UBINET: Performance Evaluation of Networks

Homework 6

To be returned on 8 November 2016

6.1 A routing problem with lossy paths

Consider a Poisson traffic flowing from a source S to a destination D. The traffic intensity is λ . The traffic may flow through two distinct routes as depicted in the figure below. The two routes join and share a common path before reaching the destination. Each portion of each route is modeled as a queueing system with infinite waiting room and an exponentially distributed service time. The service rate along the upper path is μ_1 and that along the lower path is μ_2 , assumed to be less than μ_1 . The service rate along the common path is μ_3 . Both paths are error prone, the loss probability in the upper path is denoted ϵ_1 and that in the lower path ϵ_2 . Assume that packets flow through the upper route with a probability p, with $0 \le p \le 1$, and with the complementary probability, they flow through the lower route.

- 1. Write the traffic equations.
- 2. Express the stability condition by finding an upper bound on λ .
- 3. Find the interval of values that p can take such that the stability condition is satisfied.
- 4. Find the mean number of customers in the system.
- 5. Compute $\overline{T}(p)$, the expected sojourn time in the network of the customers reaching the destination, in terms of the traffic intensity λ , the service rates $\{\mu_i\}_{i=1,2,3}$, the loss probabilities $\{\epsilon_i\}_{i=1,2}$ and the routing probability p.
- 6. Find an instance in terms of λ , $\{\mu_i\}_{i=1,2,3}$ and $\{\epsilon_i\}_{i=1,2}$ for which it is better to route most of the traffic through the upper path.
- 7. Find an instance in terms of λ , $\{\mu_i\}_{i=1,2,3}$ and $\{\epsilon_i\}_{i=1,2}$ for which it is better to route most of the traffic through the lower path.

6.2 The principle of capacity reduction

Part 1: A Kelly network

Consider an M/M/1 FIFO queue with two classes of customers. Customers from each class arrive to the queue according to a Poisson process. The arrival rates are λ_1 and λ_2 respectively. The server takes a time that is exponentially distributed with parameter μ regardless of the class.

- 1. Use the notation seen in class to write the arrival rate of each class in the queue and the total arrival rate in the queue.
- 2. Give the pairs (λ_1, λ_2) for which the system is stable.
- 3. What is the expected number of customers from each class in the queue?
- 4. Find the expected sojourn time of customers of class 1 in the queue.

Part 2: A single class queue

Consider now an M/M/1 FIFO queue with customers arrival rate λ_1 and service rate $\mu - \lambda_2$.

- 1. What is the stability condition?
- 2. What is the expected number of customers in the queue?
- 3. Find the expected sojourn time of customers in the queue.
- 4. What can you conclude from this problem?