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Abstract. OAEP is a widely used public-key encryption scheme based
on trapdoor permutations. Its security proof has been scrutinized and
amended repeatedly. Fifteen years after the introduction of OAEP, we
present a machine-checked proof of its security against adaptive chosen-
ciphertext attacks under the assumption that the underlying permuta-
tion is partial-domain one-way. The proof can be independently verified
by running a small and trustworthy proof checker and fixes minor glitches
that have subsisted in published proofs. We provide an overview of the
proof, highlight the differences with earlier works, and explain in some
detail a crucial step in the reduction: the elimination of indirect queries
made by the adversary to random oracles via the decryption oracle. We
also provide—within the limits of a conference paper—a broader per-
spective on independently verifiable security proofs.

1 Introduction

Optimal Asymmetric Encryption Padding (OAEP) [9] is a prominent public-
key encryption scheme based on trapdoor permutations, most commonly used
in combination with the RSA [29] and Rabin [28] functions. OAEP is widely
deployed; many variants of OAEP are recommended by several standards, in-
cluding IEEE P1363, PKCS, ISO 18033-2, ANSI X9, CRYPTREC and SET.
Yet, the history of OAEP security is fraught with difficulties. The original 1994
paper of Bellare and Rogaway [9] proves that, under the hypothesis that the un-
derlying trapdoor permutation family is one-way, OAEP is semantically secure
under chosen-ciphertext attacks. Shoup [30] subsequently discovered in 2000 that
this proof only established the security of OAEP against non-adaptive chosen-
ciphertext attacks, and not (as was believed at that time) against the stronger
version of IND-CCA that allows the adversary to adaptively obtain the decryp-
tion of ciphertexts of its choice. Shoup suggested a modified scheme, OAEP+,
secure against adaptive attacks under the one-wayness of the underlying permu-
tation, and gave a proof of the adaptive IND-CCA security of the original scheme
when it is used in combination with RSA with public exponent e = 3. Simul-
taneously, Fujisaki, Okamoto, Pointcheval and Stern [15] proved that OAEP in
its original formulation is indeed secure against adaptive attacks, but under the



assumption that the underlying permutation family is partial-domain one-way.
Since for the particular case of RSA this latter assumption is no stronger than
(full-domain) one-wayness, this finally established the adaptive IND-CCA secu-
rity of RSA-OAEP. In 2004, Pointcheval [27] gave a different proof of the same
result; this new proof fills several gaps in the reduction of [15], which results in a
weaker bound than originally stated. Nonetheless, the inaccurate bound of [15]
remains the reference bound used in practical analyses of OAEP, see e.g. [13].
Finally, Bellare, Hofheinz and Kiltz [8], recently pointed out some ambiguities
in the definition of IND-CCA, leading to four possible formulations (all of them
used in the literature), and question which definition is used in the statements
and proofs of OAEP.

This paper reports on a machine-checked proof that OAEP is IND-CCA secure
against adaptive attacks. For the sake of definitional clarity, we identify IND-CCA

with the strongest definition in the taxonomy of [8], IND-CCA-SE. Let us first
give a formal definition of OAEP:

Definition 1 (OAEP encryption scheme). Let (Kf , f, f
−1) be a family of

trapdoor permutations on {0, 1}k, and

G : {0, 1}k0 → {0, 1}k−k0 H : {0, 1}k−k0 → {0, 1}k0

two hash functions, with k = n+ k0 + k1. The Optimal Asymmetric Encryption
Padding (OAEP) scheme is composed of the following triple of algorithms:

K(η) def
= (pk, sk)← Kf (η); return (pk, sk)

E(pk,m) def
= r $← {0, 1}k0; s← G(r) ⊕ (m‖0k1); t← H(s)⊕ r;

return f(pk, s‖ t)
D(sk, c) def

= (s‖ t)← f−1(sk, c); r ← t⊕H(s); m← s⊕G(r);
if [m]k1

= 0k1 then return [m]n else return ⊥

where [x]n (resp. [x]n) denotes the n least (resp. most) significant bits of x.

Our main result is:

Theorem 1 (IND-CCA security of OAEP). Let A be an adversary against
the adaptive IND-CCA security of OAEP that makes at most qG and qH queries to
the hash oracles G and H, respectively, and at most qD queries to the decryption
oracle D. Suppose this adversary achieves an IND-CCA advantage ǫ within time t.
Then, there exists an inverter I that finds a partial preimage (the most significant
k − k0 bits) of an element uniformly drawn from the domain of the underlying
permutation f with probability ǫ′ within time t′, where

ǫ′ ≥
1

qH

(

ǫ

2
−

3qDqG + q2D + 4qD + qG
2k0

−
2qD
2k1

)

t′ ≤ t+ qD qG qH (Tf +O(1))

and where Tf is an upper bound on the time needed to compute the image of
a bitstring under f . Moreover, if the underlying permutation family is partial-
domain one-way and adversary A runs in probabilistic polynomial-time (on some



security parameter η), then the advantage of A is negligible, provided parameters
k0, k1 are at least linear on η.

The formal statement is given in Fig. 1. The proof is built using CertiCrypt [6],
a general framework for building game-based cryptographic proofs in the Coq

proof assistant [32], and yields an independently verifiable certificate. Said oth-
erwise, an external verifier can examine the statement to convince herself that it
faithfully captures the definitions of OAEP and IND-CCA security and can del-
egate the verification of the proof to an automated checker. Our exact security
bound unveils minor glitches in the proof of [27], and marginally improves on its
exact security bound by performing an aggressive analysis of oracle queries ear-
lier in the sequence of games. Beyond its individual merits, the proof is highly
emblematic and provides tangible evidence of the onset of tools to build and
verify cryptographic proofs.

2 A Primer on Formal Proofs

Proof assistants are programs designed to support interactive construction and
automatic verification of mathematical statements (understood in a broad sense).
Initially developed by logicians to experiment with the expressive power of their
foundational formalisms, proof assistants are now emerging as a mature tech-
nology that can be used effectively for verifying intricate mathematical proofs,
such as the Four Color theorem [16] or the Kepler conjecture [18,19], or complex
software systems, such as operating systems [21], virtual machines [22] and opti-
mizing compilers [24]. In the realm of cryptography, proof assistants have been
used to formally verify secrecy and authenticity properties of protocols [26].

Proof assistants rely on expressive specification languages that allow formal-
izing arbitrary mathematical notions, and that provide a formal representation
of proofs as proof objects. Their architecture is organized into two layers: a
kernel, and a proof engine.

– The kernel is the cornerstone for correctness. Its central component is a
checker for verifying the consistency of formal theories, including definitions
and proofs. In particular, the checker guarantees that definitions and proofs
are well-typed, that there are no missing cases or undefined notions in defi-
nitions, and that all proofs are built from valid elementary logical steps and
make a correct use of assumptions.

– In contrast, the proof engine helps proof construction. The proof engine
embraces a variety of tools. The primary tools are a set of pre-defined tactics,
and a language for writing user-defined tactics. Tactics allow to reduce a
proof goal to simpler ones. When invoked on a proof goal A, a tactic will
compute a new set of goals A1 . . . An, and a proof that A1 ∧ . . .∧An =⇒ A.
At the end of each demonstration, the proof engine outputs a proof object.

Proof objects are independently checked by the kernel. Therefore, the proof
engine need not be trusted, and the validity of a formal proof—beyond the



accuracy of the statement itself—only depends on the correctness of the kernel.
Pleasingly, kernels are extremely reliable programs with restricted functionalities
and solid logical foundations.

As with any other mathematical activity, formal proofs strive for elegance and
conciseness. In our experience, they also provide a natural setting for improving
proofs—in the case of cryptography, improvement can be measured by comparing
exact security bounds. Yet, what matters most about a formal proof is that
it provides a nearly absolute degree of assurance, without requiring expensive
human verification.

3 The Statement

The formal statement of the exact IND-CCA security of OAEP is displayed in Fig-
ure 1; it comprises the definition of the IND-CCA game and the simulation that
reduces security to the partial-domain one-wayness of the trapdoor permutation.
The security result is expressed as a lower bound on the success probability of
the reduction in terms of the success probability of an IND-CCA adversary. Both
probabilities are captured formally by expressions of the form Pr[G : E], where
G is a game and E an event. The definition of probabilities is taken from Au-
debaud and Paulin’s library [2], whereas the definition of games and events is
taken from the CertiCrypt framework [6]. In essence, games are probabilistic pro-
grams with calls to adversaries; formally, a game is given by a main command
and an environment that provides the code of algorithms and oracles—in con-
trast, adversaries are formalized as procedures with unknown code. Games have
a probabilistic semantics: given an interpretation of adversaries as probabilistic
programs, a game G is interpreted as a function JGK from initial states to dis-
tributions of final states. The semantics of games is taken from [6]. Events are
merely predicates over final states, and Pr[G : E] is simply the probability of E
in the distribution induced by JGK starting from an empty initial state.

The IND-CCA game involves an adversary A (modeled by procedures A1 and
A2), defines algorithms K for key generation and E for encryption, and gives the
adversary access to a decryption oracle D and to random oracles G and H . We
follow the convention of typesetting global variables in boldface. The first line of
the main command initializes oracle memories; the lists LG and LH are used to
simulate the random oracles G and H , whereas the list LD is a ghost variable
used to track decryption queries and exclude invalid adversaries that query the
decryption oracle with the challenge ciphertext during the second phase of the
game. The remainder of the game is standard; note that we set a flag ĉdef just
before giving the challenge ciphertext to the adversary in order to distinguish
decryption queries made in the second phase of the game from those made in
the first phase. The code of the decryption oracle and the encryption and key
generation algorithms is a direct transcription of the informal definitions and is
omitted.

The code of the game is complemented by a variable policy that declares
which variables are accessible to adversaries: A cannot read nor modify the



Game GIND-CCA :
LG,LH ,LD ← nil;
(pk, sk)← K(η);
(m0,m1)← A1(pk);

b $← {0, 1};
ĉ← E(mb);
ĉdef ← true;

b← A2(pk, ĉ)

Oracle G(r) :
if r 6∈ dom(LG) then

g $← {0, 1}
n+k1 ;

LG[r]← g
else g ← LG[r]
return g

Oracle H(s) :
if s 6∈ dom(LH ) then

h $← {0, 1}
k0 ;

LH [s]← h
else h← LH [s]
return h

Oracle D(c) :
LD ← (ĉdef , c) :: LD;
(s, t)← f−1(sk, c);
h← H(s);
r ← t⊕ h;
g ← G(r);

if [s⊕ g]k1 = 0k1 then

return [s ⊕ g]n

else return ⊥

Game Gset-PD-OW :
(pk, sk) ← Kf (η);

s $← {0, 1}
n+k1 ;

t $← {0, 1}
k0 ;

S ← I(pk, f(pk, s‖ t))

Adversary I(pk, y) :
LG,LH ← nil;
pk← pk;
(m0,m1)← A1(pk);
ĉ← y;
ĉdef ← true;

b← A2(pk, ĉ);
return dom(LH )

Oracle G(r) :
if r 6∈ dom(LG) then

g $← {0, 1}
n+k1 ;

LG[r]← g
else g ← LG[r]
return g

Oracle H(s) :
if s 6∈ dom(LH ) then

h $← {0, 1}
k0 ;

LH [s]← h
else h← LH [s]
return h

Oracle D(c) :
if ∃(s, h) ∈ LH , (r, g) ∈ LG.
c = f(pk, s‖ (r ⊕ h)) ∧

[s⊕ g]k1 = 0k1

then return [s⊕ g]n

else return ⊥

WF(A) ∧ Pr[GIND-CCA : |LG| ≤ qG + qD + 1 ∧ |LD| ≤ qD ∧ (true, ĉ) 6∈ LD] = 1 =⇒

Pr
[

GIND-CCA : b = b
]

−
1

2
≤ Pr[Gset-PD-OW : s ∈ S] +

3qDqG + q2D + 4qD + qG

2k0
+

2qD
2k1

Fig. 1. Formal statement of IND-CCA security of OAEP.

values of sk, LD, LG, LH , ĉdef , and ĉ, and cannot modify the value of pk; on
the other hand, the procedures representing the two phases of the adversary can
communicate through shared variables. An adversary A respecting the variable
policy is said to be well-formed; this is noted as WF(A).

The security statement itself takes the form of an implication, whose premise
fixes the class of adversaries considered. The statement considers well-formed ad-
versaries that make at most qD and qG queries to the decryption and G oracles
respectively4, and that do not query the decryption oracle with the challenge
ciphertext in the second phase of the game. Given an IND-CCA adversary A,
we show how to construct an inverter I that uses A as a subroutine to par-
tially invert the underlying trapdoor permutation. The success probability of
the inverter is given by Pr[Gset-PD-OW : s ∈ S], and is lower bounded by:

1

2
AdvIND-CCA

A −
3qDqG + q2D + 4qD + qG

2k0
−

2qD
2k1

4 The formal statement slightly relaxes this condition; it requires the length of LG

be at most qG + qD + 1 (the 1 accounting for the call to G needed to compute the
challenge ciphertext), so that the adversary could trade calls to D for calls to G.



where the IND-CCA advantage AdvIND-CCA

A of A is defined as usual as

2 Pr
[

GIND-CCA : b = b
]

− 1

One additional remark is needed to relate the formal statement to the state-
ment of Theorem 1. Strictly, the formal statement reduces the security of OAEP
not to the partial-domain one-wayness of the permutation, but to its set partial-
domain one-wayness. Both notions are closely related (cf. [15]). We could have
formally proven the reduction to the former problem using basically the same
argument, but making the inverter return a value uniformly chosen from the
domain of LH instead; this accounts for the multiplicative factor q−1H in The-
orem 1. The reduction from partial-domain one-wayness to set partial-domain
one-wayness is inessential to the presentation and can be proven independently
and generically for any inverter I.

4 The Proof

One claimed virtue of verifiable security is that there is no need to understand
its proof (only its statement) to trust the correctness of a result. Obviously, it
remains of interest to understand the thrust of the proof, and if one intends
to reproduce the proof—perhaps in a slightly different setting, or for a different
scheme, or with a different framework—its ultimate details. This section provides
an overview of the techniques used to conduct the proof and delves into the
details of one significant proof step, namely eliminating fresh oracle calls to G
in the decryption oracle. The code of the proof and all the infrastructure needed
to independently verify may be obtained from the authors upon simple request.

Tools The proof makes an extensive use of the techniques provided by the Cer-

tiCrypt framework, as reported in [6], and the additional techniques described
in [7]. The unifying formalism used by CertiCrypt to justify transitions be-
tween games is a Relational Hoare Logic, whose judgments are of the form
⊢ G1 ∼ G2 : Ψ ⇒ Φ, relating two games G1 and G2 w.r.t. two relations Ψ
and Φ on states. Such a judgment means that for any initial memories m1 and
m2 satisfying the precondition m1 Ψ m2, the distributions JG1K m1 and JG2K m2

are related by the lifting of Φ to distributions5. Relational Hoare Logic subsumes
observational equivalence ⊢ G1 ∼

X
Y G2, which is obtained by setting Ψ and Φ to

=X and =Y , where X (resp. Y ) is a set of variables and =X (resp. =Y ) relates
memories that coincide on all variables in X (resp. Y ).

Both Relational Hoare Logic and observational equivalence statements allow
to express that two games perfectly simulate each other. Proofs can be conducted

5 In the general case, we adopt the definition of lifting from probabilistic process al-
gebra, which is formulated in terms of a max-flow min-cut problem and involves
an existential quantification over distributions. For partial equivalence relations, the
definition coincides with the usual approach that requires the probability of equiva-
lence classes be the same.



using proof rules à la Hoare Logic—i.e., there is a rule for each construction of the
programming language and structural rules—or certified tactics that automate
program transformations such as dead code elimination, constant folding and
propagation, or procedure call inlining.

We use the logic of swapping statements of [7] to prove independence of val-
ues from adversary’s view. We say that a value is independent from adversary’s
view at some point in a game if it can be resampled without modifying the mean-
ing of the game. The logic for swapping statements deals with Relational Hoare
judgments of the form ⊢ S;G1 ∼

X
Y G2;S, where the games S;G1 and G2;S are re-

spectively obtained from games G1 and G2 by prefixing and postfixing some code
fragment S. Typically, S just resamples part of the state of the game; moreover,
the code of oracles in G1 and G2 may also differ in the random samplings they
perform. In general, the logic of swapping statements can be used to justify eager
and lazy sampling transformations—overcoming limitations in [6]. An example
of its application is given below.

In addition to Relational Hoare Logic, CertiCrypt formalizes the Fundamental
Lemma of Game-Playing [10,20,31], which is used to justify “lossy” steps where
two consecutive games in a proof structured as a sequence of games only diverge
when a failure event occurs. The Failure Event Lemma of [7] complements the
Fundamental Lemma of Game-Playing and allows to bound the probability of
a failure event triggered inside an oracle by a function of the number of calls
made to the oracle. There exist several specialized versions of this lemma; the
simplest instance focuses on games in which the failure event F is triggered by
an oracle O with a probability bounded by a constant ǫ, independent from the
argument with which it is called and of any previous calls. In this case, the
Failure Event Lemma bounds the probability of event F by qO ǫ, where qO is
a bound on the number of calls to O. While this instance of the Failure Event
Lemma suffices to justify most lossy transformations in the proof of OAEP, we
also needed to resort to the full generality of the lemma on two occasions; one
of them is outlined below.

Proof outline Figure 2 outlines the structure of the proof; the first step from
GIND-CCA to G1 and the final step from G5 to Gset-PD-OW are not displayed. The
reduction successively eliminates all situations in which the plaintext extractor
used by the inverter to simulate decryption may fail.

Starting from game GIND-CCA, we use the logic of swapping statements to
fix the hash ĝ that G gives in response to the random seed in the challenge
ciphertext; the computation of the challenge ciphertext unfolds to:

r̂ $← {0, 1}k0; ŝ← ĝ ⊕ (mb ‖0
k1); ĥ← H(ŝ); t̂← ĥ⊕ r̂; ĉ← f(pk, ŝ‖ t̂)

where ĝ is sampled from {0, 1}k−k0 before the first call to A. We then make
G respond to an adversary query r̂ with a freshly sampled value instead of ĝ;
this only makes a difference if flag bad is set in game G1. Since at this point ĝ
is uniformly distributed and independent from the adversary’s view, the value
ŝ computed as ĝ ⊕ (mb ‖ 0

k1) is as well uniformly distributed and independent



Pr[G1 : bad] ≤ Pr[G2 : bad] +
q2
D

+ qDqG + qD

2k0
+

qD

2k1

Inline G and case analysis on whether
s ∈ dom(LH) in D.
Reject ciphertexts with a fresh g or h

Pr[G2 : bad] ≤ Pr[G3 : bad] +
qD

2k1
Eliminate assignments to LG in D
Update D to enforce new bound on LG

Game G1 :
LG,LH ,LD ← nil;
(pk, sk)← Kf ();

r̂ $← {0, 1}
k0 ;

ŝ $← {0, 1}
k−k0 ;

(m0,m1)← A1(pk);

b $← {0, 1};

ĥ← H(ŝ);

t̂← ĥ ⊕ r̂;
ĉ← f(pk, ŝ‖ t̂);
ĉdef ← true;

b← A2(pk, ĉ)

Oracle G(r) :
if r 6∈ dom(LG) then

if r = r̂ then

bad← true;

g $← {0, 1}
k−k0 ;

LG[r]← g
else g ← LG[r]
return g

Oracle H(s) :
if s 6∈ dom(LH ) then

h $← {0, 1}
k0 ;

LH [s]← h
else h← LH [s]
return h

Oracle D(c) :
if (ĉdef ∧ ĉ = c) ∨ qD < |LD | ∨ qD + qG < |LG|
then return ⊥
else

LD ← (ĉdef , c) :: LD;
(s, t)← f−1(sk, c);
r ← t⊕H(s);
g ← G(r);

if [s⊕g]k1 = 0k1 then return [s⊕g]n else return ⊥

Game G2 :
LG,LH ,LD ← nil;
(pk, sk)← Kf ();

r̂ $← {0, 1}
k0 ;

ŝ $← {0, 1}
k−k0 ;

(m0,m1)← A1(pk);

b $← {0, 1};

ĥ← H(ŝ);

t̂← ĥ ⊕ r̂;
ĉ← f(pk, ŝ‖ t̂);
ĉdef ← true;

b← A2(pk, ĉ)

Oracle G(r) :
if r 6∈ dom(LG) then

if r = r̂ then

bad← true;

g $← {0, 1}
k−k0 ;

LG[r]← g
else g ← LG[r]
return g

Oracle H(s) :
if s 6∈ dom(LH ) then

h $← {0, 1}
k0 ;

LH [s]← h
else h← LH [s]
return h

Oracle D(c) :
if (ĉdef ∧ ĉ = c) ∨ qD < |LD | ∨ qD + qG < |LG|
then return ⊥
else

LD ← (ĉdef , c) :: LD;
(s, t)← f−1(sk, c);
if s ∈ dom(LH) then

r ← t⊕H(s);
if r ∈ dom(LG) then

g ← LG[r];

if [s⊕g]k1 = 0k1 then return [s⊕g]n

else return ⊥
else

if r = r̂ then bad← true;

g $← {0, 1}
k−k0 ; LG[r]← g; return ⊥

else

r ← t⊕H(s);
if r /∈ dom(LG) then

g $← {0, 1}
k−k0 ; LG[r]← g

return ⊥

Game G3 :
LG,LH ,LD ← nil;
(pk, sk)← Kf ();

r̂ $← {0, 1}
k0 ;

ŝ $← {0, 1}
k−k0 ;

(m0,m1)← A1(pk);

b $← {0, 1};

ĥ← H(ŝ);

t̂← ĥ ⊕ r̂;
ĉ← f(pk, ŝ‖ t̂);
ĉdef ← true;

b← A2(pk, ĉ)

Oracle G(r) :
if r 6∈ dom(LG) then

if r = r̂ then

bad← true;

g $← {0, 1}
k−k0 ;

LG[r]← g
else g ← LG[r]
return g

Oracle H(s) :
if s 6∈ dom(LH ) then

h $← {0, 1}
k0 ;

LH [s]← h
else h← LH [s]
return h

Oracle D(c) :
if (ĉdef ∧ ĉ = c) ∨ qD < |LD | ∨ qG < |LG|
then return ⊥
else

LD ← (ĉdef , c) :: LD;
(s, t)← f−1(sk, c);
if s ∈ dom(LH) then

r ← t⊕H(s);
if r ∈ dom(LG) then

g ← LG[r];

if [s⊕g]k1 = 0k1 then return [s⊕g]n

else return ⊥
else

if r = r̂ then bad← true;
return ⊥

else

r ← t⊕H(s); return ⊥

Fig. 2. Outline of the reduction showing the lossy transitions. Fragments of code that
change between games are highlighted on a gray background.



Pr[G3 : bad] ≤ Pr[G4 : bad] +
qDqG + qD

2k0
Inline calls to H in D
Eliminate assignments to LH in D

Pr[G4 : bad] ≤ Pr[G5 : badH ] +
qDqG + 2qD + qG

2k0

Eagerly sample the value of ĥ
Introduce badH in H
Bound bad in terms of badH

Game G4 :
LG,LH ,LD ← nil;
(pk, sk)← Kf ();

r̂ $← {0, 1}
k0 ;

ŝ $← {0, 1}
k−k0 ;

(m0,m1)← A1(pk);

b $← {0, 1};

ĥ← H(ŝ);

t̂← ĥ ⊕ r̂;
ĉ← f(pk, ŝ‖ t̂);
ĉdef ← true;

b← A2(pk, ĉ)

Oracle G(r) :
if r 6∈ dom(LG) then

if r = r̂ then

bad← true;

g $← {0, 1}
k−k0 ;

LG[r]← g
else g ← LG[r]
return g

Oracle H(s) :
if s 6∈ dom(LH ) then

h $← {0, 1}
k0 ;

LH [s]← h
else h← LH [s]
return h

Oracle D(c) :
if (ĉdef ∧ ĉ = c) ∨ qD < |LD | ∨ qG < |LG|
then return ⊥
else

LD ← (ĉdef , c) :: LD;

(s, t)← f−1(sk, c);
if s ∈ dom(LH) then

h← LH [s]; r ← t⊕ h;
if r ∈ dom(LG) then

g ← LG[r];

if [s⊕g]k1 = 0k1 then return [s⊕g]n

else return ⊥
else

if r = r̂ then bad← true;
return ⊥

else return ⊥

Game G5 :
LG,LH ,LD ← nil;
(pk, sk)← Kf ();

r̂ $← {0, 1}
k0 ;

ŝ $← {0, 1}
k−k0 ;

(m0,m1)← A1(pk);

b $← {0, 1};

ĥ $← {0, 1}
k0 ;

t̂← ĥ ⊕ r̂;
ĉ← f(pk, ŝ‖ t̂);
ĉdef ← true;

b← A2(pk, ĉ)

Oracle G(r) :
if r 6∈ dom(LG) then

if r = r̂ then

bad← true;

g $← {0, 1}
k−k0 ;

LG[r]← g
else g ← LG[r]
return g

Oracle H(s) :
if s 6∈ dom(LH ) then

if s = ŝ then

badH ← true;

h $← {0, 1}
k0 ;

LH [s]← h
else h← LH [s]
return h

Oracle D(c) :
if (ĉdef ∧ ĉ = c) ∨ qD < |LD | ∨ qG < |LG|
then return ⊥
else

LD ← (ĉdef , c) :: LD;

(s, t)← f−1(sk, c);
if s ∈ dom(LH) then

h← LH [s]; r ← t⊕ h;
if r ∈ dom(LG) then

g ← LG[r];

if [s⊕g]k1 = 0k1 then return [s⊕g]n

else return ⊥
else return ⊥

else return ⊥

Fig. 2. Outline of the reduction showing the lossy transitions. Fragments of code that
change between games are highlighted on a gray background.

from the adversary’s view. This removes the dependence of the adversary output
on the hidden bit b, and thus the probability of a correct guess is exactly 1/2.
Using the Fundamental Lemma we obtain the bound:

Pr
[

GIND-CCA : b = b
]

− Pr
[

G1 : b = b
]

= Pr
[

GIND-CCA : b = b
]

−
1

2
(1)

≤ Pr[G1 : bad] (2)

The transition from G1 to G2 modifies the decryption oracle successively by
inlining the call to G, and by applying the Fundamental and Failure Event
lemmas to reject the ciphertext when there is a small chance it matches the
padding. Overall, we prove:

Pr[G1 : bad] ≤ Pr[G2 : bad] +
q2D + qDqG + qD

2k0
+

qD
2k1

(3)



Next, we eliminate fresh calls to G in the decryption oracle. These calls cor-
respond to the two assignments LG[r] ← g, since calls to G have been inlined
previously. We perform an aggressive elimination and remove both calls. As a
result, in game G3 the length of list LG (i.e. the number of calls to G) is bounded
by qG rather than qD + qG. This is the key to improve on the security bound
of Pointcheval [27], who only removes the second call. The proof relies on the
logic of swapping statements to show that values of discarded calls are “uni-
formly distributed and independent from the adversary’s view”. Details appear
in next paragraph. Overall, we prove:

Pr[G2 : bad] ≤ Pr[G3 : bad] +
qD
2k1

(4)

Likewise, we eliminate calls to H in D, yielding a new game G4 in which the
decryption oracle does not add any new values to the memories of G and H .
Using the Fundamental and Failure Event lemmas, we obtain:

Pr[G3 : bad] ≤ Pr[G4 : bad] +
qDqG + qD

2k0
(5)

We next fix the value ĥ that oracle H gives in response to ŝ, and then make
H return a freshly sampled value instead of ĥ. This allows us to bound the
probability of bad in terms of the probability of a newly introduced event badH ,
that indicates whether the adversary queried the value of H(ŝ). The proof uses
the hypothesis that A2 cannot query the decryption oracle with the challenge
ciphertext, and yields:

Pr[G4 : bad] ≤ Pr[G5 : badH ] +
qDqG + 2qD + qG

2k0
(6)

Finally, we prove that the probability of badH in G5 is upper bounded by the
probability that the inverter I in Figure 1 succeeds in partially inverting the
permutation f . The proof uses the (standard, non-relational) invariant on G5:

badH =⇒ ŝ ∈ dom(LH)

The inverter I that we build (shown in Fig. 1) gives its own challenge y as the
challenge ciphertext to the IND-CCA adversary A. The task of the inverter is
to return a list of values containing the partial preimage of its challenge which,
stated in terms of the variables of game G5, is ŝ. Thus:

Pr[G5 : badH ] ≤ Pr[G5 : ŝ ∈ dom(LH)] = Pr[Gset-PD-OW : s ∈ S] (7)

Where the last equality follows from an algebraic equivalence that we prove as
a lemma:

ĥ $← {0, 1}
k0; t̂← ĥ⊕ r̂ ∼

{r̂}

{ĥ,t̂,r̂}
t̂ $← {0, 1}

k0; ĥ← t̂⊕ r̂

Putting together Equations (1)–(7) concludes the proof of the statement in Fig-
ure 1.



Detailed proof of the transition from G2 to G3 We use the five intermediate games
shown in Figure 3. The first transition from G2 to G

1
2 consists in adding a Boolean

flag in the memory of G that will be used to record whether a query originated
directly from the adversary or from the decryption oracle. The decryption oracle
tests this tag when accessing the memory of G: if the ciphertext queried is valid
and its random seed appeared in a previous decryption query, but not yet in
a direct query to G, the decryption oracle raises a flag bad1. We show that
this can happen with probability 2−k1 for any single query, since the random
seed is uniformly distributed and independent from the adversary’s view. In this
case, the decryption oracle can safely reject the ciphertext, as done in game G2

2.
The proof proceeds in two steps. We first show that game G2 is observationally
equivalent to game G1

2
using the relational invariant

LG〈1〉 = map (λ(r, (b, g)).(r, g)) LG〈2〉

where e〈1〉 (resp. e〈2〉) denotes the value that an expression e takes in the left
hand side (resp. right-hand side) program in an equivalence. Therefore,

Pr[G2 : bad] = Pr
[

G1

2 : bad
]

Game G2
2 is identical to G1

2, except that it rejects ciphertexts that raise the bad1
flag. Applying the Fundamental Lemma, we show that

Pr
[

G1

2 : bad
]

≤ Pr
[

G2

2 : bad
]

+ Pr
[

G2

2 : bad1
]

Our next goal is to show that answers to queries tagged as true can be resampled.
However, one cannot directly apply the logic of swapping statements at this stage
to resample these answers in G because flag bad1 is set on D and depends on
them. The solution is to introduce a new game G3

2 that sets another flag bad2

in the code of G instead of setting bad1 in the decryption oracle6. Flag bad2

is raised whenever the adversary queries G with the random seed of a valid
ciphertext previously submitted to the decryption oracle. We prove that games
G2
2
and G3

2
satisfy the relational invariant:

bad1〈1〉 =⇒ (bad2 ∨ φ)〈2〉

where the predicate φ is defined as

∃(d, c) ∈ LD. let (s, t) = f−1(sk, c), r = t⊕LH [s] in
r ∈ dom(LG) ∧ s ∈ dom(LH) ∧ fst(LG[r]) = false ∧ [s⊕ snd(LG[r])]k1

= 0k1

Therefore:

Pr
[

G2

2 : bad
]

+ Pr
[

G2

2 : bad1
]

≤ Pr
[

G3

2 : bad
]

+ Pr
[

G3

2 : bad2 ∨ φ
]

We now consider game G4
2
where oracle G resamples the answers to queries

previously sampled in the decryption oracle. As such answers are uniformly

6 As bad1 is not set anymore, we simplify the code of D by coalescing branches in the
innermost conditional.



Game G
1

2
G
2

2
:

LG,LH ,LD ← nil;
(pk, sk)← Kf ();
(m0,m1)← A1(pk);

b $← {0, 1};

r̂ $← {0, 1}
k0 ;

ŝ $← {0, 1}
k−k0 ;

ĥ← H(ŝ);

t̂← ĥ ⊕ r̂;
ĉ← f(pk, ŝ‖ t̂);
ĉdef ← true;

b← A2(pk, ĉ)

Oracle G(r) :
if r 6∈ dom(LG) then

if r = r̂ then

bad← true

g $← {0, 1}
k−k0 ;

LG[r]← (false, g)
else

(d, g)← LG[r];
LG[r]← (false, g)

return g

Oracle H(s) :
if s /∈ dom(LH ) then

h $← {0, 1}
k0 ;

LH [s]← h
else h← LH [s]
return h

Oracle D(c) :
if (ĉdef ∧ ĉ = c) ∨ qD < |LD | ∨ qD + qG < |LG|
then return ⊥
else

LD ← (ĉdef , c) :: LD; (s, t)← f−1(sk, c);
if s ∈ dom(LH) then

r ← t⊕H(s);
if r ∈ dom(LG) then

(d, g)← LG[r];
if d = true then

if [s⊕ g]k1 = 0k1 then

bad1 ← true;

return [s ⊕ g]n return ⊥
else return ⊥

else

if [s⊕ g]k1 = 0k1 then return [s⊕ g]n

else return ⊥
else

if r = r̂ then bad← true;

g $← {0, 1}
k−k0 ; LG[r]← (true, g);

return ⊥
else

r ← t⊕H(s);
if r 6∈ dom(LG) then

g $← {0, 1}
k−k0 ; LG[r]← (true, g);

return ⊥

Game G
3

2
G
4

2
G
5

2
:

LG,LH ,LD ← nil;
(pk, sk)← Kf ();
(m0,m1)← A1(pk);

b $← {0, 1};

r̂ $← {0, 1}
k0 ;

ŝ $← {0, 1}
k−k0 ;

ĥ← H(ŝ);

t̂← ĥ ⊕ r̂;
ĉ← f(pk, ŝ‖ t̂);
ĉdef ← true;

b← A2(pk, ĉ)

L← LG;
while L 6= nil do

(r, (b, g)) ← head(L);
if b = true then

g $← {0, 1}
k−k0 ;

LG[r]← (true, g)
L← tail(L)

Oracle G(r) :
if r 6∈ dom(LG) then

if r = r̂ then

bad← true

g $← {0, 1}
k−k0 ;

LG[r]← (false, g)
else

(d, g)← LG[r];
if d = true then

g $← {0, 1}
k−k0 ;

g $← {0, 1}
k−k0 ;

LG[r]← (false, g);
bad2 ← P (g, r)

return g

Oracle H(s) :
if s /∈ dom(LH ) then

h $← {0, 1}
k0 ;

LH [s]← h
else h← LH [s]
return h

Oracle D(c) :
if (ĉdef ∧ ĉ = c) ∨ qD < |LD | ∨ qD + qG < |LG|
then return ⊥
else

LD ← (ĉdef , c) :: LD; (s, t)← f−1(sk, c);
if s ∈ dom(LH) then

r ← t⊕H(s);
if r ∈ dom(LG) then

(d, g)← LG[r];
if d = true then return ⊥
else

if [s⊕ g]k1 = 0k1 then return [s⊕ g]n

else return ⊥
else

if r = r̂ then bad← true;

g $← {0, 1}
k−k0 ; LG[r]← (true, g);

return ⊥
else

r ← t⊕H(s);
if r 6∈ dom(LG) then

g $← {0, 1}
k−k0 ; LG[r]← (true, g);

return ⊥

P (g, r) def
= ∃(d, c) ∈ LD. let (s, t) = f−1(sk, c) in s ∈ dom(LH) ∧ r = t⊕ LH [s] ∧ [s⊕ g]k1 = 0k1

Fig. 3. Games in the transition from G2 to G3. Fragments of code inside a box appear
only in the game whose name is surrounded by the matching box.



distributed and independent from the adversary’s view, the logic for swapping
statements can be used to establish that this transformation preserves semantics.
Hence:

Pr
[

G3

2 : bad
]

+ Pr
[

G3

2 : bad2 ∨ φ
]

= Pr
[

G4

2 : bad
]

+ Pr
[

G4

2 : bad2 ∨ φ
]

Note that in order to prove semantic equivalence we need to resample the values
in LG associated to queries tagged as true—made by the D—at the end of the
game. Using the Failure Event Lemma of [7], we upper bound the probability of
bad2 ∨ φ in G4

2:

Pr
[

G4

2 : bad2 ∨ φ
]

≤
qD
2k1

We are now only interested in bounding bad, so we can remove as dead code the
fragment of code at the end of G4

2
that resamples values in LG, obtaining G5

2
,

and prove that
Pr

[

G4

2 : bad
]

= Pr
[

G5

2 : bad
]

We finally prove that game G5
2 is observationally equivalent to G3, in which

the code for the oracle G is reverted to its original form and the decryption
oracle no longer tampers with the memory of G. Thus,

Pr[G2 : bad] ≤ Pr
[

G5

2 : bad
]

+
qD
2k1

= Pr[G3 : bad] +
qD
2k1

⊓⊔

Comparison with the security bound in [27] Pointcheval obtains a slightly dif-
ferent bound:

ǫ′ ≥

(

ǫ

2
−

4qDqG + 2q2D + 4qD + 8qG
2k0

−
3qD
2k1

)

We marginally improve on this bound by reducing the coefficients. As previously
mentioned, the improvement stems from the transition from G2 to G3, where we
eliminate both calls to G, whereas only the second call is eliminated in [27].
In fact, eliminating both calls is not only useful to give a better bound, but
also essential for the correctness of the proof. Indeed, the transition from G3

to G4 would not be possible if D modified the memory of G. Concretely, the
justification of Equation (27) in [27] contains two minor glitches: firstly, the
remark “which just cancels r′ from LG” oversees the possibility of this removal
having an impact on future queries. Secondly, “the probability for r′ to be in LG

is less than qG/2
k0” oversees that the length of LG is upper bounded by qG+ qD

rather than qG, as the decryption oracle still adds values to LG; a correct bound
for this probability in [27] is (qG + qD)/2

k0 .

5 Perspectives

The CertiCrypt framework consists of over 30,000 lines of Coq. Less than 5%
of the development is part of the trusted base, covering the definition of the



semantics, of well-formed adversaries, and of probabilistic polynomial-time pro-
grams. The remaining 95% consist of proof tools, including the mechanization of
common program transformations, of observational equivalence and Relational
Hoare Logic, and of the Fundamental Lemma of Game-Playing. The logic of
swapping statements, and the Failure Event Lemma, that have been developed
specifically for the purpose of this proof, account for about 1,300 and 500 lines
of Coq, respectively.

The verifiable proof is over 10,000 lines of Coq scripts, and can be checked
fully automatically using Coq version 8.2pl1, the latest, as yet unreleased, version
of Audebaud and Paulin’s library of probabilities, and the current implementa-
tion of the CertiCrypt framework. Most importantly, less than 1% of the verifiable
proof needs to be trusted, namely the formal statement of Figure 1.

The structure of the formal proof is more fine grained than the outline of
Figure 2, and contains about 30 games. For example, just the transition from
GIND-CCA to G1 overviewed in Section 4 accounts for 10 games. Decomposing
transitions into intermediate games is mostly a matter of taste, but common
wisdom in formal proofs is to introduce many intermediate lemmas with short
proofs rather than a few lemmas with intricate proofs.

The overall proof was completed within about 6 man-months. While substan-
tial, and perhaps even a bit discouraging for a scientist without experience in
formal proofs, the effort required to complete the proof is reasonable in compari-
son with other large-scale formalization projects. Moreover, a significant amount
of work was devoted to pinpoint the details of the proof, and to find a means
to capture formally “independence from the adversary’s view”. We expect that
formalizing related proofs in the line of [4,13] would now be significantly faster.

Still, the time and expertise required for developing formal proofs currently
make verifiable security an exclusive option that might be considered for proving
standards, but that is otherwise too costly for cryptographers to use in their
own research. In an attempt to make verifiable security a reasonable (and we
believe profitable) alternative for the working cryptographer, we are building
dedicated proof engines to which most of the construction of a verifiable proof
could be delegated. Preliminary experiments suggest that most formalizations in
CertiCrypt, including our proof of OAEP and the proofs in [6,33], rely on relational
invariants that fall in a decidable fragment of predicate logic, and that can be
established through simple heuristics. We are currently developing a front-end
to CertiCrypt that extracts verifiable proofs from a proof sketch submitted by the
user consisting of a sequence of games and statements that justify transitions,
including relational invariants.

6 Related Work

The motivations behind verifiable security appear in Bellare and Rogaway’s sem-
inal article on code-based game-playing proofs [10], and in Halevi’s manifesto for
computer-aided cryptographic proofs [20]. However, the most extensive realiza-
tion of verifiable security to date is CertiCrypt [6], which has been used previously



to build verifiable security proofs of the existential unforgeability of FDH signa-
tures (both for the conventional and optimal bounds) and of semantic security
of OAEP. CertiCrypt is particularly suitable for formalizing proofs involving alge-
braic and number-theoretic reasoning, since in addition to automating common
techniques used in game-based cryptographic proofs, it gives access to the full
expressive power of the logic of Coq and to the many available libraries and
theories developed using it. There is a leap in complexity between the proof of
IND-CPA security of OAEP and the proof of IND-CCA security presented here.
Specifically, tools such as the Failure Event Lemma and the logic of swapping
statements were developed to tackle difficulties arising in some transitions in
the latter proof. In another attempt to build a system that supports verifiable
security, Backes, Berg and Unruh [3] formalize a language for games in the Is-

abelle proof assistant, and prove the Fundamental Lemma; however, no specific
example is reported. Nowak [25], and Affeldt, Marti and Tanaka [1] also report
on preliminary experiments with machine-checked proofs.

CryptoVerif [11] is a prover for exact security of cryptographic schemes and
protocols in the computational model; it has been used to verify Kerberos [12]
and the conventional bound of FDH [11]. CryptoVerif trades off generality for
automation, and consequently adopts a non-standard axiomatization of crypto-
graphic primitives based on term rewriting. As a result, sequences of games can
sometimes be inferred automatically; yet, at the same time, the connection be-
tween CryptoVerif proofs and standard cryptographic proofs is not as strong as
one would desire. Finally, CryptoVerif in its current form acts more like a proof
engine than a proof checker, and thus does not comply with the objective of
verifiable security—see however [17] for preliminary work on certifying success-
ful runs of CryptoVerif. Courant et al. [14] have also developed an automated
prover for proving asymptotic security of encryption schemes based on one-way
functions. Their prover is able to handle many schemes from the literature, but
it cannot handle OAEP. As CryptoVerif, their tool is a proof engine and does
not generate verifiable proofs. More recently, Barthe et al. [5] propose a com-
putationally sound logic to reason about cryptographic primitives. Their logic
captures many common reasoning steps in cryptographic proofs and has been
used to prove the exact security of PSS. There is no tool support for this logic.

Somehow surprisingly, Koblitz [23] recently published an article that vehe-
mently dismisses relying on computer-assisted proof building and proof checking.
While Koblitz rightfully points to some weaknesses of existing tools—e.g. lack of
automation and unduly verbosity—a closer look at the article reveals a fragmen-
tary knowledge of the state-of-the-art in machine-checked proofs, and a profound
misconception on the role of formal verification.

7 Conclusion

Verifiable security goes beyond provable security by providing independently ver-
ifiable evidence that proofs are correct. We used the Coq proof assistant to build
the first verifiable proof of IND-CCA security of OAEP. Our proof is a strong



indicator that proof assistants are mature enough to support the construction
of cryptographic proofs, and gives strong empirical evidence that dedicated tac-
tics could improve automation and reduce the length and development time of
formal proofs. Making verifiable security an appealing alternative for working
cryptographers is the next objective.
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4. M. Backes, M. Dürmuth, and D. Unruh. OAEP is secure under key-dependent

messages. In Advances in Cryptology – ASIACRYPT 2008, volume 5350 of Lecture
Notes in Computer Science, pages 506–523. Springer, 2008.

5. G. Barthe, M. Daubignard, B. Kapron, and Y. Lakhnech. Computational indis-
tinguishability logic. In 17th ACM Conference on Computer and Communications

Security, CCS 2010, New York, 2010. ACM.
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