
i 1l{ζ ≥ i}, then

E[Ia] =
∞
X

i=1

E
ˆ

V 2
i

˜

i−1
Y

k=1

Lk(λ).

The number of requests waiting in the queue at the beginning of

a busy period is Z = ZI +Zw. Zw, the number of arrivals during a

warm-up period Tw, is a Poisson variable with parameter λTw. We

then have E[Zw] = λTw, and E
ˆ

Z2
w

˜

= λ2T 2
w + λTw. It can be

shown that E[ZI ] = λE[I ] and E[Z2
I ] = λ2E[Ia] + λE[I ]; refer

to [1] for details. ZI and Zw are independent, and so

E[Z] = λ(E[I ] + Tw) (1)

E[Z2] = λ2(E[Ia] + 2E[I ]Tw + T 2
w) + λ(E[I ] + Tw).

From Fig. 1 and using (1) we can write (note that B1 = BM/G/1)

E[B] = E[B1]E[Z] =
ρ

1 − ρ
(E[I ] + Tw).

The Queue Size and Sojourn Time. Let

A :=

Z V̂ζ

V̂ζ−1

X(t)dt, Aw :=

Z TZ

V̂ζ

X(t)dt, QZ :=

Z T0

TZ

X(t)dt,

be defined as the total area under the curve X(t) for the idle, warm-

up and busy periods respectively. Then

E[X] =
E[A] + E[Aw] + E[QZ ]

E[I ] + Tw + E[B]
. T =

E[X]

λ
. (2)

Let N(t), t ≥ 0 be a Poisson process with rate λ. Let τi be the ith
arrival epoch. Define A(t) := E[α(t)|N(t) ≥ 1] with

α(t) :=

Z t

0

N(s)ds =

N(t)
X

i=1

(t − τi) = tN(t) −

N(t)
X

i=1

τi.

We thus need to compute E[A] = E[A(Vζ)]. We have E[α(t)] =
λt2/2. Therefore,

A(t) =
E[α(t)]

P (N(t) ≥ 1)
=

λ

2
t2

∞
X

k=0

exp(−kλt)

E[A] =
λ

2

∞
X

i=1

 

i−1
Y

k=1

Lk(λ)

!

(1 − Li(λ))
∞
X

k=0

d2Li(s)

ds2

˛

˛

˛

˛

s=kλ

.

From Fig. 1 we can write

E[Aw] = E[ZI ]Tw +

Z Tw

0

λtdt = λTw(E[I ] + Tw/2).

The following recursive equation holds

QZ =
“

(Z − 1) BZ + Q1

”

+ QZ−1.

Hence E[Qz] = E[Z]E[Q1] + (E[Z2] − E[Z])E[B1]/2 where

E[Q1] = E[QM/G/1] =
E[σ]

1 − ρ
+

λE[σ2]

2(1 − ρ)2

which completes the computation of the response time T ; see (2).
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Figure 2: The expected system response time T when sleep win-
dows are deterministic.

Table 1: Optimal protocol parameters obtained from P
Deterministic case Exponential case

λ l a Tmin G l a Tmin G

0.02 1 1.5 72 89.7% 2 2.5 27 89.0%
0.03 5 1.5 82 85.7% 2 3.0 22 85.2%
0.05 3 2.0 92 78.3% 3 1.5 32 78.0%
0.10 1 5.0 92 63.6% 1 1.5 42 63.5%
0.20 1 5.0 92 44.0% 9 1.5 47 44.0%

3. APPLICATION TO POWER SAVING
Let Si be a generic random variable that gives the actual time a

node is sleeping during the ith vacation period. We then have V1 =
S1 and Vi = Tl + Si for i = 2, . . . , ζ. The listen window Tl

accounts for the time needed by a node to check for messages at

the base station. We assume Tl = Tw and consider either

(i) Si = amin{i−1,l}Tmin, i = 1, 2, . . . , (deterministic case)

(ii) E[Si] = amin{i−1,l}Tmin, i = 1, 2, . . . , (exponential Si).

Define the economy of energy G := (Eno sleep − Esleep)/Eno sleep.

The following nonlinear program P :

maximize G subject to T ≤ TQoS

is solved for the three protocol parameters: the exponent l, the mul-

tiplicative factor a and the initial expected sleep window Tmin.

The system parameters have been selected as follows: E[σ] = 1,

E[σ2] = 2, Tl = Tw = 1, TQoS = 50, 100. The ratio between the

energy consumptions of a node in idle and active states is set to 0.2.

Numerical results for the sojourn time T in the deterministic case

have been derived and are displayed graphically in Fig. 2. The so-

journ time T appears to be fairly insensitive to parameters l and a
except for very small values of λ. Observe that the load ρ = λE[σ]
gives the probability of finding the queue busy. Hence, with prob-

ability 1 − λE[σ], an arriving request finds the server on vacation.

This explains the high response time for low input rates. For very

large input rates, the system response time is also high, but then

it is mainly due to queueing delays. We have solved the nonlinear

program P for (l, a, Tmin)
∗ with TQoS = 50 for deterministic sleep

windows and TQoS = 100 for exponential sleep windows. The val-

ues of the optimal protocol parameters (l, a, Tmin)
∗ are in Table 1.
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