Chapter 1

Inference models to estimate network
characteristics

The first chapter of the thesis is concerned with adaptive unicast applications that adjust
their sending rate in order to avoid congestion in the network. One way of achieving this
involves estimating both the available bandwidth and the available storage capacity along a
connection. The research presented herein builds on simple inference models based on finite
capacity single server queues to estimate the buffer size, the intensity of cross traffic and the
service rate at the bottleneck link of a path between two application-level hosts. Throughout
the chapter, several groups of moment-based estimators are proposed to estimate these
quantities. The best scheme, identified as the one achieving the best performance and the
fastest convergence, is then identified through simulation. An application to routing in
content distribution networks is discussed.

Keywords: Queueing, M/M/1/K queue, M/D/1/K queue, measurement, monitoring,
simulation.

Note: Part of the material presented in this chapter is published in [16].
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1.1 Introduction

The huge expansion of the Internet coupled with the emergence of new (in particular,
multimedia) applications pose challenging problems in terms of performance and control of
the network. These include the design of efficient congestion control and recovery mecha-
nisms, and the ability of the network to offer good Quality of Service (QoS) to the users.
In the current Internet, there is a single class of best effort service which does not promise
anything to the users in terms of performance guarantees. The forthcoming deployment in
the Internet of differentiated services (known as DiffServ [1]) will be a first (long awaited)
step towards the support of various types of applications and business requirements. It is
however doubtful that DiffServ — which will mark each packet to receive a particular for-
warding treatment, or per-hop behavior, at each network node — or the RED mechanism
for congestion avoidance in gateways [53| alone will solve all QoS issues raised by real-time
applications. Diffserv and RED are two instances of a general approach that aims at adding
more intelligence in the network. A more ambitious component of this approach is cap-
tured in the concept of active networking [122| that aims at exploiting mobile code and
programmable infrastructure to provide rapid and specialized service introduction.

A complementary approach for providing QoS guarantees is to add intelligence to the
applications. The idea is to provide applications with enough knowledge of the network
so that they can use this information to adapt their transmission rates to current network
conditions. Since it is impossible to monitor every link on the Internet, static (e.g. bandwidth
of a link) and dynamic (e.g. available bandwidth on a path) network internal characteristics
have to be estimated from measurements delivered by the network (e.g. packet losses in
RTCP feedback). Our work falls into the latter category.

In this chapter, we are interested in the available bandwidth on a route. Under the
single bottleneck link assumption, we expect this quantity to be better estimated if one
has estimates of the bottleneck bandwidth, the cross traffic intensity and the buffer size
at the bottleneck link. The latter quantities are not provided by packet pair algorithms
[73, 21, 31, 94, 77]). We believe that the available bandwidth will be better estimated when
taking explicitly into account the cross traffic and the buffer size at the bottleneck link.
Not only can the application adapt its sending rate and/or encoding in response to network
congestion, but it can estimate the maximum size of a burst of packets as well. We propose
to perform active measurements by probing the network, and model the end-to-end path as
a simple single server queueing model with two input streams: the probe stream and the
cross traffic stream (also called the background traffic stream). The input probe traffic will
be a Poisson process and the input cross traffic will be assumed to be a Poisson process.
Two models will be considered depending on whether the service times are assumed to be
exponentially distributed or deterministic. Based on the single bottleneck link assumption,
the inference models will allow us to simultaneously estimate the bandwidth capacity, the
background traffic intensity and the buffer size at the bottleneck link. Potential applications
for this work are: adapting the transmission for congestion control [21, 111], load balancing
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in routers and analysis of IP network usage. In fact, ISPs need bandwidth monitoring tools
to plan their capacity upgrades, and to detect congested or underutilized links [26].

The chapter is organized as follows. Section 1.2 briefly discusses some related works
and Section 1.3 introduces the methodology followed in this work. Two inference models
based on the M/M/1/K and the M/D/1/K queues are introduced in Sections 1.4 and 1.5,
respectively. In each case, several QoS metrics of interest are identified and expressed in
terms of the parameters to be estimated (buffer size, cross traffic intensity, server capacity).
In Section 1.6, we propose ten schemes that can be used to estimate these quantities, and
under the assumption that the service capacity is known (provided for instance by a packet
pair technique), we propose a total of eleven schemes that can be used to compute estimates
of the intensity of the cross traffic and the buffer size. Section 1.7 reports simulation results
obtained with the ns-2 simulator [83] from which we were able to select the best scheme
out of the proposed schemes. Extensions to our work are given in Section 1.8.

1.2 Related work

Inference models have been widely used for characterizing internal network behav-
ior from end-to-end multicast measurements. This methodology is captured in the MINC
project [3]. Among the network characteristics which have been estimated (refer to [3] for
a list of references), are the internal loss rates in the MBone [29, 28, 30, 51|, the packet
delay variance at interior network links [50], the network-internal delay [100, 49|, and the
multicast topology [27, 48, 47| (these lists are not exhaustive).

The estimation of network characteristics from measurements has been carried out
in a number of cases. For instance, the arrival rates of interfering traffic and the service
rates of customers on the route of a CAC (call acceptance controller) probe stream can be
estimated for a product form Kelly network [110]. The steady-state throughput of a bulk
transfer TCP flow can be estimated as a function of loss rate and round-trip time using
the so-called TCP-friendly formula [93, 80, 82]. The packet pair technique can be used to
estimate both the bottleneck bandwidth [21, 31, 94, 77] and the available bandwidth along a
path connecting two hosts on the Internet [67, 73, 31]. Although the previous estimates have
been devised under the assumption that a single bottleneck link exists on a path connecting
two hosts, experiments reported in the previous references indicate that these estimates still
perform reasonably well when this assumption is violated.

The estimation of the bottleneck bandwidth has been carefully investigated by Paxson
[94, Chapter 14]|. Paxson proposes a robust procedure called “packet bunch mode” (PBM)
and compares the results returned by PBM with other techniques such as receiver-based
packet pair (RBPP), sender-based packet pair (SBPP) and peak rate (PR). It is seen in [94]
that PR performs poorly, that RBPP performs as well as PBM if some requirements are
observed and that SRPP does not work especially well (the estimators studied in [21, 31]
are both sender-based). As for PBM, Paxson observes that “it produces many bandwidth



8 Chap. 1 Inference models to estimate network characteristics

estimates that accord with known link speeds, and produces few erroneous results, except
for a tendency to misdiagnose a multiple-channel bottleneck link in presence of considerable
delay nowse’. Note that PBM has a large component of heuristics, as it has to deal with
the multimodal distribution of bandwidth measurements to further identify and select the
capacity estimate from these modes.

Subsequent to our work, Lai and Baker [77] propose another technique called “receiver
only packet pair” (ROPP), which is yet another variant of the packet pair algorithm. The
authors compare the performance of ROPP and SRPP and RBPP (but not PBM). The
results reported in |77] suggest that ROPP can achieve an accuracy close to that of RBPP,
while maintaining the ease of deployment of SBPP. Recently, Dovrolis, Ramanathan and
Moore [46] develop a bandwidth estimation methodology that is robust to cross traffic
effects. This methodology, based on end-to-end measurements, is implemented in a tool
called pathrate. There are potentially two phases in pathrate. In the first phase, a packet
pair probing is done. If the distribution of bandwidth measurements is unimodal, then
the unique mode is the bandwidth estimator and the measurement process terminates.
Otherwise (multimodal distribution), the second phase is initiated and a packet train probing
is done. The authors make use of a heuristic to estimate the bottleneck bandwidth. When
evaluating the heuristic rule, they observe that the methodology is quite accurate as long
as the path capacity is lower than about 40 Mbps. For higher capacities, the estimator
underestimates the capacity, in some cases by a factor of almost two. However, the authors
show that the performance of their estimator is enhanced when increasing the histogram bin
width w. This parameter tunes the resolution of the estimator, for instance, if w = 2 then
pathrate will output estimates at 2 Mbps interval (refer to [46] for more details).

1.3 Methodology

Consider the following scenario: an application sends a probe stream into the network
together with its data packets. All packets are assumed to follow the same path to the
destination. At the source, the arrival times to the network (denoted by a,,) are available. At
the destination, the departure times from the network (denoted by d,,) are available as well
as the information on lost packets and on packets that find the network non-empty. Assume
that all these variables are available at the source by using some feedback mechanism. The
source is then capable of estimating some QoS related metrics such as the loss probability
or the expected response time of the network.

Given a model for the network (such as a simple single server queue representing the
bottleneck node along the path source-destination), one is able to express the QoS related
metrics in terms of the buffer size, the cross traffic intensity and the server capacity. Given
estimates of these QoS related metrics, the source can simply infer the values of the buffer
size, the cross traffic intensity and the server capacity, by using the network model. Figure
1.1 illustrates the estimation approach just described.
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X, = 1{packet n is lost}
Y,, = 1{packet n found a non-empty queue}

General methodology:

e collect at the source samples of the variables a,,d,, X,, Y,

¢ estimate some performance metrics using these variables (e.g. loss probability),

e given a model for the connection, express these metrics in terms of the parameters to estimate,
e infer the unknown parameters.

Figure 1.1: The methodology

1.4 The M+M/M/1/K queue

1.4.1 The model

We model an Internet connection by a single server queue representing its bottleneck
node, following [22|. The buffer is finite with room for K customers (K > 1) including the
customer in service. The incoming traffic at the bottleneck is modeled as two independent
Poisson sources: the probe traffic generated by a foreground source with rate v, and the cross
traffic generated by a background source with rate A. This background source can be seen
as the superposition of many heterogeneous sources. We model the service times as i.i.d.
random variables with exponential distribution with mean 1/p, furthermore, independent
of the arrival processes. This assumption represents the variability of the packet sizes. We
are aware of the strength of this assumption, but we assume it for the tractability it gives
to the study of the model.

ey ®

Figure 1.2: The inference model

The traffic intensity is defined as
A+
p=—-. (1.1)
1

We are interested in the behavior of the system from the perspective of the foreground cus-
tomers. This includes stationary measures such as expected delay, loss probability, server
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occupancy and a number of additional statistics associated with the foreground loss process,
namely, the probability of two consecutive losses and the probability of two consecutive suc-
cesses. It is important to observe that these stationary metrics do not pertain exclusively to
the foreground source, but to the background source as well, due to the Poisson assumption
and its memoryless property.

Let {Q.}:°, be the process of the number of packets in the buffer at time of the

nth arrival from foreground source, and let Q = lim, . Q,'. The distribution of @ is
m; = P(Q = 1). It is known that [75]

(1-p)pf :
Tri:l_ipl(—kl’ 7,:0,1,...,K. (12)

1.4.2 The loss probability

We focus here on the loss process. We define X,, = 1{Q,, = K} and X = lim,, o, X,,.
A customer is lost whenever it arrives to a full buffer. In other words, customer n is lost
whenever X,, = 1 and is not lost otherwise. Let {a,}2; and {d,}2°; be the arrival times
to the system and the departure times from the system, respectively, of the nth foreground
customer, n = 1,2,.... When a packet is lost, it never reaches the destination. We shall
assume that d,, = oo if X,, = 1.

Using the PASTA property [17, page 137|, the probability that a foreground customer
arrives to find the system full and is lost is

Pp=PX=1) = PQ=K)

_ (@-pp~
= e (1.3)

Observe that the expression for P, can be used to give the following expression for K in
terms of p and Py,

1 P, )
K= lo . 1.4
log p g<1—p(1—PL) (14)

1.4.3 The server utilization

The second metric of interest is the utilization U of the server, defined as the proba-
bility of a non-empty queue as seen by a foreground customer. In order to express U, we

'A word on the notation in use: let {Z,}, be a sequence of random variables taking values in [0, 00).
Agsume that lim,, .. P[Z,, < z] exists for all > 0. Then Z = lim,,_.« Z,, designates any random variable
such that P[Z < z] = lim,, .« P[Z, < 7]
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introduce the following indicator Y,, = 1{@,, > 0} and define Y = lim,,_., Y,,. The server
utilization is then

U:=P(Y=1) = P(Q>0)
_ 1—p"
() )
— p(1-P,). (1.6)

Again, we can derive from the expression for U the following expression for K in terms of
p and U,

1 1-U/p
K = 1 : 1.
logpog(l—U) (17)

1.4.4 The expected response time

When available, the expected response time is also a relevant metric. To express this
quantity, we first define 7,, as the response time of the nth foreground packet. It follows
that T, = d,, — a,. Again, let T = lim,, ., T},, then, the expected response time is

R=E[T|X=0]= Zi:/i)(l(i_':ri))ﬁ(i)

(1.8)

since a customer waits for an average time (i + 1)/ if there were already ¢ customers in the
queue; 1 — 7 is the probability of a success. Using (1.2) we can write

1 1—p K1 i
R:u(l—m) (1—pK+1 Z(Hl)p)'

i=0
Hence,
P 1 1-p° Kok
p(l—mr) [(L—=p)(1—pitt) 11— pkt!
1 K TK

= Wi=p hU-pl-m) (1.9)

The last expression for R, which was derived using (1.2), will prove useful. We can express
R only in terms of p and K by replacing 7k given by (1.3) in (1.9). This gives

1 K pf

R=—— =
p(l=p) pl-p

(1.10)

e
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1.4.5 The conditional loss probability
The next metric we are going to study is the conditional loss probability or, in other
words, the probability that two consecutive losses occur. It is expressed as follows

In order to be able to derive a closed form expression for g;, we define N(¢) to be the
queue length of the system at time ¢ > 0 with the foreground source removed (v = 0). Let
P, x(t) = P(N(t) = k| N(0) = 4). Hence (1.11) rewrites

=7 [ Pi(®)dt =7 Pl (112)
0
where P () is the Laplace transform of P r(t).

Proposition 1.4.1

. a1 —a) =T (1-b)"!
Pz',K('V) = A (BEH — gK+1)

fori=0,1,..., K, where

L A p+v+/ A+ p+79)? =4
N 2\

A tp+y— A+ p+7) -4

- 2\ '

b

¢

Proof. Recall the definition P, x(t) = P(N(t) = k|N(0) = i) where N(t) is the queue
length of the system with the foreground source removed (7 = 0) at time ¢ > 0. We have
the following differential equations:

d

&B,O(t) = —AP,o(t) + uP; (1) (1.13)
d

&B,K(t) = —,U,PZ',K(t) + )\R,K—l(t) (114)
d

ZP(t) = —(A+ @) Pyr(t) + APogca(t) + p P (8), for k=1, K = 1, (1.15)

for i =0,..., K. Define P;(z,t) = Y0, Pix(t)2*. Then,

| o

Pz-,k(t)zk.

o,

d d K
—P = 2— S P k—
ZdtR(Z’t) T E k(t)z ZkE_O ;
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Using (1.13) — (1.15) and after some algebra we get

z d

T dtP(Z t) = (u— A2)Pi(2,t) — pPio(t) + A2 1P k(). (1.16)

Now we consider the Laplace transform of P;(z,t), P(z,s) fo e *tP;(z,t) dt. Replace-

ment of this in (1.16) along with the use of the following relation
= —st d *
e *— P(z,t)dt = sP’(z,s) — P(z,0)
0 dt

and some algebraic manipulations yields

2 = p(l = 2)Plo(s) + A1 = 2)2" P (s)
sz —(1—2)(p— Az2)

(1.17)

where P (s) = [~ e " P,(t)dt, k = 0,1,..., K. The denominator of the right-hand side

of (1.17) contains two zeros,

Atp+s—/(A+p+s)?—4\u

als) = 2\
A p+ s+ /(A +p+s)2—4\u
#(s) = 2
for R(s) >0

As P*(z, s) is analytic, the zeros of the denominator must also be zeros of the numer-
ator. More precisely, the numerator must satisfy

2 (s) = [1 = 2 (8)][Pfo(s) — Azi(s) T Pl (s)] = 0.

These two equations for £ = 1,2 can be solved to yield

22(8) 21 ()" /[1 = 29(5)] = 21(5) " 22 (s) T /[1 — 21 ()]

Fials) = B (&R = () )
)= 2= (0] = 5 (91 = 5 (9]
%K N (s) T (57 )

Let a and b be defined as a = 25(7y) and b = 2;(7y), we get

. a'tt (1- a)_l — it (1- b)_l
Pz',K(’V) = A (BFH — gK+T)

and the proof is concluded. [ |



14 Chap. 1 Inference models to estimate network characteristics

From Proposition 1.4.1 we get that

N R D
Pex0) = a1

which in turn implies from (1.12) that

g = (%) <(1 = a)_(b_/cf)b;{i)l — 1(1 —b)” ) : (1.18)

Expression (1.18) for ¢, can be inverted to give

_ log (= + 1)) — log (15 + q1A) B

1.19
logb — loga (1.19)

1.4.6 The conditional non-loss probability

Another metric can also be calculated. It is the conditional probability that an arriving
foreground packet finds room in the buffer given that the previous foreground customer was
also admitted. We shall refer to this probability as the conditional non-loss probability and
will denote it by qn. We have

qv = P(Qu1 # K|Qn # K)
P(Qn—H #K,ani,Qn#K)

I
M7

P(Qn # K)
R PQup # K| Q= i) 7(i)
B ; 1—7(K)

N

( (Qn+1 K | Qn = Z)) W(Z)
1 —7n(K) '

(=)

1=

Recall the definition of P, ;(t) = P(N(t) = k| N(0) = i), where N(¢) is the queue-length
at time ¢ when v = 0 (no foreground customers). Since the nth foreground customer is
accepted in the system when @), =i < K, we have

P(Quir = K | Q= i) =(/ Provxc(t)ye ™ dt
0
=9 Pz'il,K(”Y)

fori=0,1,..., K — 1, with P}, (s) = fooo e *tP; (t)dt. Therefore,

gv=1—17 Z P’?_KS()KZ '). (1.20)
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Using Proposition (1.4.1) which gives an expression for P (), (1.20) rewrites

v =1 () (7= ) () (ot~ (o) 20

Since

P(Quit = K) = P(Qui1 = K|Qu = K) P(Qu = K)+P(Qus1 = K|Qu # K ) P(Qu # K)
we deduce that Pp,qr and gy are linked by the following relationship

1.5 The M+M/D/1/K queue

1.5.1 The model

We still consider the model introduced in Section 1.4.1 but we now change the as-
sumption that the service times are exponentially distributed. Instead we will assume that
the service times are constant and all equal to 1/u. In Section 1.4.1, we motivated our
choice for exponentially distributed service times by the fact that various packet lengths are
possible. Taking into consideration that packet lengths may not be so variable to justify
the choice of an exponential distribution, we study here another case: the service times are
taken to be constant (i.e. all packets have the same length) with value o = 1/u. Recall the
definition of the traffic intensity given in (1.1).

Again, let {Q,}52, be the process of the number of packets in the queue at time of
the nth arrival from foreground source and let @) = lim,,_.o, @),- Some preliminary results
must be introduced before computing the stationary distribution of Q).

Let F(0) = E[exp(—6o)] (R(F) > 0) be the Laplace-Stieltjes transform (LST) of the
service time distribution. Since we consider a constant service time, this transform rewrites
as F(0) = exp(—0o). For p > 0 and |z| < 1, define

Gy(2) = F <@) -z

= e P72 4 (1.23)

For p > 0, we denote by zy(p) the zero of G,(z) having the smallest modulus. Also, we
denote by [2"]f the coefficient of 2™ in the Taylor series expansion of f.

To express the stationary distribution of (), we base our calculus on Cohen’s analysis
of the M/G/1 queue with finite waiting room (K > 1) [39, Chapter II1.6]. Introduce the
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parameter B defined as

B N 1 dz
B=l+onf, <gp(z)) i (1:24)

with D, any circle in the complex plane with center 0 and radius strictly less than |zy(p)|.
According to the results obtained by Cohen [39, page 575|, we have

PQ=0)= 1, (1.25)
1 1 d
P(Q=j) = 2ij7€3 (gp(,; . 1) Z—JZ for j=1,...,K —1, (1.26)
_ 1 p—1 1 dz
re=0=55f (G5 r) (1-27)

The integrals in the r.h.s. of (1.24), (1.26) and (1.27) can be evaluated using the theorem of
residues [118|. More precisely, the formula which is to be used is

j{ f(z)dz = 2mi Z Res|f, z«]
¢ k=1

where (z1,...,2,) are the poles of the meromorphic function? f inside the circle C. To
calculate a residue, use the identity

(m—1)
ez = g (s G- 20™@)) == a0

where m is the multiplicity of pole z;. It is easily seen that

1 1 1 . 1, ifj=1

D — = —_— = J—1 el ?

omi 27 97 M$LW4 Cat {0, ifj=2.3,...

1 1 1

P ———dz =R 0| =[] — =1
2i Jp, T=2) K 1 "’S[u—z>z“] S

1 % L - Res 1 0 0, if j=1
o - dz = _— = - o
2mi Jp, Gy(2) 291 G,(2) 21 [20 2]%1(2)’ ifj=2,3,...

Finally, from (1.24)—(1.27) and with the help of the previous identities, the distribution of

2A meromorphic function is a rational function, i.e. it has no essential singular points; for instance

f(2) = e(1/?) is not a meromorphic function since 0 is a singular essential point.
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@ is given by

o = m, (1.28)
™= %, (1.29)
m = a”f:fp/j;;(“;gp) =2, K—1, (1.30)
. +1($;;i?5(p) (1.31)

where we have defined

i 11 i 1
=g =i gm) L b gm0

When the service times are constant, an analytical expression for «;(p) can be derived.

To this end, start from

1 1 .
_ _ (1-2) (1—2)\2
G = = = )

i>0

where the last equality is true for z such that |ze?'=2)| < 1, which yields

1 1) —ols (i+1)2)*
— iop(itl) ,—p(i+l)z _ ipp (1)
.2 E z'e e E E Z'e X

i>0 i>0 k>0
_ A G YA G R S AR
=2 | X i 2"
n>0 \ith=n
Hence
eP (T (—1)kpk (5 + 1)F 2 er-h-1) (-1 kb (G —k—1)F
a(p)= Y I = ( )k! ( " s (133)

ik=j—2 k=0
1.5.1.1 Alternative computation of «;(p)

Computing «;(p) as in (1.33) becomes rapidly intractable because of the factorial in
the denominator. An alternative calculation consists of computing the integral in (1.32).
The key point is to determine r < ry := |29(p)|, the radius of the circle over which the integral
is to be computed. Recall that zo(p) is the zero of G,(z) having the smallest modulus. For
general service times, it is known from the Lemma of Takacs [114, pages 47-49] that:
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e 2y(p) is a continuous function of p,

e Z(p) =1lifp<1,

e 2(p) <1lif p>1,

e 2o(p) is the only zero inside the unit circle if p > 1,

e for p =1, the multiplicity of the zero zy(1) =1 is 2.

When the service times are deterministic, the zeros of G,(z) are simply a Lambert W
series. For later use, we briefly review some of the properties of the Lambert W function
[40]. By definition, the Lambert W function satisfies:

W(z)e"® = z.

As this equation has an infinite number of solutions for each (non-zero) value of z, W(x)
has an infinite number of branches. Denote the kth branch by Wi(x). If z is real, then
for —1/e < x < 0, there are two possible (negative) real values of W(z). The branch
satisfying —1 < W(z) < 0 is denoted by Wy(x) and referred to as the principal branch of
the W function; and the branch satisfying W (z) < —1 is denoted by W_;(z). Note that
Wo(x) and W_q(z) are the only branches that take on real values and that Wy(—1/e) =
W_i(—1/e) = —1.

Let us now return to the function G,(z). Rewriting it as follows:

er?

Go(z) = —7( —pe P+ pze*pz),

it becomes clear that the zeros of G,(z) satisty the following equation:
—pze PP = —pe .

Thus, the zeros of G,(z) are
1 _
z(p) = —;Wk (—pe~?), for k € Z. (1.34)

Figure 1.3 depicts the modulus of the zeros z(p) for k € [—4,3]NZ as a function of the load

p. The zero having the smallest modulus is given by the principal branch of the Lambert
function (drawn in red in Figure 1.3) which is real for any p > 0 (Note: —pexp(—p) is real
and —1/e < —pexp(—p) < 0 hence Wy(—pexp(—p)) is real and negative), thus

1

ro = 20(p) = —;Wo (—pe?)
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Figure 1.3: Modulus of the zeros of G,(z), —%Wk (—pe*), vs. the traffic load p

As expected, we find that zo(p) = 1if p < 1; z9(p) < 1if p > 1; 20(1) = 1 has a multiplicity
2 (because Wy(—1/e) = W_1(—1/e) = —1); and for p > 1, zy(p) is the only zero inside the

unit circle. Furthermore, we have that z(p) is a continuous real function of p.

We want to find now a real number r which is smaller than 7y for any p. It can be
easily proved that the function exp(—ap) for o > 1 serves well, as illustrated in Figure 1.3.
Indeed, to have exp(—ap) < zo(p) for p > 0, it suffices to have Wy(—pexp(—p)) < p(a—1).
The latter condition is always satisfied for az > 1, since Wy(—pexp(—p)) < 0.

Now that we have found a possible value for the radius of the circle D, (take r =
exp(—2p) for instance), letting z = r exp(ifl) = r cos @ + irsinf in (1.32) yields

de, (1.35)

L[
0

GO =5mi |, TG0

where G,(f) denotes the conjugate of G,(f) in the complex plane and |G,(#)| denotes its
modulus. We can write:

gp(e) — efp(lfrexp(ie)) . 7,62'9
m — e—p(l—rexp(—i&)) . ,r,e—iG

|gp(0)|2 — 7,2 + 6—2p(1—rcos6‘) . 2,',,6—p(1—r cos ) COS[Q — pr sin 0]
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e—w(j—2)gp(0) — 6—p(1—rcos€) e—i(prsin6’—|—6’(j—2)) . ,’,,e—ie(j—l)

= Real;(0) + i Imag;(0),
where

Real;() := e #1779 cos[prsin @ + 0(j — 2)] — rcos[f(j — 1]
Imag,(0) := —e P gin[prsin 6 + 0(j — 2)] + rsin[0(j — 1)].

It is seen that Real;(d) and |G,(0)|° are even functions in @ and that Imag;(6) is odd.
Equation (1.35) reduces then to

1 ™ Real;(6)
aj(p) = — 5 /0 G0 de. (1.36)

The integral in (1.36) is easily computed using a numerical procedure provided by the NAG?
C library [91].

1.5.1.2 General remarks

Instead of taking r = exp(—ap) with a > 1, it is possible to assign to r any value
strictly less than 1 when p < 1 (letting » = 0.5 rather than r = 0.9 leads to fast convergence
when computing numerically the integral). Let us now investigate the case where p > 1.
Notice that G,(z) has a unique negative real minimum at 1 — logp/p and that G,(0) =
exp(—p) is positive. Hence, we are sure that rq is in the interval [0,1 — log p/p| and may
compute r iteratively, starting at 1 — log p/p, and decrementing r until G,(r) > 0.

Since the stationary distribution exists, the coefficients «;; for j = 2, ..., K satisfy the
following conditions:

o 1+ pak(p) > 1 (existence of m),
o 0 <ay(p) —1 <1+ pak(p) (existence of m),
o 0 <aju(p) —ai(p) <1+ pakg(p) for j=2,..., K — 1 (existence of 7;),
e 0<1+(p—1)ak(p) <1+ pak(p) (existence of 7x),
which are summarized by:
o 1 <m(p) < - <a4(p) <ajulp) <---<ak(p) forj=2,..., K -1,

e ax(p)(1—p) <1,



Sec. 1.5 The M+M/D/1/K queue

19 25

a;(p)
13

Figure 1.4: The parameter «;(p) for j = 2,..., K and for several values of p

¢ a/j-f-l(p)_aj(p) <1+paK(p) fOI'jZQ,...,K—Q,

Last, we observe that the function j — «;(p) is concave increasing for p < 1, convex
increasing for p > 1 and linear increasing for p = 1 as plotted in Figure 1.4.

1.5.2 The loss probability

Recall the definition of X,, introduced in Section 1.4.2, X,, = 1{Q,, = K} and X =
lim,, o X,. A customer n is lost whenever X,, = 1 and is not lost otherwise.

The probability that a foreground customer is lost is the probability that it finds the
system full upon arrival, namely,

P, == P(X=1) = P(Q=K)
1+ (p—1) ak(p)
L+pag(p)

(1.37)
Notice that in order to have 0 < P; < 1, the following condition must be satisfied:

0 < ar(p)

— < 1L
1+ pak(p)

3NAG is a copyright of The Numerical Algorithms Group Ltd
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The first inequality says that ax(p) and 1+ pag(p) must have the same sign. This
is always true since both quantities are greater than 1.

The second inequality says that ax(p) < 1/(1 — p) in the case p < 1 and ax(p) >
1/(1— p) otherwise. The latter is always true, as ax(p) > 1 and 1/(1—p) < 0. When p < 1
and for large values of K, the coefficients ayx become close to each others and very close
to 1/(1 — p). A lack of precision during the computation of ax(p) may lead to a negative
value for P, instead of a negligible positive value.

1.5.3 The server utilization

The utilization U of the server was defined as the probability of a non-empty queue.
The server utilization is

U = P(Q>0)

__prox(p) (1.38)

1+ pak(p)
Notice that the condition

pak(p)

0<U=——"—"-""-"—
L+ pak(p)

<1

is always satisfied.

1.5.4 The expected response time

Applying Little’s formula and the PASTA property to the queue, we find that the
expected response time R is given by

S in(d)
R= T (1.39)

Using (1.29), (1.30) and (1.31), (1.39) rewrites

K(1+ parc(p)) = |1+ £1, 05(0)|
= (1.40)
ppax(p)

with o;(p) defined in (1.32).
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1.6 Using the inference models

1.6.1 An inference question

Until now we have introduced two models for a connection. In the first model, we
were able to identify five metrics describing the quality of service provided to the foreground
source, P, U, R, q;, and gy, given in (1.3), (1.5), (1.10), (1.18) and (1.21). In the second
model, we were able to identify three QoS metrics, P, U and R, given in (1.37), (1.38) and
(1.40). Since p = (A+1)/p, all these equations are expressed in terms of the parameters A,
p and K (the probing rate vy is known).

The problem is therefore the following: How can we infer estimates 5\n, i1, and Kn
of parameters A\, u and K, respectively, from the observations collected from the first n
probes?

If the parameters A\, p and K are unknown, then (1.3), (1.5), (1.10), (1.18) and (1.21)
leave us with nine schemes to compute these three constants in the M/M/1/K case (there
are C3 = 10 possible schemes but relation (1.22) reduces that number to nine); only one
scheme is available in the M/D/1/K case. These ten schemes are listed in Table 1.1, where
the notation X Y Z denotes the scheme obtained by using the metrics X,Y and Z in the
M/M/1/K case and where P;,_U _R_ D denotes the scheme obtained by using the metrics
Pp,U and R in the M/D/1/K case.

Table 1.1: Schemes for estimating A, u and K

Scheme Reference Equations to use
PLU_R 1 (1.3), (1.5), (1.10)
Pp_U_q 2 (1.3), (1.5), (1.18)
P,_U_gqn 3 (1.3), (1.5), (1.21)
Pr_R_qr 4 (1.3), (1.10), (1.18)
P,_R_gn 5 (1.3), (1.10), (1.21)
U_R_qr 6 (1.5), (1.10), (1.18)
U_R_qn 7 (1.5), (1.10), (1.21)
U_qr_qn 8 (1.5), (1.18), (1.21)
R_qr_gn 9 (1.10), (1.18), (1.21)
P,_U_R_D 10 (1.37), (1.38), (1.40)

If we now assume that only A and K are unknown (u being estimated for instance,
using pathrate [46], PBM |94] or ROPP [77], see Section 1.2), then CZ = 10 schemes in the
M/M/1/K case and one scheme in the M/D/1/K case (Equation (1.40) can be used only
if (1.37)—(1.38) are also used) can be used to compute these two constants, resulting in a
total of eleven schemes. These eleven schemes are listed in Table 1.2, where the notation
X Y denotes the scheme obtained by using the metrics X and Y in the M/M/1/K case
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and where P;, U D denotes the scheme obtained by using the metrics P, and U in the
M/D/1/K case.

Table 1.2: Schemes for estimating A and K (u assumed to be already known /estimated)

Scheme Reference Equations to use
P, U I (1.3), (1.5)

P, R I (1.3), (1.10)

Py _qr 111 (1.3), (1.18)

U R A% (1.5), (1.10)
U_qL VI (1.5), (1.18)

U qn VII (1.5), (1.21)

R qp VIII (1.10), (1.18)

R gy IX (1.10), (1.21)
P, U D XI (1.37), (1.38)

1.6.2 Solving for the equations

Up to now, we have defined two groups of schemes. The schemes, denoted by the
italic numbers 1,...,10, have three QoS metrics as inputs and can be used to simultaneously
estimate parameters A, 4 and K. The schemes, denoted by the roman numbers I,... ,XI,
have two QoS metrics as inputs and can be used to estimate parameters A\ and K solely,
parameter ;1 being known /estimated beforehand by using some other technique (the pathrate
tool for instance). Assume that the QoS metrics involved in a scheme can be evaluated from
measurements collected at the sender/receiver (cf. Section 1.6.3). Then, estimators for A,
and K (or for A and K only) are obtained by “solving” the scheme with respect to (w.r.t.)
the variables A\, p and K (or w.r.t. the variables A and K).

If we want to apply a certain scheme to estimate the buffer size, the intensity of the
cross traffic, and possibly the server capacity, we must establish existence and uniqueness
of its solution (A, u, K) or (A, K). To be more precise, consider for instance scheme I that
involves the loss probability P, and the server utilization U (p is known). Then, for any
(measured) values of P, and U with 0 < P, < 1 and 0 < U < 1, we want to find a single
pair (A, K) satisfying the set of equations defined by (1.3) and (1.5). This existence and
uniqueness property holds for scheme 1, as shown below, as well as for schemes 10, I, II, V
and XI. As for the other schemes we have not been able to show that property, but in all
experiments that have been carried out, and that are reported in Section 1.7, each scheme
always gave us a unique solution. We now discuss the solution to scheme 1, and indicate
how the solution of scheme 70 can be derived. We next discuss the solution to scheme I,
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show the existence and uniqueness of the solution for schemes IT and V, and indicate how

the solution of scheme XI can be found.

1.6.2.1 Solving for scheme 1

The equations involved here are (1.3), (1.5) and (1.10), namely,

(1-p)p~
PLzl_pKﬂ’
1—pk
U:P<1_7pK+1):P(1—PL),
R 1 K pf B 1 (1 KPL>
p(l=p) wl=p% p(l-p) 1-P,)°

These equations produce the following expressions to p and g,

U . pU
pzl—PL i.e. /\=1_PL—7
1 <1_KPL>_ 1— P (K +1)
F=Ra—)p) 1-P,)  RA-P,-U)

Combining (1.41) and (1.7) yields an additional expression to K,

log(Py/(1 - 1))
K= 10/ P0)

1.6.2.2 Solving for scheme 10

(1.41)

(1.42)

(1.43)

This scheme still involves P,, U and R, but this time these quantities have to be

computed for the M+M/D/1/K queue. More precisely, cf. (1.37), (1.38) and (1.40),

1+ (p—1)ak(p)

= 1+ pak(p)
_ paK(p)
1+ pak(p)’
K+ pax(p)) = [1+ 25, a4(0)
B 11 pax(p)

with ax(p) given in (1.32).

(1.44)

(1.45)

(1.46)
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Recall that we want to solve the system of equations (1.44)—(1.46) with respect to the
variables A, 4 and K. We readily observe from (1.44)—(1.46) that

U . pU
P=1= B ie. A= —p, -, (1.47)
1-P,
ax(p) = T;’ (1.48)
K
K—(1-0)[1+ %, a500)| "
p= RU ' '

Since all coefficients {;(p),s7 > 2} in the Taylor series expansion of 1/G,(z) are different
(see Section 1.5.1.2), then (1.47)—(1.48) returns a unique solution (p, K).

For a given p, we computed the coefficients a;(p) for a certain range of j and compared
the results with the r.h.s. of (1.48); then K was chosen as the integer j for which «;(p) was
the closest to (the measured value of) (1 — P)/(1 —U).

Having K at our disposal, as well as the coefficients {a;(p),2 < j < K}, it is then
possible to infer y using (1.49), and subsequently A using (1.47).

1.6.2.3 Solving for scheme I

The equations involved here are (1.3) and (1.5), namely,

_@=-pp"
o 1_pK—|—1’

These yield the following expressions to p and K,

U _ pwU
=—— ie \= — 1.

~ log(U/(1 = P))’

where the last equation is obtained by combining (1.50) and (1.7). Therefore, the set of
equations (1.3) and (1.5) in the variables A and K has a unique solution given in (1.50) and
(1.51), respectively.

It is interesting to investigate the sensitivity of A and K with respect to the variables
P;, and U. To do so, let us compute the differentials of A and K considered as functions of



Sec. 1.6 Using the inference models 27

Py, and U. From (1.50) and (1.51) we find

__ K u
d)\—l_PL <dU+1_PLdPL>,

1
- log’(U/(1 - Pp))

4K (AdU—i—BdPL),

where

_ log(U/(1 —Pp)) log(PL/(1—-U))
1-U U ’
_log(U/(1 —Pp)) _log(PL/(1—-U))
Py 1-Fp ’

A

B

Using (1.3) and (1.5), A and B are rewritten as follows:

A~ logp(l—pH)

pE(1 = p)(L = p")
log p(1 — p*1) K K
B= - K0 0)

(b (1= p") = Kp (1= p),

We find that A > 0 and B < 0 for any value of p. Comparing |A| and |B| = —B, we obtain
|A| > |B| for p > 1 and |A| < |B| for p < 1. We deduce that K follows primarily U’s
variations for p > 1 (since |A| > |B]) and it is more influenced by P.’s variations than by
U’s variations for p < 1 (since |A| < |B|). As for ), it is more sensitive to the variations
of Py, (resp. U) than to the variations of U (resp. Pr) whenever p = U/(1 — Pr) > 1 (resp.
p<1). When p=1 (U =1- Pp), both A\ and K are equally influenced by P and U’s
variations since in this case

__ K
1-PFp

dK = % (K +1)*(dU —dPy).

dA

(dU + dPL),

In other words, when p > 1 (resp. p < 1), fast convergence in the estimation of Py, (resp. of
U) leads to fast convergence in the estimation of A while slow convergence in the estimation
of U (resp. of Pr) leads to slow convergence in the estimation of K.

1.6.2.4 Solving for scheme II

Assume that one knows R and Pp and that p and K are unknown. The expression
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for Py, (1.3) yields the following expression for K in terms of p and Py,

log(Pr/(1 =p (L= Pp)))

K =
log p

(1.52)

Substituting this value of K into (1.9) yields

1 Py log(P/(1—p(1 = Pr)))

R =~ w—p (- Py logp

Observe that necessarily p < 1/(1—Pp). For 0 < < 1/(1 — Pp), we introduce the mapping

I = s ™ T al o) (- Py loga (1.53)

If one can show that the equation f(z) = 0 has a unique solution in (0,1/(1 — P;)), then
this solution yields p, hence A, and subsequently K by using (1.52). Proposition 1.6.1 shows
that this is indeed the case.

Proposition 1.6.1 For any constants u > 0, P, € (0,1) and R > 1/pu, the equation
f(z) = 0 has a unique solution in [0,1/(1 — Pp)]. ¢

Proof. Define
gx):=(1—-P,)(1—Ru(l—z))logax — P, log P, + Py log(1 —xz(1—P)) (1.54)

for 0 <z <1/(1 — P.)). Hence, cf. (1.53),

— 9(z)
1@ = =P (1 =2)loga (1.55)

Denote by ¢g*(z) (resp. g (x)) the first (resp. second) order derivative of g(x). We find

(1—Pp)(z—1)(z+a)
v —2(1—Pp) ) (1.56)

¢®(2) = (1 - Py) Ry (mgm -

with

Ru—1

= ) >0, (1.57)

and

(1 = Pp) Ry h(z)

0O (z) = s PP (1.58)




Sec. 1.6 Using the inference models 29

with
h(z) = (1-P) 2>+ ((14+a) P} + (1 —2a) P, — (2—a))z”
+(1—-2a(1—-P,)*)z+a(l - Pp). (1.59)

From the identities

1-P,

L

g =0, ¢PM)=0 and ¢¥(1)= ( ) (2RpP, — 1)
we see, by applying I’'Hépital’s rule to the r.h.s. of (1.55), that f(1) is well-defined, with
value

g?(1)  2RuP -1

1) = Tou(l—Py) 2up, (1.60)

Therefore, unless g‘®(1) = 0, the zeros of f(z) in (0,1/(1 — Pp)) are the zeros of g(x) in
(0,1/(1=Pp))\{1}; if ¥ (1) = 0, then f(z) and g(x) have the same zeros in (0,1/(1—Py)).

We now show that g(z) has a unique zero in (0,1/(1— Pg))\ {1} when ¢®(1) # 0 and
that g(z) has a unique zero in (0,1/(1 — P)), located at the point x = 1, when g®(1) = 0,
which will conclude the proof.

Assume first that a # 0. It is then seen from the identities

h(0) =a(l—Pr) >0, lim, . o h(x) = —o0,

. 1.61
B1/(1 = Pr) = s <0, limyioo hlx) = +00, (1.61)

that the polynomial h(z) of degree 3 in the variable x has exactly one root z = p(a) in
(0,1/(1 — P)). Combining (1.61) and (1.58) yields

g (x) >0, for 0 < z < p(a), lim,_ ¢?(z) = oo,
g (x) <0, for pla) <z <1/(1— Pyp), lim, 1,1 p,) 9? () = —00,
9P(p(a)) = 0.

Assume now that a = 0. Then, cf. (1.58)—(1.59),

(1—Pp)Ru
(1—=z(1-Pp))

9(2)($) == 5 k() (1.62)

with
k(z) = (1—P.)’ 2>+ (P} + P, — 2)z + 1. (1.63)
From

k(0) =1, k(1/(1 — Pr)) = —Pr, and lim k(z) = oo,

r— 00
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we deduce that the polynomial k(z), of degree 2 in the variable z, has exactly one zero,
x = p(0),1in (0,1/(1 — Py)). This in turn implies from (1.62) that

g (x) >0, for 0 < z < p(0), lim,_o ¢®(z) = oo,
g (z) <0, for p(0) <z < 1/(1 - Pp), lim,1,a-p,) 9@ (z) = —o0,
9(p(0)) =0,

In summary, we have shown that for all a > 0, ¢ (z) has a unique zero z = p(a) in
(0,1/(1 — Pp)); furthermore, ¢ (z) > 0 for 0 < z < p(a) and g®(z) < 0 for p(a) < z <
1/(1— Pyp)).

From the above we may now determine the variations of the function g(x) in (0,1/(1—
Pp)). This is done in Figures (1.5)—(1.7) by distinguishing the cases when (i) 0 < p(a) < 1,
(17) 1 < p(a) < 1/(1 — Pp) and (i17) p(a) = 1.

e 0<pla) <1

c pla) 1 (1-Pp)!
9P (@) |[+oo + (:9 - - -
00@) |t T =
o0 [Re = =
-z | + o0 -
log x - i - (:B +
f@ | -0+ f) o+

Figure 1.5: 0 < p(a) < 1

We conclude from Figure 1.5 that g(x) has a unique zero in (0,1/(1 — Pr)) \ {1} when
0 < p(a) < 1. This zero is located in (0, p(a))

o 1<pla)<1/(1—Prp)
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P L ple) (=P
@) o+ o+ 0 - oo
90 |nm BT O o
o@) | T s
-z | o+ 0 - i -
log = — (i) + L+
f(@) S 1) R R

Figure 1.6: 1 < p(a) < 1/(1 — Py)

We conclude from Figure 1.6 that g(z) has a unique zero in (0,1/(1 — Pr)) \ {1} when
0 < p(a) < 1. This zero is located in (p(a),1/(1 — PL)).

e pla)=1

x 0 1 (1—-Pp)~ 1t
gD (z) Hoo + (:9 - -
9"(2) —oo/'(jﬂ\,—oo
oo [T = o
i -

log -0

@ -0

Figure 1.7: p(a) =1

In this case, = 1 in the only zero of g(x) in (0,1/(1 — Pp)) (cf. Figure 1.7). This is

a zero of multiplicity 3.

It is interesting to investigate the sensitivity of A and K with respect to the variables
R and Py. To do so, let us compute the differentials of A and K considered as functions of

R and Py. From (1.10) and (1.3)

dR=Cd\A+ DdK
dP, =Ed\+ FdK

we have
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with

_ a—R@ _ 1 B K2pK_1

S Opox (1 -p)? pA(l—pR)?
p_ OB _ p*(1+Klogp—p")

- 0K p(l—pf)r 7

_ 0P op _ p"THE(L—p) — p(1 - p"))

dp 0N (1 — pK+1)2 ’

p_ 9P _ pf(1-p)logp

K (1 — pK+1)2

From (1.64) and (1.65), we can write

F D
_CF—DEdR_CF—DE
E C

CCF — pE Tt CF — pE

dA dFPy,

dK =
It is seen that C > 0, D > 0, E > 0 and F < 0 for any p > 0 and any K > 1. To identify
which parameter affects the most A (resp. K), one should compare —F to D (resp. E to C).
Unfortunately the sign of D + F (resp. C'— E) depends on the values of y, p and K, and it

is impossible to formally identify which estimator among R and P, has the biggest impact
on the estimation of A\ and K.

1.6.2.5 Solving for scheme V

Scheme V involves Equations (1.5) and (1.10)

1—pK
U:p<1—pK+1>

1 K pX
R—_ Lt K o (1.66)
p(l=p) pl-p
The expression for R in (1.9) is useful here
1 K
R=—— = K (1.67)

p(=p) nQ@Q=p)A—-7k)
Using (1.6), mx can be expressed as

7TK:1—U/,O, (168)
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to yield from (1.67)

(1.69)

1 K
pl=p) p
Recall the relation (1.7) for K

1 1-U/p
K=—"-1 .
log p Og( 1—U)

p—U
1-pU

Substituting Equation (1.7) for K into (1.69) yields

1 -U -U
R= d log (p7> . (1.70)

pd—p) pU(d=p logp “\p(1-T)
Observe that necessarily p > U. For p > U, introduce the mapping
1 x—U z—=U
= — | — | — R. 1.71
/(@) pu(l—z) pU(l—2zx)logz o8 (ac(l—U)) (1.71)

If one can show that the equation f(z) = 0 has a unique solution in [U, c0), then this
solution yields p, and subsequently K by using (1.7). Proposition 1.6.2 shows that this is
indeed the case.

Proposition 1.6.2 For any constants p, U and R such that p > 0, 0 < U < 1 and
R > 1/p, the equation f(x) =0 has a unique solution in [U, 00). ¢

Proof. Define

U

g(x) =Ulogz — (x —U) log (x?l%

U)) —pRU (1 —z) logz

for x > U. Hence (1.71) rewrites as

_ 9()
J@) = e o ogs (1.72)

Denote by ¢ (z) (resp. g (x)) the first (resp. second) order derivative of g(z). We find

l—=z x—U
W () = _ - 7
9" (xz) = pRU logx — nRU - log (a: = U)) (1.73)
and
g7 () : TP z(x—U)
Uh(z) (1.74)

22 (x —U)
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with
h(z) := uRa®> — [l — pR(1 — U)]z — uRU. (1.75)

The function h(z) has two zeros

_ 1-pRA-U) - +/[l —pR(1 -U)]? + 42R*U
N 2uR

_1-pR(1-U)++/[1 - pR(1 - U)]* + 4u>R?U
N 2uR '

T

)

It is clear that z; < 0. As for z,, observe that A(U) = —U < 0. Since h(z3) = 0 and
lim, 40 h(x) = 400, it follows that z, > U. Hence h(x) has only one zero in [U, 00).

Looking at expression (1.72), we can say that, unless x = 1, the zeros of g(x) are the
zeros of f(x). For x = 1, we have g(1) =0, ¢ (1) = 0 and ¢®(1) = 2uRU —U/(1—=U). By
applying I’Hépital’s rule to the right-hand side of (1.72), we see that f(1) is well-defined,
with value

) =

— . (1.76)

f(1) = 0 if and only if g® (1) = 0 i.e. if 1 — 2uR (1 — U) = 0. Therefore, unless this
condition is satisfied, the zeros of f(z) in [U, 0c) are the zeros of g(x) in [U, 00) \ {1}; for
1—2uR(1 —U) = 0, the zeros of f(z) in [U,o0) are the zeros of g(z) in [U,c0). In that
case, (1.75) rewrites as

h(z)=pR((z* - (1=U)x—U)

and its zeros become z; = —U and z, = 1.

Three cases are to be considered depending on whether z, is less than, equal to or
greater than 1 (we have seen that zo = 1if 1—2uR(1—U) = 0). In each case, the variations
of the functions g(z) and f(z) are studied. We aim at showing that g(z) has a unique zero
in [U,00) \ {1} when ¢ (1) # 0 and a unique zero in [U, 00), located at the point z = 1,
when ¢ (1) = 0, which will conclude the proof. The following limits are easily calculated

]imz—>+oo 9(2) (.Z') = O: hmz—d:oo g(l)(m) = +0o0,

e U<z, <1
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Figure 1.8: U < x5 <1

We conclude from Figure 1.8 that g(x) has a unique zero in [U,00) \ {1} when U <
x9 < 1. This zero is located in [U, z5)

e 1y >1

T U 1 X9 400
hz) -0t 4w
g?@) o - 0 + 0
@) [T e
9(x) /—'é\_/c:’/‘;j%o
1—g + 0 _ -
log z - 0 + L+
f@ | o+ rm o+ 0 -

Figure 1.9: 2y > 1

We conclude from Figure 1.9 that g(x) has a unique zero in [U, 00) \ {1} when x5 > 1.
This zero is located in (x4, 00)

e ry=1(e1-2uR(1-U)=0)
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Figure 1.10: 25 =1

In this case (cf. Figure 1.10), g(x) has only one zero in [U, co) which is 25 = 1.

Concerning the sensitivity of A and K with respect to the variables U and R, a similar
analysis as the one in Section 1.6.2.4 can be performed, leading to the same conclusion: dA
and dK depend on the values of u, p and K and it is rather impossible to formally identify
which estimator among U and R has the biggest impact on the estimations of A and K.

1.6.2.6 Solving for scheme XI

This scheme has Pr, and U as inputs, but this time these quantities have to be com-
puted for the M+M/D/1/K queue. More precisely, cf. (1.37) and (1.38),

1+ (p—1) ax(p)

B = e () (1.77)
_ pag(p)
1+ pak(p) (1.78)

with ax(p) given in (1.33).

Recall that we want to solve the system of equations (1.77)—(1.78) with respect to the
variables A and K. We readily observe from (1.77)-(1.78) that

- (1.79)

ak(p) = : (1.80)
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Since all coefficients {a;(p),j > 2} in the Taylor series expansion of 1/G,(z) are different
(see Section 1.5.1.2), then (1.79)-(1.80) will return a unique solution (p, K).

For a given p, we computed the coefficients «;(p) for a certain range of values for j
and compared the results with the r.h.s. of (1.80); then K was chosen as the integer j for
which «;(p) was the closest to (the measured value of) (1 — P.)/(1 - U).

1.6.3 Calculating the moment-based estimators

We have at our disposal the first n samples of {X;};, {Y;}:, {ai}i, {d;}: for the probing

traffic, and we know y and p. Let U(n), Pp(n), R(n), §o(n) and Gy (n) denote the estimators
of U, P, R, q1, and gy, respectively. They are defined as (n =1,2,...)

n

1

Pr(n) == - > 1{X; =1}, (1.81)
U(n) := % zn: 1{Y; = 1}, (1.82)
R(n) == 2izy Ui =0} (di - “i), for Zn: 1{X; =0} > 0, (1.83)

> i H{Xi =0} i—1

n—1 n—1
_ Lin i_l o }, for » 1{X; =1} >0, (1.84)
2oy HWXi=1} i1

n—1 n—1
Gn(n) == 2z i_l + }, for » 1{X; =0} > 0. (1.85)
> i H{Xi =0} P

The estimates Pp(n) and U(n) are obtained using all observations, R(n) and gy (n) are
obtained using observations corresponding to successful packets, and §;,(n) is obtained using
observations corresponding to lost packets. We expect 4., (n) to converge slowly to ¢, hence,
intuitively, we can say that all schemes involving this metric will not perform well.

1.6.4 Desirable properties of an estimator

If a comparison is to be made among several estimators, it is useful to identify the
main properties expected of a good estimator. Namely, an estimator is preferably unbiased
and consistent. Unbiasedness has been proven for Py(n), U(n) and R(n), while §,(n) and

gn(n) turn out to be biased (see next Section). Consistency* for each metric is much more
complicated to show. Establishing such a property implies computing both the bias and the

4A consistent estimator is one that concentrates completely on its target as the sample size increases
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variance of an estimator. The major difficulty in this computation is due to the fact that
the random variables {X;}; are correlated, since the queue is finite and since the samples
are taken from consecutive foreground packets, rather than random packets.

1.6.4.1 Study of the mean values
Using the identity E[1{A}] = P(A) that holds for any event A, we find

E[P,(n)] = Py,
E[U(n) =T,
E[R(n)] = R,
cov[gr(n), Pu(n —1)]

P ’

Blin ()] = g + 2L P =

Elgr(n)] = g1 —

The last two equalities follow from (1.84) and (1.85) when expressed as follows

o DX =1 X = 1)

Gu(n) (n—1)Py(n—1)

Z?;ll 1{X;=0,X;,1 =0}
(n—1)(1- PL(n -1)) :

Y

gn(n) =

Clearly, Py(n), U(n) and R(n) are unbiased estimators, whereas ¢, (n) and gy (n) are biased,

but the bias depends on the size of the samples. Moreover, if pL(n) is consistent then the
bias approaches 0 as n — oo for both estimators.

1.6.4.2 Distribution of Py (n)

In this section, we want to express the distribution of PL(n), or in other words,

P(Py(n) = i/n). This allows the computation of the variance of Py(n). We have seen
that this estimator is unbiased. If its variance approaches zero as the number of probes goes

to infinity, then Py (n) is consistent, or equivalently, Py (n) — P, for n — oo.

The estimation of P, at the nth probe sample is simply the ratio of the number of
lost probes, 7, over the total number of probes, n. For n samples, one may construct the

indefinitely. In the limiting case, as the sample size becomes infinite, a consistent estimator will provide a
perfect point estimate of the target. In other words, an estimator is said to be consistent if and only if its
bias and variance both approach zero, as n — 0.
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vector (X1, ..., X,) where X; = 1{@; = K}. This vector takes on values from the set space
{0,1}™. For i lost packets, there are C! := C(n, i) possible values for (Xi,...,X,), denote
by A; the set of these values. We can now write

P(Bymy=i/n) = > P((Xi.., X0) = (31,0, 30)

(a:l,...,a:n)EA.;

= Y PXi=um,..., X, =1,)
(21,020 )EA;

= Z P(XnIIn|X1Il'l,...,Xn_lz.In_l)
(z1,...,xn)EA;

X P(Xn_l = xn—l‘Xl =T1,--- ,Xn_z = ZEn_Q)
X ... X P(XQIJ?Q‘Xl:J)l) X P(Xlz.Tl)

= Z P(Xn = xn|Xn—1 = xn—l) X P(Xn—l = xn—l‘Xn—Z = xn—Z)

X ... X P(XQ = .’1?2|X1 = J)l) X P(X1 = .Tl) (186)

where exactly ¢ variables x; are equal to 1 and the remaining n — ¢ variables are equal to 0.
To derive the last equality, we have used the memoriless property of the Markovian process
{Qn}n. In order to simplify (1.86), introduce the following:

a := number of occurrences of two consecutive lost packets
number of occurrences of the sequence '11” in (z1,...,x,)
b := number of occurrences of two consecutive successful packets
number of occurrences of the sequence ’00” in (z1,...,%,)
¢ := number of occurrences of a lost packet followed by a successful packet
= number of occurrences of the sequence ’10" in (z1,...,x,)
d := number of occurrences of a successful packet followed by a lost packet
= number of occurrences of the sequence '01’ in (z1,...,x,)
and
P():{PL, %f$1=1,
1—- Py, if x; =0.

Obviously, the parameters a, b, ¢ and d satisfy:

a+b+c+d+1=n,

a+d+1{P0:PL}:1,

c=d, if 11 =z,
c=d+1{z;=1,2,=0} — 1{z; =0,2, =1}, if z; # z,.

Notice that

PQr #K|Qr-1=K)=1-P(Qr = K|Qr-1 =K) =1-¢q,
PQr=K|Qr1#K)=1-P(Qr #K|Qr1# K)=1—qn.
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Equation (1.86) can now be rewritten as follows

P(Pum)=ifn)= > Pola)"(an)"(1 = ) (1 — aw)" (1.87)

(Z14ee0sTn ) EA;

At this point, we must distinguish between four different cases, according to whether the
first packet and/or the last packet are lost or not.

e ry=0and z, =0. Wehave P, =1— F;,

z':0:>{ a=c=d=0,

b=n-—1.
a=1—d,
l<i<n-2= b=n—1—d—1,
c=d,

with d =1,... min(i,n —i—1).

For each value of d, there are C¢ ; C¢=! different possible values for (xs,..., 2, 1)
(Note: there are C¢ , | ways of putting the d ’0’ of the sequence 01’ in n — 4 — 1
positions, and there are C%' possibilities for choosing d — 1 cuts among all 7 — 1
possible cuts in order to separate all the i 1’s into d groups ’01...1°).

e ry=0and z, =1. We have P, =1— P;,

a=1-—d,
b=n—1—d,
1<i<n—-1=<¢ c=d-1,
with d = 1,...,min(i,n — 7),
orc=0,...,min(i —1,n—1i—1).

For each value of ¢, there are C<_, Cf ; different possible values for (xs,...,Z,_1)
(Note: there are Cc . | ways of putting the ¢ ’0’ of the sequence 10’ in n—2— (i —1)
positions, and there are C{_, possibilities for choosing c cuts among all 7 — 1 possible

cuts in order to separate all the 7 1’s into ¢ groups ’1...10" and the right-most group
1.1,

e ;1 =1and z, =0. We have P, = P;,

a=1—d-—1,
. b=n—1—-d-1
<1<nmn-— ’
1<i1<n—-1= c=d+1,

withd =0,...,min(i — 1,n — i —1).
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For each value of d, there are C¢ , C¢ | different possible values for (z3,...,Z, 1)
(Note: there are C% . | ways of putting the d 0’ of the sequence '01’in n—2— (i —1)
positions, and there are C¢ | possibilities for choosing d cuts among all ¢ — 1 possible

cuts in order to separate all the 7 1’s into d groups ’01...1" and the left-most group
1...1).

e r;=1and z, =1. We have P, = P;,

a=1—d-—1,
9<i<n_1={ t=n—t=d
c=d,

withd =1,...,min(i — 1,n — ).

i=n= a=n-1
- b:c:d:

For each value of ¢ (= d), there are C¢~}

n—i—1

C¢ | different possible values for (z, ..., T, 1)
(Note: there are Cf_; ways of putting the ¢ '1’ of the sequence 10’ in n — 1 — (n — 1)
positions, and there are CSZ}_, possibilities for choosing ¢ — 1 cuts among all n —i — 1

possible cuts in order to separate all the n — i 0’s into ¢ groups ’10...0").

Finally, and after a factorization of the cases x; # x,, (1.87) becomes

P(PL(n) = i/n) = 1{i=0}(1 — P)(gn)"' + 1{i = n} P, (q)" "
min(i,n—i—1)

+1{l1<i<n-2} Z Cr_i 1 G (1 = Pr)(gn) ™4 gw)" 11 = q)*(1 — gqw)?
d=1

min(i—1,n—i—1)

x Y LG () T ) T (L = ) (1 = qw)?

d=0
min(i—1,n—i)

+1{2<i<n-1} Z CoZi 1Oy Pr(qr) ™" Han)" (1 — qu)*(1 — qn)™.
d=1

The variance of the estimator Pp(n) is simply

R . 2 R 2 " 5 R ) 5
Var [PL(n)] —E (PL(n)) _E [PL(n)} =" (i/n)’ P (PL(n) - z/n) — (P
i=0
It is quite hard to formally compute lim, .o Var[Py(n)]. Thus, we will rely on simulated

results to compute the empirical variance of PL(n) and further know whether or not this
estimator is consistent. This is addressed in the next section.
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1.6.4.3 Overall performance of the estimators

The overall performance of the estimators is presented in Table 1.3. In order to have
a fair comparison between the estimators, we report their performance in M+M/M/1/K
simulations only. In these simulations, all the assumptions considered in Section 1.4.1 are
satisfied. The performance of the estimators is thus affected by the speed of convergence
solely.

Table 1.3: Overall performance of the estimators for 50000 probes and M+M/M/1/K
simulations: sample mean and percentiles of the relative error (expressed in percentage)
and the empirical variance

Relative error (%)

Metric Mean 25 50 75 90 95

Py 5.07 0.52 2.86 6.46 11.9 21.9
U 0.17 0.002 0.09 0.27 0.51 0.68
R 0.46 0.03 0.07 0.59 1.43 2.43
qL 10.7 0.55 5.76 114 18.8 57.8
an 0.20 0.01 0.11 0.24 0.60 0.90

Empirical variance

Metric Mean 25 50 75 90 95

Py 0.20 0.01 0.09 0.23 0.59 0.88
U 0.04 910~ 0.02 0.07 0.09 0.16
R 1.39 3107 2107° 1074 0.004 13.1
qr 19.6 0.13 1.06 15.2 91.1 115
an 0.35 0.003 0.05 0.30 1.37 2.25

For each experiment (20 different M+M /M /1/K experiments have been conducted;
see details in Section 1.7), we have computed the relative error (expressed in percentage)
between each estimator in (1.81)-(1.85) and its corresponding theoretical value, as well as
the variance of the estimato. This computation has been performed after the generation
of 50000 probes. For a given estimator, we therefore have a collection of 20 values for the
relative error as well as 20 values for the variance of the estimator.

Rows 3-7 in Table 1.3 report the mean and the percentiles of the relative error (ex-
pressed in percentage) using the collection of 20 values computed from the simulations, and
rows 10—14 in the same table report the mean and the percentiles of the empirical variance
of the estimators.

Estimator §;, is the least efficient estimator® since it has the largest empirical variance
(see row 13 in Table 1.3). In other words, the estimator g, is not good because it exhibits
high variance. The distribution of ¢ is not concentrated and the estimates of §; vary too

5An estimator is said to be more efficient if it has a smaller variance. The distribution of an efficient
estimator is highly concentrated.
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much over time. We expect all schemes using ¢, to perform badly. The rest of the estimators

is more or less efficient, their distribution being highly concentrated. For P;, U and R, we
already now that they are unbiased (see Section 1.6.4.1), hence their distributions are said
to be on target.

Looking now at rows 3-7 in Table 1.3, we see that the relative error of estimators ﬁ,
R and gy is low, unlike the relative errors of P, and 4r- Thus, we expect all schemes using

Py to perform worse than the schemes using R for instance. However, this might not be the
case due to the unexpected effect of combining several “noisy” estimators within the same
scheme.

Remark 1.6.1 FEstimators PL, qr and qn are all loss-related and based on single-sided
measurements, as these estimators are “naturally” available at the destination. FEstimator

R is based on an end-to-end measurement, as well as U. One might expect that schemes
wmvolving both kind of metrics will perform better than schemes involving single-sided or
end-to-end metrics solely, regardless of the performance of the metrics at hand.

1.7 Simulation results and analysis
1.7.1 Trace generation

The data sets {a;}:, {d;}i, {Xi}; and {Y;}; were extracted from traces generated by
simulation models in ns-2. In this section, we report simulations in which there is a single
queue to better observe the behavior of both inference models under various background
traffic patterns. Simulations with multiple links are reported later on in Section 1.7.5.
Overall, 50 simulations have been performed in which several types of background traffic
are considered:

(T1) A Poisson flow of packets with exponentially distributed packet size. The average
packet size is 100 Bytes.

(T2) A superposition of 100 Poisson-like flows. The inter-arrivals within each flow is ex-
ponentially distributed. The packet length is constant for each flow and its value is
taken from an exponential distribution with average 100 Bytes. Therefore, different
flows have different packet lengths.

(T3) An aggregation of 100 On/Off flows, where the On and Off times were taken from a
Pareto distribution with shape 1.5. The packet length is constant for each flow and
its value is taken from an exponential distribution with average 100 Bytes.

(T4) An aggregation of 250 On/Off flows, where the On and Off times were taken from a
Pareto distribution with shape 1.5. The packet length is constant for each flow and
its value is taken from an exponential distribution with average 100 Bytes.



44 Chap. 1 Inference models to estimate network characteristics

(T5) An aggregation of 250 long-lived FTP over TCP flows.

(T6) An aggregation of 1000 long-lived FTP over TCP flows.

In all experiments foreground packets arrive according to a Poisson process and have ex-
ponentially distributed packet sizes (average = 100 Bytes) except in the case when the
background traffic is of type (T2); in the latter case, the foreground source is also of type
(T2).

It is important to specify, for each type of simulations, which assumptions are satisfied
and which ones are violated.

e The set of simulations where the cross traffic is of type (T1) corresponds to the
M+M/M/1/K queue model. The interest of such simulations is to identify which
scheme among schemes I-X converges faster.

e When both foreground and background traffic are of type (T2), the only assumption
that is violated is the one concerning the service times. In these simulations, the
service times are the same for each flow, but differ from flow to flow. There are a total
of 101 different values coming all from an exponential distribution (the service time is
proportional to the packet size). If the number of background flows is increased, the
service time distribution will get closer to the exponential distribution. In this set of
simulations, we are testing the robustness of both queue models against violation of
the assumption on the service times.

e When the cross traffic is of type (T3) or (T4), the Poisson assumption for the back-
ground traffic is violated. The assumption on the distribution of the service times is
also violated, but as the number of flows increases, the service time distribution will
get closer to the exponential distribution (cf. previous item). However, when the num-
ber of flows grows to infinity, it is known that the aggregation of such On/Off flows
will exhibit correlations across several time scales (see [116]). So, when the number of
flows is increased, on one hand the assumption on the cross traffic will be more vio-
lated, and on the other hand the assumption on the service times will be less violated
(case of the M+M/M/1/K queue model). A comparison of the performance of the
estimators when the background traffic is either (T3) or (T4) will help identify which
assumption is more essential to the M+M/M/1/K queue model.

e In the last set of assumptions (cross traffic of type (T5) or (T6)), the Poisson assump-
tion for the background traffic is violated as well as the assumption of exponential
service times. The FTP/TCP flows generate two kinds of packets: 512-Bytes data
packets, and 40-Bytes acknowledgements. Thus, the service times of the background
traffic take on two distinct values, whereas the service times of the foreground traffic
are exponentially distributed. When the number of background flows is increased,
the resulting distribution of the service times is expected to get farther from the ex-
ponential distribution. Going back to the background traffic assumption (which has
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been made only for mathematical tractability), it is known from [95] that the arrivals
within a single FTP flow are not Poisson. However, what we do not know is whether
the distribution of the arrivals from an aggregation of several FTP flows approaches
the exponential distribution or not. We can say that, a prior:, the assumption on
the background arrivals is violated, and we are tempted to add: as the number of
exogenous flows increases, the distribution of the resulting inter-arrival process gets
closer to the exponential distribution.

Let us now return to the description of the traces generated. The rate of the foreground
traffic (the probes) was equal to 250 pkts/s in all experiments (except in case (T1) where
values of 125, 250 and 500 pkts/s were retained). On the network side, the server rate was
either equal to 1500 pkts/s or to 6500 pkts/s and the buffer size was either equal to 10,
30, 65, 100, 150 or to 1000 packets (recall that in ns-2 the size of the buffer is defined in
number of packets regardless of their size).

Below, we give the ranges of values obtained for the five metrics over all 50 experiments:

e P; ranged from 1.7x107* to 0.637

e U ranged from 0.892 to 1

e R ranged from 0.0007 to 0.66 seconds
e ¢, ranged from 0.105 to 0.64

e gy ranged from 0.367 to 0.9998.

As for the rate of exogenous traffic intensity A, measured as the number of background
packets arriving to the bottleneck link over the run time, its value ranged from 1593.2 to
17437 packets per second, giving the range 0.965 — 2.758 for the traffic intensity p. Notice
that in all the simulations, the single link was (highly) congested.

1.7.2 Estimating cross traffic rate, buffer size and (possibly) server
capacity

Having at our disposal {a;};, {d;}:, {Xi}: and {Y;}; for the n first probing packets, the
moment-based estimators are computed according to formulas (1.81), (1.82), (1.83), (1.84)
and (1.85). At this point, P(n), U(n), R(n), ¢.(n) and gy (n) are substituted into (1.3),
(1.5), (1.10), (1.18), (1.21), (1.37), (1.38) and (1.40). The ten triples of equations referred to
as schemes 1 through 70 and the eleven pairs of equations referred to as schemes I through
XTI are then solved numerically using a C program including the NAG® C library [90, 91].
Results are reported in Tables 1.3-1.9 and Figures 1.11-1.15.

6NAG is a copyright of The Numerical Algorithms Group Ltd
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1.7.3 Analysis of the results in case ; is known

In this section, we restrict ourselves to the estimation of parameters A and K, thereby
assuming that p is known. We briefly discuss the results returned by schemes I through XTI
(each involving two QoS metrics) and then focus on the performance of the “best” scheme.

Our findings can be summarized as follows:

e Schemes III, IV and X give almost identical results. This is not surprising, though,
since the three of them involve loss-related metrics which are related by (1.22) as
seen in Section 1.4.6. We further observed that their solutions always under-estimate
the correct values. We believe that this is due to a lack of information as these
schemes count on loss-related measurements solely (variables {X,}, introduced in

Section 1.4.2).

e Schemes I = P, U and VII =U gy return similar results as do schemes I1 = P, R
and IX = R_qy. Notice that both pairs of schemes have a common metric (U for
the first pair and R for the second one) and the second metric is either Pj, (schemes
I and II) or gx (schemes VII and IX). It appears that interchanging Pj, and gy has
little impact on the performance of a scheme, even though the latter metric is much
better estimated than the former one (cf. Section 1.6.4.3).

e Schemes VI and VIII performed poorly, either returning bad estimates X and K or
even not returning results at all. This is due to the fact that these schemes involve
qr,, which was seen to be badly estimated (cf. Section 1.6.4.3).

e The solution returned by scheme V always over-estimates the true values. This scheme
involve metrics U and R which can both be seen as end-to-end measurements. These
metrics provide somehow redundant informations which can explain the bad perfor-
mance of the scheme.

e All schemes including U saw their performance degrade as the network become more
congested. When the single queue is congested, its buffer does not empty often. As a

result the first estimates of U are U = 1, which is not a valid value in either model. As
soon as a probe packet finds an empty queue, the first valid estimate of U is computed,
and it is then and only then that the schemes using U can return a solution. Since in
our simulations we considered only congested cases, all schemes including U suffered
from this discrepancy and their results were not the best ones.

e Scheme XI returns the same estimate A as does scheme I. Both schemes involve metrics
Py, and U, but the first one derive from the M/D/1/K model whereas the second one
come from the M/M/1/K model. However, the formulas giving A are identical (see
Equations (1.50) and (1.79)). As for the buffer size K, it is much better estimated
using scheme I. The cause behind the misestimation of K when using scheme XI
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is the misestimation of U. Even though scheme I involves U as well, scheme XT is
much more sensitive to the value of U. Recall that K is estimated as the integer j
for which a;(p) is the closest to (1 — Pp)/(1 — U) (cf. Section 1.6.2.6). In congested
cases, U is almost 1 and a small deviation from the true value leads to a large error
in (1—P,)/1—-0U) (eg.if U=1-10%and U =1 —10"* then ag(p) = 10ax(p),
resulting in K > K).

Now that we have discussed the averall results for all eleven schemes, we will focus on
the best scheme, scheme II = P, R. We have mentioned before that schemes P, R and
R gy gave similar results but that the former scheme performed slightly better. Notice
that both schemes combine the use of a single-sided measurement (P, or ¢y) and an end-to-
end measurement which is R. These schemes contain the least redundant information, (as
opposed to scheme P; gy, for instance). From now on, only results pertaining to scheme
P;, R are presented.

Tables 1.4, 1.5, 1.6 and 1.8 report the relative error (expressed in percentage) between

the estimate of parameter A (resp. K), denoted as A (resp. K ), returned by scheme P, R
and the measured value A (resp. the true value K), for various cross traffic patterns (Poisson
traffic as defined in (T1) in Table 1.4, Poisson-like flows as defined in (T2) in Table 1.5),
a superposition of On/Off sources with Pareto On and Off time distribution as defined in
(T3)-(T4) in Table 1.6, a superposition of FTP/TCP flows as defined in (T5)-(T6) in Table
1.8.

Table 1.4: Relative error (expressed in percentage) of the estimates for 50000 probes returned
by the scheme P, R, when the cross traffic is a single Poisson source

Simulation parameters

X = 6600 X = 6600 X = 6600 X = 17068
v =124 v =248 v = 496 v =125
© = 6968 1 = 6968 1= 6967 1= 6962
Buffer size Estimator p = 0.965 p = 0.983 p=1.019 p=2470
K =10 A 0.6 0.004 0.1 0.1
K 0.7 0.9 1.4 0.4
K =30 A 0.1 0.1 0.3 0.9
K 0.7 1.6 0.6 0.05
K =65 A 0.04 0.2 0.7 1.0
K 1.1 1.0 0.3 0.1
K =100 A 0.04 0.1 0.1 0.5
K 2.8 2.7 0.2 0.01
K =150 A 0.1 0.1 0.02 0.2
K 8.3 4.1 0.4 0.03
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Table 1.4 shows excellent results regarding the estimation of A (obtained after 50000

probes). The relative error on 5\50000, computed as \:\50000 —A|/A, is always below 1.0% in all
the simulations reported in Table 1.4 (see rows 6, 8, 10, 12 and 14). As for the estimation

of K, the results are very good for moderate values of K: the relative error on f{50000,

computed as \K50000 — K|/K, is always below 1.6% when K < 65 (see rows 7, 9 and 11 in
Table 1.4). For larger values of K, the speed of convergence depends on the load p. As p
increases from 0.965 (third column) to 2.470 (column 6), the relative error on K decreases
for K > 65 (see rows 11, 13 and 15). Notice that in any case the estimates should converge

to the true values as the number of probes increases since the experiments considered in
Table 1.4 simulate at best the M/M/1/K queue.

The speed of convergence of ) can be observed in Figure 1.11, where the evolution
of the estimated cross traffic intensity is plotted against the number of probes for several
values of the load p. For p around 1, the estimation converges after approximately 10000
probes (see Figures 1.11(a)-(c)) whereas 5000 probes are enough for p = 2.470 (see Figure
1.11(d)).
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Figure 1.11: Evolution of the estimated cross traffic intensity vs. the number of probes

The slower convergence of K for smaller values of p can be observed in Figure 1.12
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where the evolution of the estimated buffer size is plotted against the number of probes for
several values of K. It is clearly visible in Figures 1.12(c)-(d) that K converges faster to K

as p increases. Notice also the fast convergence of K to the true value for p = 2.470 in all
four cases shown in Figure 1.12 (K = 10, 30, 65, 100).

Probe traffic: Poisson, cross traffic: Poisson source; server rate pL = 6970 pkts/s
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Figure 1.12: Evolution of the estimated buffer size vs. the number of probes

Consider now the set of simulations where all sources (i.e. foreground and background
sources) are Poisson-like (type (T2)). We have seen before that this set of simulations
undertakes the robustness of both models to violation of the assumption on the distribution
of the service times. The relative error (expressed in percentage) is reported in Table 1.5.

We observe that both A and K are better estimated as K increases. In all cases, \ stays

Table 1.5: Relative error (expressed in percentage) of the estimates (scheme P, R) for
120000 probes: Poisson-like flows, A = 6677, v = 250, ;4 = 6374 and p = 1.087

Estimator K =10 K =30 K =65 K =100 K =150
A 3.1 1.1 0.04 0.1 0.1

A

K 9.2 8.9 6.9 5.4 4.0
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within 3.1% of the true value (cf. row 2 in Table 1.5) such as \ is overestimated, whereas
K stays within 9.2% of the true value (cf. row 3 in Table 1.5) such as K is underestimated.

The estimation of K is not as satisfactory as the estimation of A. It is clear that the

quality of A and K is influenced by the quality of estimators P; and R. Our next step is
to look at the performance of these estimators. We will compute the loss probability Pp,
and the expected response time R as expected by the M+M/M/1/K model using the true
values of A and K. The resulting values of P, and R are then compared to the estimated

values. A small error between both pairs of values implies a small error in A and K as
predicted by scheme P, R. Our findings can be summarized as follows.

e The loss probability predicted by the model, Py, is smaller than the estimated Py
The absolute deviation of the predicted P, (defined as | P, — P.|) decreases from 0.025

(16.3% of relative deviation”) for K = 10 down to 0.002 (2.8% of relative deviation)
for K = 150.

e The expected response time predicted by the model, R, is slightly larger than the

estimate R. The deviation of the predicted R increases from 57s (6.3% of mismatch)
for K =10 up to 871us (4.2% of mismatch) for K = 150.

e The M+M/M/1/K model predicts much better the response time R than the loss
probability Pp.

It seems that the error in estimating K is due to the error between P; and I5L, and that
both the error on K and the (small) one on A vary as does the error on Py. Tt is also possible
that the errors at hand are also affected by the error on R, but this impact (if it exists) is

negligible both because of the small error on R and because of the large relative error on
P

Remark 1.7.1 The preceding observations describe the sensitivity of X and K to variations
in Pp, and R.

The values that are given in Table 1.5 were computed for 120000 probes. The evolution
of the estimates over the number of probes is plotted in Figure 1.13. Observe in Figure

1.13(a) how the estimate A for K = 10 converges above the dashed line which represents
the true value to be estimated. The same is true for K = 30. For K = 65,100, 150, the

estimate \ converges to the correct value. The reason why, for small K, \ overestimates
A, is that Py is larger than the Pp predicted by the model (R being close to R for small

"The relative deviation between two values X and X is defined as | X — X|/X and is sometimes called
mismatch.
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K). Recall that in the M/M/1/K queue, when the load increases/decreases, both the loss
probability and the response time increase/decrease. For large values of K, we have seen

that Py, is slightly larger than Py (2.8% of mismatch) and that R is slightly smaller than R
(4.2% of mismatch). Each mismatch induces an error on ), but since the induced errors are

in opposite directions, the final result is that ) is on target (cf. plots for K = 65,100, 150
in Figure 1.13(a)).

Probe traffic: Poisson-like flow, cross traffic: 100 Poisson-like flows
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Figure 1.13: Evolution of the estimates vs. the number of probes

Figure 1.13(b) depicts the variations of the estimates for K as a function of the number
of probes. Even though the absolute error (| K —K|) between each plot and its corresponding
dashed line increases as K increases, the relative error (|K — K|/K) decreases. Observe that

K is always underestimated, which is expected since P;, > P, and R < R. If the size of
the buffer in the M/M/1/K queue decreases, the loss probability P, increases whereas the
response time decreases. The mismatch of both metrics induces a larger error on K than
the one induced on A, as both mismatches result in underestimating K. Notice how “flat”
are the plots in Figure 1.13(b), especially when compared to the bursty plots in Figure 1.12.
Finally, convergence takes place with approximately 10000 probes when estimating A, and
even fewer when estimating K.

Of more interest are the results in Tables 1.6 and 1.8, since they have been obtained
when the assumption that the cross traffic is Poisson is violated. We see that the quality of
the estimates increases as the number of sources increases, or equivalently, when the load p
increases (results obtained after 120000 probes). We will discuss first the results obtained
when the cross traffic is the aggregation of On/Off flows (cf. Table 1.6) and come back later
on to the case where the cross traffic is the aggregation of TCP flows (cf. Table 1.8).

For 100 On/Off sources (see rows 3-4 in Table 1.6), all estimates for A\ are within 6%
of the correct value, which is a satisfactory result. The relative error on )\ seems to increase

for K < 65 and decrease for K > 65 whereas the relative error on K definitely increases as
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Table 1.6: Relative error (expressed in percentage) of the estimates (scheme P, R) for
120000 probes: cross traffic is of type (T3) and (T4) (On/Off flows)

100 sources: A = 6812, v = 247, p = 6663 and p = 1.059

Estimator K =10 K =30 K =65 K =100 K =150
A 3.8 5.2 6.0 5.4 4.7
K 7.5 17.7 29.5 31.4 33.2

250 sources: A = 17437, v = 246, p = 6532 and p = 2.707
Estimator K =10 K =30 K =65 K =100 K =150
A 1.0 0.6 0.6 0.4 0.05
K 1.1 0.5 0.4 0.4 0.1

the buffer size increases. For 250 On/Off sources (see rows 7-8 in Table 1.6), the results are

much more satisfactory with all estimates for A (resp. K) lying within 1% (resp. 1.1%) of

the correct value. Notice that the relative error on both A and K decreases as K increases.
Searching for an explanation on these observations, we investigated on the performance of

P, and R in these particular simulations, and observed the following.

e For 100 On/Off sources (p = 1.059), the measured loss probability decreases from 0.16

for K = 10 down to 0.09 for K = 150, whereas the loss probability predicted by the
model decreases from 0.13 to 0.05 as K increases and is smaller than the measured
PL. The absolute deviation on Pj increases from 0.03 up to 0.05 for 10 < K < 65
and decreases from 0.05 to 0.02 for 656 < K < 150. The mismatch between the two
values is not negligible (between 16.7% and 47.6%). As K increases, the response

time predicted by the model increases from 0.94ms to 19.7ms; R is smaller than the
predicted R, increasing from 0.91ms to 13.5ms. The deviation between the two values
grows from 34us (3.8% of mismatch) up to 6.2ms (45.9% of mismatch).

For 250 On/Off sources (p = 2.707), both the predicted loss probability and the
measured one are approximately constant and equal to 0.63, having the former be-
ing slightly larger than the latter (0.56% of maximum mismatch). The negligible
deviation on Pj is always decreasing as K increases. As for the response time, the
prediction returned by the M+M/M/1/K model increases from 1.45ms to 22.90ms

as K increases. As for the measured R, it increases from 1.43ms to 22.87ms as K
increases. The deviation between the two values is really negligible, of the order of
tens of microseconds.

We can deduce from the above observations that for 100 On/Off sources (u = 6663), the

error on \ varies as does the deviation between PL and Pr; and that the error on K varies
as does the deviation between R and R. For 250 On/Off sources (u = 6532), the errors on

) and K follow mainly the variations of the deviation between PL and P;.
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Figure 1.14 depicts the evolution of the estimates as a function of the number of
probes. Looking at Figure 1.14(a) (resp. Figure 1.14(b)), it appears that, for all K’s, the

estimator \ converges after 1000 probes (resp. 3000 probes) when the number of background
flows is 100 (resp. 250). We observe in Figure 1.14(a) that the estimates deviate from the
true value as K goes from 10 to 65, and get closer to A = 6812 as K goes from 65 to 1000.
The estimates for K are quite bursty (see Figures 1.14(c)-(f)). The estimates corresponding
to 250 sources stay close to the true values (dashed line in each graph), while the ones
corresponding to 100 sources considerably underestimate the true values as K increases.
The causes of such underestimation (31.4% of error for K = 100) are twofold: first, R < R,

and second, P > Pp. Recall that in a M/M/1/K queue, decreasing the buffer size increases
the loss probability and decreases the response time, which explains why such deviations in
the values of P, and R lead to an underestimation of K.

Evolution of the exogenous rate vs. the number of probes
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Figure 1.14: Probe traffic: Poisson, cross traffic: On/Off flows, Pareto On/Off times
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To complete the discussion of the set of simulations where the cross traffic is of type
(T3) or (T4), we will try to explain why scheme P, R behaves much better when there
are 250 background sources rather than just 100 sources (for large K, the difference in
performance between both cases is even more important). For each type of cross traffic, we
have computed the Hurst parameter as well as the autocorrelation for both the interarrival
sequence of the cross traffic and the service times sequence®. We have also tested the
exponential distribution hypothesis of both sequences, using the goodness of fit test® [120].
Table 1.7 summarizes our findings. We have seen that the mismatch between the measured
metrics and the predictions returned by the model drastically decreases when the number of
background sources grows from 100 to 250 (see rows 12-13 in Table 1.7). We have not found
any important difference in the characteristics of the cross traffic interarrivals sequence nor
in the service times sequence when the number of sources increases (see rows 4-6, 8-10 in
Table 1.7), which is not the case of the load (see second row in Table 1.7). We believe
that the large value of p is behind the good performance of scheme P;, R when there are
250 background sources. When the load is large, the queue does not empty often leading
to a high number of lost packets and to a response time which is approximately the same

Table 1.7: Summary

Criterion 100 On/Off sources 250 On/Off sources
Rate 1.059 2.707

Cross traffic interarrivals sequence

Distribution slightly closer to an exponential when 250 sources
Autocorrelation slightly less autocorrelation when 250 sources
Hurst parameter 0.805849 0.811553

Service times sequence

Distribution slightly closer to an exponential when 250 sources
Autocorrelation less autocorrelation when 250 sources
Hurst parameter 0.837137 0.831835
Mismatch (in %) at 120000 packets  min, avg, max min, avg, max
between P;, and P, 16.7, 37.1, 47.6 0.04, 0.26, 0.6
between R and R 3.8, 28.4, 45.9 0.07, 0.45, 1.3

8In [35], the author provides practical instructions on how to compute the autocorrelation and the Hurst
parameter using C programs, which are available at [34]

9For a descriptive derivation of the test, the N observed values of a sequence are ordered from smallest
to largest. Denote as z(;) the observed value coming in the ith position. If the data really do come from
an exponential distribution with parameter 7, then we would expect the points (1 —exp(—rz;)),i/(N + 1))
to be close to the diagonal line y = x; conversely, strong deviation from this line is evidence that the
distribution did not produce the data.
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for all packets. We believe that, in this case, the measured values of the metrics are close
to the actual values (which are close to those predicted by the model, even though some
assumptions are violated), which is not the case for 100 sources.

We will now analyze the results of the set of simulations in which the cross traffic
is of type (T5) and (T6) (FTP over TCP flows). The relative error of the estimates are
reported in Table 1.8. For 250 FTP/TCP flows, we observe the same thing as for 100 On/Off

sources: the relative error on )\ increases for K < 65 and decreases for K > 65, but here,

the relative error on K is decreasing as the buffer size increases (refer to rows 4-5 in Table
1.8). However, in the case where there are 1000 FTP/TCP flows (see rows 9-10 in Table
1.8), both estimators present a relatively constant error. Furthermore, all estimates for A
(resp. K) are within 3.2% (resp. 0.6%) of the correct values, which is a good result.

Remark 1.7.2 One characteristic of the set of simulations where the cross traffic is of type
(T5) or (T6) is that the cross traffic intensity A depends on the buffer size K. This is due

to the fact that TCP 1is a closed-loop protocol. The cross traffic intensity s reported in rows
3 and 8 in Table 1.8.

Table 1.8: Relative error (expressed in percentage) of the estimates (scheme P; R) for
120000 probes: cross traffic is of type (T5) and (T6) (FTP/TCP flows)
250 sources: v = 248, p = 1502 and p = 1.258

K =10 K =30 K =65 K =100 K =150
Estimator A = 1655 A = 1661 \ = 1656 A\ = 1642 A = 1593
A 7.0 7.6 8.3 7.6 6.7
K 5.9 2.2 1.0 1.4 1.3

1000 sources: v = 248, p = 1491 and p = 1.421

K =10 K =30 K =65 K =100 K =150
Estimator A\ = 1883 A = 1881 A = 1882 A = 1881 A = 1820
A 2.8 3.2 3.0 3.2 3.0
K 0.5 0.04 0.4 0.6 0.6

We will try as before to identify what lies behind these observations. We looked at the

performance of P, and R in all the simulations in which the cross traffic is the aggregation
of FTP over TCP flows, and found that:

e For 250 FTP/TCP sources, the absolute deviation between the measured P, and the
predicted P, increases for K < 65 and decreases for K > 65, staying in the range 0.041

— 0.054 (mismatch in the range 15.3% — 20.2%), such that P, > P,. The response

time predicted by the model is quite close to the measured }A%, the absolute deviation
is in the range 0.11ms — 0.59ms and the mismatch is in the range 0.47% — 2.3%.
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e For 1000 FTP/TCP sources, both metrics have a relatively stable mismatch, the one
on P, (resp. on R) being around 5.96% (resp. 0.57%). As before, P, > P,

In this set of simulations, it appears that the error on \ varies as does the error on PL;
and that the error on K varies as does the error on R. When the mismatch of P, (resp.

of R) does not vary much for different values of K (given the same number of probes), the
estimates of A (resp. of K) will be approximately constant.

To observe the speed of convergence of the estimates, the reader is invited to look at
Figure 1.15. In Figures 1.15(a)-(b), the evolution of the estimates of A is plotted against
the number of probes. Surprisingly enough, the estimates converge rather quickly. The
convergence occurs around 2000 probes for all values of K and for both types of cross traffic
((T5) and (T6)), it is even faster than in the case of Poisson background traffic (see Figure

Evolution of the exogenous rate vs. the number of probes
(a) 250 FTP/TCP sources, p = 1.258 (b) 1000 FTP/TCP sources, p = 1.421
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Figure 1.15: Probe traffic: Poisson, cross traffic: FTP/TCP sources
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1.11). We observe the same speed of convergence of the estimates for K (between 2000 and
5000 probes, see 1.15(c)-(f)). We can also observe how the estimates are right on target

when there are 1000 TCP flows. In the case where there are 250 TCP flows, K slightly

underestimates K. The reason is that PL > Pr. Another effect of such mismatch is the
overestimation of A as observed in Figures 1.15(a)-(b).

As in the previous set of simulations, the predicted P, returned by the model ap-

proaches the measured P; when the load increases, resulting in a better performance for
scheme PL_R.

Finally, we report the performance of scheme P, R over all 50 simulations (each
simulation lasts exactly 500 seconds). Figure 1.16 displays the complementary cumulative

distribution function (CCDF) of the relative error returned by estimates A and K. We

observe that estimate \ returns more accurate results compared to K, as the tail of the
CCDF of the error on K is longer than the tail on the CCDF of the error on A.
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Figure 1.16: The complementary cumulative distribution function of the relative error re-

turned by estimates A and K

In Table 1.9 we classify the results according to some specific performance criterion.
For instance, we see from this table that the estimate for A (resp. K) is within 9% of the
exact value in 98% (resp. 84%) of the experiments. Only for large values of K (K > 1000)

the scheme works poorly and may return no value for K.

From this experimental study we conclude that the inference model M+M/M/1/K
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Table 1.9: Percentage of hits for scheme P, R over the simulations

Criterion Percentage of hits over the simulations
), error within 1 % 52 %

K, error within 1 % 40 %

), error within 5 % 76 %

K, error within 5 % 70 %

A, error within 9 % 98 %

K, error within 9 % 84 %

bad estimation for A 2%

bad estimation for K 10 %

no estimation for K 6 %

returns reasonably good results even when the Poisson assumption on the background traffic
and the assumption on the service times are violated. We have seen that, in general, the
scheme P, R performs better under high load, returning good estimates for both A and K.

1.7.4 Analysis of the results in case y is unknown

We were not surprised to see that scheme 7 = P, U _ R was the “best” scheme in
simultaneously estimating the cross traffic intensity A, the server rate p and the buffer size
K. Even though this scheme was the “best”, it returned results only in 31 simulations among
all 50. Since this scheme uses an estimate of the utilization U, all simulations where the
queue never emptied (there were 19 such simulations) did not lead to any valid estimate of
U. (Recall that the value U = 1 is not valid in both models.) Table 1.10 lists the simulations
in which the queue emptied at least once.

Table 1.10: The 31 simulations where U < 1

Probe traffic Cross traffic
Type Rate (pkts/s) Type Rate (pkts/s) Buffer size K (pkts) Simulations
(T1) =124 (T1) X = 6600 10, 30, 65, 100, 150 5
(T1) =248 (T1) X = 6600 10, 30, 65, 100, 150 5
(T1) =496 (T1) X = 6600 10, 30, 65, 100, 150, 1000 6
(T1) =125 (T1) A =17068 10 1
(T2) =250 (T2) X\ =6677 10, 30, 65, 100, 150 5
(T1) =247 (T3) )= 6812 10, 30, 65, 100, 150, 1000 6
(T1) =246 (T4) )= 17437 10 1
(T1) =248 (T5) = 1655 10 1
(T1) =248 (T6) )\ = 1883 10 1
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We will not discuss much the results returned by scheme P, U R, as the latter does
not perform especially well. The relative error (computed after 60000 probes) on A (resp.
on p, on K) was below 4.98% (resp. below 4.72%, below 3.23%) in 17 simulations: the ones
listed in rows 3-6 (except for K = 1000) and row 9 in Table 1.10. The relative error on
each parameter is not negligible in the other 14 simulations (even after 120000 probes). The
smallest error on A (resp. on pu, on K) is 18.3% (resp. 18.4%, 22.1%), the average error on
A (resp. on p, on K) is 75.0% (resp. 68.9%, 65.2%) and the largest error on A (resp. on ,
on K) is 151.5% (resp. 126.4%, 102.9%)! In other words, the scheme behaves well almost
only in M+M/M/1/K simulations (rows 3—-6 in Table 1.10). This statement is somehow
biased since we have simulated congested cases solely (p € [0.965,2.758]). It is likely that
for moderate values of p, the utilization will be better estimated, which will imply a better
performance of scheme P, U R.

1.7.5 Simulations with several links

We have seen that scheme P, R is the most promising one in estimating the cross
traffic intensity A and the buffer size K. Until now, we have tested this scheme on simulations
in which there was only one single link. In this section, we briefly present the results returned
by scheme P, R when applied on simulations with multiple links.

We have simulated six different scenarios all having the same network topology as
illustrated in Figure 1.17. In each simulation, the probe traffic is Poisson. In two simulations,
the bottleneck link is located between nodes 2 and 5, and in the other four simulations, it
is located between nodes 5 and 7. Table 1.11 reports details on the cross traffic in each
scenario. In each simulation, there was only one type of cross traffic considered (provided in
first column of Table 1.11). Columns 2 and 3 give the total number of flows considered and
the number of flows per route, respectively. There are six possible routes in the case that
the cross traffic type is either Poisson or On/Off, and there are twelve routes when the cross

) (+) (s)
Probe traffic
— Cross traffic

=)

©

Figure 1.17: The simulated network
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Table 1.11: Details on the cross traffic in the simulated scenarios

Along the path Flows via bottleneck
Type Flows Flows/route link 2-5 link 5-7 Routes for cross traffic
Poisson 6 1 3 4 (i,i+4),i=1,...,6
On/Off 750 125 500 (1,1 +4),i=1,...,6
FTP/TCP 1020 85 510 680 (1,1+4),(i+4,i),i=1,...,6
FTP/TCP 1500 125 1000 (1,1+4),(i+4,i),i=1,...,6

traffic is the aggregation of 1500 FTP/TCP flows (see column 6). Column 4 (resp. column
5) gives the number of cross traffic flows going through the bottleneck when the latter is
the link 2-5 (resp. link 5-7).

We observed in our experiments that the propagation delay is crucial in simulations
in which the cross traffic is transported by TCP. That is, of course, because TCP is a
closed-loop protocol, as opposed to UDP which is used to transport Poisson or On/Off
flows. Table 1.12 reports the relative error (expressed in percentage) returned by scheme

P;, R after 5000 probes only. We notice that )\ performs very well (see column 5 in Table

1.12), which is not the case of K, as the latter misestimates the buffer size K when the
cross traffic is the aggregation of FTP/TCP flows (cf. rows 6-8 in Table 1.12, column 4).
Observe that the error on K decreases from 27.6% to 16.8% when the number of FTP/TCP
flows increases from 680 to 1000.

Table 1.12: Relative error of K and A (expressed in %) after 5000 probes

Flows via bottleneck Relative error Propagation
Bottleneck Type Flows K A delay considered?
link 2-5 Poisson 3 4.6 14 No
link 5-7 Poisson 4 5.6 0.6 No
link 5-7 On/Off 500 0.7 2.2 No
link 2-5 FTP/TCP 510 9.5 2.7 Yes
link 5-7 FTP/TCP 680 27.6 0.7 Yes
link 5-7 FTP/TCP 1000 16.8 5.5 Yes

Note that when the cross traffic is transported by TCP, it is necessary to account
for the propagation delay in order for the scheme to behave well, thereby, suggesting an
extension to the M+M/M/1/K queue model in which the end-to-end delay is the sum of
the response time of the queue and a propagation delay. The latter might be constant or a
random variable.
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1.8 Extensions

1.8.1 From simulation to reality

Till now, we have always assumed to have access to the first n samples of {a;};, {d;}i,
{X;}; and {Y;};. In this work, we have carried out simulations to generate traffic traces,
and the samples were extracted from the traces. However, ultimately, we must extract the
samples from the real network (e.g. the Internet). How can we do this?

Usually, real-time applications use the Real-time Transport Protocol (RTP) [109] to-
gether with UDP and IP. RTP provides end-to-end network transport functions suitable for
this kind of application, over multicast or unicast network services. RTP consists of two
parts, a data part and a control part referred to as RTCP, the RTP Control Protocol. The
feedback information is carried in RTCP packets referred to as Receiver Reports (RRs).The
rate at which they are multicast is controlled so that the load created by the control infor-
mation is a small fraction of that created by data traffic. The RR sent by a destination
includes several pieces of information: the highest sequence number received, the number
of packets lost, the estimated packet interarrival jitter, and timestamps. At the sender,
the {a;}; are available, the {d;}; are retrieved from the timestamps present in the RR and
the {X;}; are retrieved from the highest sequence number received at the destination, also
given in the RR. As for the {Y;};, they are hard to obtain. In [86], the authors propose
an algorithm to estimate the clock skew in network delay measurements. This algorithm
can be adapted to estimate the {Y;}; (mainly, ¥ = 0 if the measured delay is minimal) but
this estimation will be weak and uncertain, as the service times are considered constant.
Fortunately we found that P, R is the best scheme and hence we will not use U. The work
assumes a perfect knowledge of the bottleneck capacity. In some cases, y is known exactly
(we know the routes and we know the routers) but sometimes p is to be estimated and this
introduces further error. Its impact still needs to be investigated.

1.8.2 Example of a possible application

An interesting application for the methods proposed in this chapter is routing in
content distribution networks. The goal would be to infer the available bandwidth and
buffer size of the bottleneck queue on a path between two application layer routers so as to
determine how to route new traffic. It should be possible to probe at a sufficiently high rate
to quickly obtain good estimates. This could be done by embedding a Poisson stream within
the data traffic and/or adding a (relatively) low bandwidth probe stream. Furthermore,
between two application layer routers, we expect there to be one bottleneck node residing
at a peering point between the two backbone networks within which the routers reside.
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1.9 Conclusion

In this work, we have proposed two simple models for a connection, based on a single
server queue with finite waiting room, to infer the buffer size and the intensity of cross
traffic at the bottleneck link of a path between two hosts. We have quantified several
parameters of both models and obtained eleven pairs of moment-based estimators. Using
traces generated by the network simulator ns-2, estimated values for both parameters have
been calculated according to the characteristics of the a priori models. Pairs of estimators
have been discarded while others have proved to give good results. However, the pair of
estimators we have “elected” as the best one need to be tested on an experimental network,
or even better, on the Internet, in order to evaluate its performance under realistic network
traffic conditions.



