
Programming Language Techniques for

Cryptographic Proofs⋆

Gilles Barthe1, Benjamin Grégoire2, and Santiago Zanella Béguelin1

1 IMDEA Software, Madrid, Spain, {Gilles.Barthe,Santiago.Zanella}@imdea.org
2 INRIA Sophia Antipolis - Méditerranée, France, Benjamin.Gregoire@inria.fr

Abstract. CertiCrypt is a general framework to certify the security of
cryptographic primitives in the Coq proof assistant. CertiCrypt adopts
the code-based paradigm, in which the statement of security, and the
hypotheses under which it is proved, are expressed using probabilistic
programs. It provides a set of programming language tools (observa-
tional equivalence, relational Hoare logic, semantics-preserving program
transformations) to assist in constructing proofs. Earlier publications of
CertiCrypt provide an overview of its architecture and main components,
and describe its application to signature and encryption schemes. This
paper describes programming language techniques that arise specifically
in cryptographic proofs. The techniques have been developed to complete
a formal proof of IND-CCA security of the OAEP padding scheme. In this
paper, we illustrate their usefulness for showing the PRP/PRF Switching
Lemma, a fundamental cryptographic result that bounds the probability
of an adversary to distinguish a family of pseudorandom functions from
a family of pseudorandom permutations.

1 Introduction

The goal of provable security [14] is to provide a rigorous analysis of crypto-
graphic schemes in the form of mathematical proofs. Provable security holds
the promise of delivering strong guarantees that cryptographic schemes meet
their goals and is becoming unavoidable in the design and evaluation of new
schemes. Yet provable security per se does not provide specific tools for man-
aging the complexity of proofs and as a result several purported security argu-
ments that followed the approach have been shown to be flawed. Consequently,
the cryptographic community is increasingly aware of the necessity of develop-
ing methodologies that systematize the type of reasoning that pervade crypto-
graphic proofs, and that guarantee that such reasoning is applied correctly. One
prominent method for achieving a high degree of confidence in cryptographic
proofs is to cast the security of a cryptographic scheme as a program verifi-
cation problem: concretely, this is achieved by formulating security goals and

⋆ This work was partially supported by French ANR SESUR-012, SCALP, Spanish
project TIN2009-14599 DESAFIOS 10, Madrid Regional project S2009TIC-1465
PROMETIDOS, and Microsoft Research-INRIA Joint Centre.

hypotheses in terms of the semantics of probabilistic programs, and by defin-
ing the adversarial model in terms of a class of programs, e.g. probabilistic
polynomial-time programs. The code-based approach leads to statements that
are unambiguous and amenable to formalization. Yet, standard methods to ver-
ify programs (e.g. in terms of program logics) are ineffective to address the kind
of verification goal that arises from cryptographic statements. The game-based
approach [5, 13] is an alternative to standard program verification methods that
establishes the verification goal through successive transformations of the pro-
gram and the goal. In a nutshell, the game-based approach proceeds by per-
forming a sequence of transformations of the form G, A →h G′, A′, where G
and G′ are probabilistic programs, A and A′ are events, and h is a monotonic
function such that PrG[A] ≤ h(PrG′ [A′]). When the security of a scheme is ex-
pressed as an inequality PrG0

[A0] ≤ p, it can be proved by exhibiting a sequence
of transformations G0, A0 →

h1 G1, A1 → · · · →hn Gn, An and proving that
h1 ◦ · · · ◦ hn(PrGn

[An]) ≤ p.

CertiCrypt [3] is a fully machine-checked framework built on top of the Coq
proof assistant [15] to help constructing and verifying game-based cryptographic
proofs. An ancillary goal of CertiCrypt is to isolate and formalize precisely the
reasoning principles that underlie game-based proofs and to automate their ap-
plication. While many proof steps use standard reasoning principles based on
observational equivalence and semantics-preserving program transformations,
some essential techniques arise only in cryptographic proofs. The goal of this
article is to present two such techniques and to illustrate their usefulness. The
first technique is based on failure events and allows to formalize non-semantics-
preserving transformations. It applies to transitions of the form G, A→h G′, A,
where G and G′ behave identically unless a certain failure event bad occurs, and
thus h(p) = p + PrG[bad] (i.e. PrG[A] ≤ PrG′ [A] + PrG[bad]). The second tech-
nique uses interprocedural code motion to place upfront random choices made in
games or, dually, to defer them until later in the game. These transformations,
called eager and lazy sampling respectively, are widely used in proofs in the
Random Oracle Model [4]. Both techniques are discussed in [3], but the present
paper considerably extends their scope. Concretely, we complement the Funda-
mental Lemma of [3], that bounds the difference in the probability of events in
two games that behave identically until failure, with a Failure Event Lemma
that allows to bound the probability of failure. In order to establish the Fail-
ure Event Lemma, we introduce a notion of judgment that upper bounds the
probability of an event after executing a program in terms of the probability
of an event prior to execution. Moreover, we considerably clarify the eager/lazy
sampling methodology using a logic for swapping program statements. The logic
overcomes some limitations that hamper the application of the technique as it
was described in [3].

Both extensions were required to prove the IND-CCA security of the OAEP
padding scheme [8], for which the results of [3] did not suffice. As the complexity
of this proof would prevent us from illustrating the techniques we used, we
consider instead a simpler motivating example, namely the PRP/PRF Switching

Lemma, a fundamental cryptographic result that bounds the probability of an
adversary to distinguish a family of pseudorandom functions from a family of
pseudorandom permutations.

2 Motivating Example: the PRP/PRF Switching Lemma

Pseudorandom functions (PRF) and pseudorandom permutations (PRP) are
two idealized primitives that play a central role in the design of symmetric-key
systems. Although the most natural assumption to make about a blockcipher is
that it behaves as a pseudorandom permutation, most commonly the security of
a system based on a blockcipher is analyzed by replacing the blockcipher with a
perfectly random function. The PRP/PRF Switching Lemma [10, 5] fills the gap:
given a bound for the security of a blockcipher as a pseudorandom permutation,
it gives a bound for its security as a pseudorandom function.

Suppose you give an adversary black-box access to either a random function
or a random permutation, and you ask her to tell you which is the case. For
the sake of concreteness let us assume the domain of the permutation (and
the domain and range of the function) is {0, 1}ℓ. No matter what strategy the
adversary follows, due to the birthday problem, after roughly 2ℓ/2 queries to the
oracle she will be able to tell in which scenario she is with a high probability. If
the oracle is a random function, a collision is almost sure to occur, whereas it
could not occur when the oracle is a random permutation. The birthday problem
gives a lower bound for the advantage of the adversary. The PRP/PRF Switching
Lemma gives an upper bound. In a code-based setting, its formulation is given
in terms of two games GRP and GRF, that give the adversary access to an oracle
that represents a random permutation and a random function, respectively:

Game GRP :
L← []; b← A()

Oracle O(x) :
if x 6∈ dom(L) then

y $← {0, 1}ℓ \ ran(L);
L ← (x, y) :: L

return L(x)

Game GRF :
L ← []; b← A()

Oracle O(x) :
if x 6∈ dom(L) then

y $← {0, 1}ℓ;
L← (x, y) :: L

return L(x)

where the instruction y $← {0, 1}ℓ \ ran(L) samples uniformly a bitstring of
length ℓ that is not in the range of the association list L, thus ensuring that
oracle O implements an injective—and therefore bijective—function. Formally,
the instruction y $← {0, 1}ℓ\ran(L) may be implemented by repeatedly sampling
a bitstring until the result does not belong to ran(L).

Lemma 1 (PRP/PRF switching lemma). Let A be an adversary with black-

box access to an oracle O implementing either a random permutation on {0, 1}ℓ

as in game GRP or a random function from {0, 1}ℓ to {0, 1}ℓ as in game GRF.

Suppose, in addition, that A makes at most q > 0 queries to its oracle. Then,

|PrGRP
[b = 1]− PrGRF

[b = 1]| ≤
q(q − 1)

2ℓ+1
(1)

The standard proof of the PRP/PRF Switching Lemma is due to Impagliazzo
and Rudich [10, Theorem 5.1]. Bellare and Rogaway [5] report a subtle error
in the reasoning of [10] and provide a counterexample. They give a game-based
proof of the PRP/PRF Switching Lemma under the additional assumption that
the adversary never asks the same oracle query twice. Their proof uses the Fun-
damental Lemma (Sec. 4) to bound the advantage of the adversary by the prob-
ability of a failure event, but their justification of the bound on the probability
of failure remains informal.

Shoup [13, Section 5.1] gives another game-based proof of the lemma under
the assumption that the adversary makes exactly q distinct queries. In his proof,
the challenger acts as an intermediary between the oracle and the adversary.
Rather than the adversary calling the oracle at her discretion, it is the challenger
who calls the adversary to get a query and who forwards it to the oracle. There
is probably nothing wrong with this formulation, but we feel that it imposes
unnecessary restrictions on the form of the adversary and hinders understanding.

The PRP/PRF Switching Lemma has been formalized previously. Affeldt,
Tanaka and Marti [1] present a formalization of a game-based proof of the
PRP/PRF Switching Lemma in Coq. What they prove in reality is a simplified
variant that only holds for non-adaptive and deterministic adversaries. They for-
malize adversaries as purely deterministic mathematical functions that take a
natural number and return an element in the domain of its oracle (a query). This
implies that the queries the adversary makes do not depend on the responses to
previous queries or on any random choices. The authors also report on a formal-
ization in CertiCrypt [3]; Sec. 6 presents two significantly simplified proofs that
use the programming language techniques developed in this paper.

3 A Language for Cryptographic Games

Games are formalized as programs in pWhile, a probabilistic imperative lan-
guage with procedure calls. For the purpose of this exposition, we restrict random
sampling to uniform distributions over a set T of base types. We let V be a set of
variable identifiers3 and P be a set of procedure identifiers. The set of commands
is defined inductively by the clauses:

I ::= V ← E assignment
| V $← T random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

C ::= nil nop
| I; C sequence

3 Variables are partitioned into local and global variables. We will sometimes ignore
this distinction to avoid cluttering the presentation. We use a bold face to typeset
global variables in games.

where we assume that the set E of expressions has been previously defined.
Moreover, we assume given a function fv : E → list V that computes the set of
free variables of an expression.

A program (or game) consists of a command and an environment, which maps
a procedure identifier to its declaration, consisting of its formal parameters, its
body, and a return expression4

declaration
def
= {params : list V ; body : C; re : E}

The language is deeply embedded in Coq, so one can define programs with holes
by parametrizing them by program variables of type C (holes may appear in the
main command or in the body of procedures in the environment). In particular,
adversaries may be represented as procedures whose whole body is modeled as
a variable of type C.

In order to reason about games in the presence of unknown adversaries, we
must specify an interface for adversaries, and construct proofs under the as-
sumption that adversaries are well-formed against their specification. Assuming
that adversaries respect their interface provides us with an induction principle
to reason over all (well-formed) adversaries. We make an extensive use of the in-
duction principle: each time a proof system is introduced, the principle allows us
to establish proof rules for adversaries. Likewise, each time we implement a pro-
gram transformation, the induction principle allows us to prove the correctness
of the transformation for programs that contain procedure calls to adversaries.

Formally, the interface of an adversary consists of a triple (F ,RW ,RO),
where F is the set of procedures that the adversary may call, RW the set of
variables that it may read and write, andRO the set of variables that it may only
read. We say that an adversary A with interface (F ,RW ,RO) is well-formed in
an environment E if the judgment ⊢wf A can be derived from the rules in Fig. 1.
For convenience, we allow adversaries to call procedures outside F , but these
procedures must themselves respect the same interface. Note that the rules are
generic, only making sure that the adversary makes a correct usage of variables
and procedure calls. In particular, they do not aim to impose restrictions that
are specific to a particular game, such as the number of calls that an adversary
can make to an oracle, or the conditions under which an oracle can be called,
or the computational complexity of the adversary. These additional assumptions
on adversaries may be specified independently (e.g. by instrumenting games).

3.1 Semantics

Programs in pWhile are given a continuation-passing style semantics using the
measure monad M , whose type constructor is defined as

M(X) def
= (X → [0, 1])→ [0, 1]

4 The formalization uses single-exit procedures. For readability, all examples are pre-
sented in a more traditional style, and use an explicit return statement.

I ⊢wf nil :I
I ⊢wf i :I ′ I ′ ⊢wf c :O

I ⊢wf i; c :O

writable(x) fv(e) ⊆ I

I ⊢wf x← e :I ∪ {x}

writable(x)

I ⊢wf x $← T :I ∪ {x}

fv(e) ⊆ I I ⊢wf ci :Oi, i = 1, 2

I ⊢wf if e then c1 else c2 :O1 ∩ O2

fv(e) ⊆ I I ⊢wf c :I

I ⊢wf while e do c :I

fv(e) ⊆ I writable(x) p ∈ F

I ⊢wf x← p(e) :I ∪ {x}

fv(e) ⊆ I writable(x) p 6∈ F ⊢wf p

I ⊢wf x← p(e) :I ∪ {x}

RW ∪RO ∪ A.params ⊢wf A.body :O fv(A.re) ⊆ O

⊢wf A
writable(x) def

= local(x) ∨ x ∈ RW

Fig. 1. Rules for well-formedness of an adversary against interface (F ,RW ,RO). A
judgment of the form I ⊢wf c : O can be read as follows: assuming variables in I may
be read, the adversarial code fragment c respects the interface, and after its execution
variables in O may be read. Thus, if I ⊢wf c :O, then I ⊆ O.

The operators unit and bind of the monad are defined as follows:

unit : X →M(X) def
= λx. λf. f x

bind : M(X)→ (X →M(Y))→M(Y) def
= λµ. λF. λf. µ(λx. F x f)

Expressions are deterministic; an expression e of type T is interpreted by a func-
tion JeK : M→ JT K, where JT K is the interpretation of T . The denotation of a
game G is given by the function JGK :M→M(M), that relates an initial mem-
ory m ∈ M to the expectation operator of the (sub) probability distribution of
final memories resulting from its execution. This allows to define the probability
of an event A in a game G and an initial memory m in terms of its characteris-
tic function 11A, as PrG,m[A] def

= JGK m 11A. Thus, in this monadic semantics a
probabilistic event is nothing but a continuation. We refer the interested reader
to [3] for a more detailed account of the semantics.

3.2 Notations

Let X be a set of variables, m1, m2 ∈M and f1, f2 :M→ [0, 1], we define

m1 =X m2
def
= ∀x ∈ X. m1(x) = m2(x)

f =X g def
= ∀m1 m2. m1 =X m2 =⇒ f(m1) = g(m2)

Let P be a predicate on X and let µ : M(X) be a distribution over X , then
every value x ∈ X with positive probability w.r.t µ satisfies P when

range P µ def
= ∀f. (∀x.P x =⇒ f x = 0) =⇒ µ f = 0

Our logics often use modify clauses; the statement modify(E, c, X) expresses
that only variables in X are modified by the command c in environment E.
Semantically,

modify(E, c, X) def
= ∀m. range (λm′. m =V\X m′) (JE, cK m)

Finally, for a Boolean-valued expression e, we let 〈e〉i denote the binary relation
λm1 m2. JeK mi = true.

3.3 Observational Equivalence and Relational Hoare Logic

CertiCrypt formalizes an equational theory of observational equivalence that al-
lows to prove that program fragments are semantically equivalent. We say that
two games G1, G2 are observationally equivalent w.r.t. an input set of variables
I and an output set of variables O, when

⊢ G1 ≃
I
O G2

def
=

∀m1 m2. m1 =I m2 =⇒ ∀f1 f2. f1 =O f2 =⇒ JG1K m1 f1 = JG2K m2 f2

Observational equivalence provides a useful tool to reason about probabilities.
Assume that A is an event (i.e. a map from memories to Booleans) whose value
only depends on a set of variables O, i.e. 11A =O 11A. If ⊢ G1 ≃

I
O G2, then for

every pair of memories m1 and m2 such that m1 =I m2, we have

PrG1,m1
[A] = PrG2,m2

[A] (2)

When I = O = V , ⊢ G1 ≃
I
O G2 boils down to the semantic equivalence of both

games, which we write as G1 ≡ G2.
Observational equivalence, however, is not enough to justify some context-

dependent program transformations. In order to prove the correctness of such
transformations, we need to generalize observational equivalence to a full-fledged
Relational Hoare Logic that considers arbitrary binary relations on memories
(and not just equality on a subset of variables). This logic deals with judgments
of the form

⊢ G1 ∼ G2 : Ψ ⇒ Φ def
= ∀m1 m2. m1 Ψ m2 =⇒ JG1K m1 ∼Φ JG2K m2

where the relation ∼Φ is a lifting of relation Φ to distributions, defined as:

µ1 ∼Φ µ2
def
= ∃µ. π1(µ) = µ1 ∧ π2(µ) = µ2 ∧ range Φ µ

where π1 and π2 are the projections that map a distribution over A × B to a
distribution over A and B, respectively:

π1(µ) def
= bind µ (λ(x, y).unit x) π2(µ) def

= bind µ (λ(x, y).unit y)

For an overview of the rules of the relational logic we refer the reader to [3].

4 Failure Events

One common technique to justify a lossy transformation G, A → G′, A, where
PrG[A] 6= PrG′ [A] is to annotate both games with a fresh Boolean flag bad that

is set whenever the code of the games differ. Consider for example the following
two program snippets and their annotated versions:

s def
= if e then c1; c else c2 sbad

def
= if e then c1; bad← true; c else c2

s′ def
= if e then c1; c

′ else c2 s′bad
def
= if e then c1; bad← true; c′ else c2

If we ignore the variable bad, s and sbad, and s′ and s′bad, respectively, are ob-
servationally equivalent. Moreover, sbad and s′bad behave identically unless bad is
set. Thus, the difference of the probability of an event A in a game G containing
the program fragment s and a game G′ containing s′ instead can be bounded
by the probability of bad being set in either sbad or s′bad, provided variable bad

is initially set to false.

Lemma 2 (Fundamental Lemma). For any pair of games G, G′ and events

A, A′ and F :

PrG[A ∧ ¬F] = PrG′ [A′ ∧ ¬F] =⇒ |PrG[A]−PrG′ [A′]| ≤ max(PrG[F], PrG′ [F])

To apply the Fundamental Lemma, we developed a syntactic criterion to dis-
charge its hypothesis for the particular case where A = A′ and F = bad. The hy-
pothesis can be automatically established by inspecting the code of both games:
it holds if their code differs only after program points setting the flag bad to true,
and bad is never reset to false afterwards. Note also that if both games terminate,
then PrG[bad] = PrG′ [bad], and that if, for instance, game G′ terminates with
probability 1, it must be the case that PrG[bad] ≤ PrG′ [bad].

4.1 A Logic for Bounding the Probability of Failure

Many steps in game-based proofs require to provide an upper bound for the ex-
pectation of some function g after the execution of a command c (throughout this
section, we assume a fixed environment E that we omit from the presentation).
This is typically the case when applying the Fundamental Lemma presented in
the previous section: we need to bound the probability of the failure event bad

(equivalently, the expected value of its characteristic function 11bad). An upper
bound for a function (λm.JcK m g) is a function f such that ∀m.JcK m g ≤ f m.
We note this as a triple JcKg � f ,

⊢ JcKg � f def
= ∀m.JcK m g ≤ f m

Figure 2 gathers some rules for proving the validity of such triples. The rule
for adversary calls assumes that f depends only on variables that the adversary
cannot modify directly (but that she may modify through oracle calls, of course).
The correctness of this rule is proved using the induction principle for well-formed
adversaries together with the rest of the rules of the logic.

The rules bear some similarity with the rules of Hoare Logic. However, there
are some subtle differences. For example, the premises of the rules for branching
statements do not consider guards. The rule

⊢ Jc1Kg � f|e Jc2Kg � f|¬e

Jif e then c1 else c2Kg � f

⊢ JnilKf � f
f = λm. g(m{x := JeK m})

⊢ Jx← eKg � f

f = λm.|JT K|−1
P

t∈JTK g(m{x := t})

⊢ Jx $← T Kg � f

⊢ Jc1Kg � f Jc2Kh � g

⊢ Jc1; c2Kh � f

⊢ Jc1Kg � f Jc2Kg � f

⊢ Jif e then c1 else c2Kg � f

⊢ JcKf � f

⊢ Jwhile e do cKf � f

⊢ g ≤ g′ JcKg′ � f ′ f ′ ≤ f

⊢ JcKg � f

⊢ Jp.bodyKg � f f =X f g =Y g x 6∈ (X ∪ Y)

⊢ Jx← p(e)Kg � f

⊢wf A ∀p ∈ F . ⊢ Jp.bodyKf � f f =X f X ∩ ({x} ∪ RW) = ∅

⊢ Jx← A(e)Kf � f

f =I f ⊢ c ≃I

O c′ g =O g ⊢ Jc′Kg � f

⊢ JcKg � f

Fig. 2. Selected rules of a logic for bounding events.

where f|e is defined as (λm. if JeKm then f(m) else 0) can be derived from the
rule for conditionals statements by two simple applications of the “rule of conse-
quence”. Moreover, the rule for conditional statements is incomplete: consider a
statement of the form Jif true then c1 else c2Kg � f such that Jc1Kg � f is valid,
but not Jc2Kg � f ; the triple Jif true then c1 else c2Kg � f is valid, but to derive
it one needs to resort to observational equivalence. More general rules exist, but
we have not formalized them since we did not need them in our proofs. More
generally, It seems possible to make the logic complete, at the cost of considering
more complex statements with preconditions on memories.

Discussion. The differences between the above triples and those of Hoare logic
are inherent to their definition, which is tailored to provide an upper bound for
the probability of an event after executing a command. Nevertheless, the validity
of a Hoare triple {A}c{B} (in which pre and postconditions are Boolean-valued
predicates) is equivalent to the validity of the triple JcK11¬B � 11¬A.

There exists a dual notion of triple JcKg � f whose validity is defined as:

⊢ JcKg � f def
= ∀m.JcK m g ≥ f m

This dual notion allows to express termination of a program as JcK11true � 11true.
Moreover, there exists an embedding of Hoare triples, mapping {P}c{Q} to
JcK11Q � 11P . The embedding does not preserve validity for non-terminating
programs (under the partial correctness interpretation). Consider a program c
that never terminates: we have {true}c{false}, but not JcK11false � 11true because
for every m ∈ M, we have JcK m 11false = 0 and 11true(m) = 1.

4.2 Automation

In most applications of Lemma 2, the failure event can only be triggered by oracle
calls. Typically, the flag bad that signals failure is set in the code of an oracle for

which an upper bound for the number of queries made by the adversary is known.
The following lemma provides a general method for bounding the probability of
failure under such circumstances.

Lemma 3 (Failure Event Lemma). Consider a game G that gives adver-

saries access to an oracle O. Let P, F be predicates over memories, and let

h : N → [0, 1] be such that F does not depend on variables that can be written

outside O, and for any memory m,

P (m) =⇒ range (JO.bodyK m) (λm′.JcntrK m < JcntrK m′)
¬P (m) =⇒ range (JO.bodyK m) (λm′.F m′ = F m ∧ JcntrK m = JcntrK m′)
¬F (m) =⇒ PrO.body,m[F] ≤ h(JcntrK m)

Intuitively, P indicates whether a call would increment the counter, failure F
only occurs in calls incrementing the counter, and h bounds the probability of

failure in a single call.

Then, for any initial memory m satisfying ¬F (m) and JcntrK m = 0,

PrG,m[F ∧ cntr ≤ q] ≤

q−1
∑

i=0

h(i)

Proof. Define f :M→ [0, 1] as follows

f(m) def
=















0 if JcntrK m > q

11F (m) + 11¬F (m)

q−1
∑

i=JcntrKm

h(i) if JcntrK m ≤ q

We show that JGKf � f by structural induction on the code of G using the rules
of the logic presented in the previous section. We first prove that O satisfies the
triple JO.bodyKf � f ; we must show that for every m, JO.bodyK m f ≤ f(m).
This is trivial when ¬P (m), because we have

JO.bodyK m f = f(m) (JO.bodyK m 11true) ≤ f(m)

When P (m) and JcntrK m ≥ q, this is trivial too, because O.body increments
cntr and the left hand side becomes 0. We are left with the case where P (m)
and JcntrK m < q. If F (m), the right hand side is equal to 1 and the inequality
holds. Otherwise, we have from the hypotheses that

JO.bodyK m f ≤ JO.bodyK m



λm′.11F (m′) + 11¬F (m′)

q−1
∑

i=JcntrKm′

h(i)





≤ PrO.body,m[F] + JO.bodyK



λm′.11¬F (m′)

q−1
∑

i=JcntrKm+1

h(i)





≤ h(JcntrKm) + (JO.bodyK m 11¬F)

q−1
∑

i=JcntrKm+1

h(i) ≤

q−1
∑

i=JcntrKm

h(i)

Using the rules in Fig. 2, we can then extend this result to adversary calls and
to the rest of the game, showing that JGKf � f .

Finally, let m be a memory such that ¬F (m) and JcntrK m = 0. It follows
immediately from JGKf � f that

PrG,m[F ∧ cntr ≤ q] ≤ JGK m f ≤ f(m) =

q−1
∑

i=0

h(i) ⊓⊔

When failure is defined as the probability of a flag bad being set by an oracle
and the number of queries the adversary makes to this oracle is upper bounded
by q, the above lemma can be used to bound the probability of failure by taking
F = bad and defining h suitably. In most practical applications (e.g. security of
OAEP) h is a constant function; the proof of Lemma 1 given in Sec. 6.2 is an
exception for which the full generality of the lemma is needed.

5 Eager and Lazy Sampling

Game-based proofs commonly include bridging steps in which one performs a
semantics-preserving reordering of instructions. On most occasions, the reorder-
ing is intraprocedural. However, proofs in the random oracle model (see Olazy in
Fig. 4 for an example of a random oracle) often use interprocedural code motion,
in which sampling statements are moved from an oracle to the main command
of the game or, conversely, from the main command to an oracle. The first trans-
formation, called eager sampling, is useful for moving random choices upfront:
a systematic application of eager sampling allows to transform a probabilistic
game G that samples at most a fixed number of values into a semantically equiv-
alent game S; G′, where S samples the values that might be needed in G, and
G′ is a completely deterministic program to the exception of adversaries that
might still make their own random choices.5 The second, dual, transformation,
called lazy sampling, is useful to postpone sampling of random values until these
values are actually used for the first time.

CertiCrypt features tactics that allow to perform and justify both intra and
interprocedural code motion. The tactic for intraprocedural code motion is de-
scribed in [3]. In this section, we present a general method to prove the correct-
ness of interprocedural code motion. The method is based on a logic for swapping
statements, and overcomes many limitations of our earlier lemma reported in [3].
A first limitation of our earlier lemma is that it only allowed to swap one ran-
dom sampling at the time, whereas some applications, including the PRP/PRF
Switching Lemma, require swapping a sequence of random samplings. Another
limitation of our earlier method is that it could not be used for proving that
some queries to a random oracle O are uniformly distributed and independent
from the view of the adversary, as needed in the proof of IND-CCA of OAEP.

5 Making adversaries deterministic is the goal of the coin fixing technique, as described
in [5]; formalizing this technique is left for future work.

5.1 A Logic for Swapping Statements

The primary tool for performing eager/lazy sampling is an extension of the
Relational Hoare Logic with rules for swapping statements. As the goal is to move
code across procedures, it is essential that the logic considers two potentially
different environments E and E′. The logic deals with judgments of the form

⊢ E, (c; S) ∼ E′, (S; c′) : Ψ ⇒ Φ

In most cases, the logic will be applied with S being a sequence of (guarded) sam-
pling statements; however, the logic does not constrain S, and merely requires
that S satisfies three basic properties:

modify(E, S, X) modify(E′, S, X) ⊢ E, S ≃I∪X
X E′, S

for some sets of variables X and I. Some rules of the logic are given in Fig. 3;
for the sake of readability, all rules are specialized to ≡, although we formalized
more general versions of the rules, e.g. for conditional statements

⊢ E, c1; S ∼ E′, S; c′1) : P ∧〈e〉1 ⇒ Q ⊢ E, c2; S ∼ E′, S; c′2 : P ∧〈¬e〉1 ⇒ Q

P ⇒ 〈e〉1 = 〈e′〉2 ⊢ E′, S ∼ E′, S : = ∧〈e′〉1 ⇒ = ∧〈e′〉1
⊢ E, (if e then c1 else c2; S) ∼ E′, (S; if e′ then c′1 else c′2) : P ⇒ Q

which is used in the application considered in the next section.

5.2 Application

Consider the games Glazy and Geager in Fig. 4. Suppose that our goal is to provide
an upper bound of the probability of an event A in game Glazy and that the proof
proceeds by eagerly sampling the value that the oracle O returns in response for
a particular query x̂. Define

Sŷ
def
= if x̂ 6∈ dom(L) then ŷ $← T else ŷ ← L(x̂)

and take I = {x̂, L} and X = {ŷ}. We have that

⊢ Elazy, c; Sŷ ≡ Eeager, Sŷ; c =⇒ PrGlazy
[A] = PrGeager

[A]

Thus, in order to move from game Glazy to game Geager, it is enough to prove
the commutation property on the left of the implication. This, in turn, requires
showing that

⊢ Elazy,Olazy.body; Sŷ ≡ Eeager, Sŷ;Oeager.body

which can be achieved by applying the rules of the logic for swapping statements
and the relational Hoare logic.

x 6∈ I ∪X fv(e) ∩X = ∅

⊢ E, (x← e; S) ≡ E′, (S; x← e)

x 6∈ I ∪X

⊢ E, (x $← T ;S) ≡ E′, (S; x $← T)

⊢ E, (c1; S) ≡ E′, (S; c′1) ⊢ E, (c2; S) ≡ E′, (S; c′2)

⊢ E, (c1; c2; S) ≡ E′, (S; c′1; c
′

2)

⊢ E, (c1; S) ≡ E′, (S; c′1) ⊢ E, (c2; S) ≡ E′, (S; c′2) fv(e) ∪X = ∅

⊢ E, (if e then c1 else c2; S) ≡ E′, (S; if e then c′1 else c′2)

⊢ E, (c; S) ≡ E′, (S; c′) fv(e) ∪X = ∅

⊢ E, (while e do c; S) ≡ E′, (S;while e do c′)

⊢ E, (fE .body; S) ≡ E′, (S; fE′ .body) fE .params = fE′ .params fE .re = fE′ .re

fv(fE .re) ∩X = ∅ x 6∈ I ∪X fv(e) ∩X = ∅

⊢ E, (x← f(e); S) ≡ E′, (S; x← f(e))

⊢wf A X ∩ (RW ∪RO) = ∅ I ∩RW = ∅ ∀f 6∈ F . fE = fE′

∀f ∈ F . fE .params = fE′ .params ∧ fE.re = fE′ .re ∧

⊢ E, (fE .body; S) ≡ E′, (S; fE′ .body)

⊢ E, (x← A(e); S) ≡ E′, (S; x← A(e))

Fig. 3. Selected rules of a logic for swapping statements.

6 Proofs of the PRP/PRF Switching Lemma

We have formalized two proofs of the Switching lemma: both use the Funda-
mental Lemma to bound the advantage of the adversary by the probability of
a failure event. The first proof uses the eager sampling technique to bound the
probability of failure, whereas the second one relies on the Failure Event Lemma.

We begin by introducing in Fig. 5 annotated versions Gbad
RP and Gbad

RF of the
games GRP and GRF defined in Sec. 2. From Lemma 2, we readily have

∣

∣

∣
PrGRP

[b = 1]− PrGRF
[b = 1]

∣

∣

∣
=

∣

∣

∣
PrGbad

RP
[b = 1]− PrGbad

RF
[b = 1]

∣

∣

∣
≤ PrGbad

RF
[bad]

6.1 A Proof Based on Eager Sampling

We make a first remark: the probability of bad being set in game Gbad
RF is bounded

by the probability of having a collision in ran(L) at the end of the game. Let us
write this latter event as col(L). We prove this by showing that bad =⇒ col(L)
is an invariant of the game by means of the mechanized relational logic.

Using the logic for swapping statements, we modify the oracle in Gbad
RF so that

the responses to the first q queries are instead chosen at the beginning of the
game and stored in a list Y , thus obtaining the equivalent eager version G

eager
RF

shown in Fig. 5. Each time a query is made, the oracle pops a value from list Y

and gives it back to the adversary as the response.

Game Glazy :
L ← []; c

Oracle Olazy(x) :
if x /∈ dom(L) then

y $← T ;
L← (x, y) :: L

else y ← L(x)
return y

Game Geager :
L← []; ŷ $← T ; c

Oracle Oeager(x) :
if x /∈ dom(L) then

if x = x̂ then y ← ŷ else y $← T ;
L ← (x, y) :: L

else y ← L(x)
return y

Fig. 4. An example of eager sampling using interprocedural code motion.

Game Gbad
RP :

L← []; b← A()

Oracle O(x) :
if x 6∈ dom(L) then

y $← {0, 1}ℓ;
if y ∈ ran(L) then

bad← true;

y $← {0, 1}ℓ \ ran(L)
L ← (x, y) :: L

return L(x)

Game Gbad
RF :

L← []; b← A()

Oracle O(x) :
if x 6∈ dom(L) then

y $← {0, 1}ℓ;
if y ∈ ran(L) then

bad← true

L← (x, y) :: L

return L(x)

Game G
eager
RF :

L ← []; S; b← A()

Oracle O(x) :
if x 6∈ dom(L) then

if 0 < |Y | then

y ← hd(Y);
Y ← tl(Y)

else y $← {0, 1}ℓ

L← (x, y) :: L

return L(x)

S def
= Y ← []; while |Y | < q do y $← {0, 1}ℓ; Y ← Y ++ [y]

Fig. 5. Games used in the proofs of the PRP/PRF Switching Lemma.

By using the rules of the logic for swapping statements, we show that the
call b ← A() swaps with S. Since the initialization code S terminates and does
not modify L, we can conclude that

PrGbad
RF

[col(L)] = PrGbad
RF

;S[col(L)] = PrGeager

RF
[col(L)]

We prove using the Relational Hoare Logic that having a collision in the range of
L at the end of this last game is the same as having a collision in Y immediately
after executing S. We conclude that the bound in Eq. (1) holds by analyzing
the loop in S. Observe that if there are no collisions in Y in a memory m, the
probability of sampling a colliding value in the remaining loop iterations is

PrS,m[∃i, j ∈ N, i < j < q ∧ Y [i] = Y [j]] =

q−1
∑

i=|Y |

i

2ℓ

This is proved by induction on (q − |Y |).

Remark The proof reported in [3] uses a similar sequence of games. The sole
difference is in the application of eager sampling. Here we do it in one step,

whereas the earlier version uses induction. The new proof is both simpler and
shorter (about 400 lines of Coq compared to the 900 lines of the former proof).

6.2 A Proof Based on Bounding Triples

The bound in Eq. 1 follows from a direct application of Lemma 3. It suffices to
take P = x 6∈ dom(L), F = bad, h(i) = i 2−ℓ, and cntr = |L|. If bad is initially
set to false in memory m, we have

PrGbad
RF

,m[bad] = Prb←A(),m{L:=[]}[bad]

= Prb←A(),m{L:=[]}[bad ∧ |L| ≤ q] ≤

q−1
∑

i=0

h(i) =
q(q − 1)

2ℓ+1

The second equation holds because A does not make more than q queries to
oracle O; the last inequality is obtained from Lemma 3. We use the logic in Fig. 2
to bound the probability of bad being set in one call to the oracle by |L|/2−ℓ,
as required by the Failure Event Lemma. The resulting proof is considerably
shorter compared to the one presented in the previous section (only about 100
lines of Coq).

7 Related Work

We refer to [3] for an overview of papers that apply proof assistants to cryptogra-
phy, and that focus on programming language techniques akin to those described
in this paper. The first line of work is concerned with reasoning about proba-
bilistic programs. Several program logics have been studied in the literature, see
e.g. [7, 12], and some authors have developed machine-checked frameworks to
reason about randomized algorithms. Hurd et al [9] report on a formalization of
the logic of [12], and on several applications. Aubebaud and Paulin [2] present
another framework, which provides the library of probabilities upon which Cer-

tiCrypt is built. The second line of work is concerned with certified program
transformations. Over the last few years, certified optimizing compilers have
become a reality, see e.g. [11]. In the course of these efforts, many program
transformations have been certified, including lazy code motion [16]. There is a
similarity between lazy code sampling and rematerialization [6]—an optimiza-
tion that recomputes a value instead of loading it from memory—and it would
be interesting to see whether the method developed in this paper could prove
useful to build a translation validator for the former.

8 Conclusion

The game-based approach to cryptographic proofs routinely uses a number of
unusual programming language techniques. In this paper we report on the cer-
tification and automation of two such techniques, namely failure events, and

eager/lazy sampling. Both techniques have been used extensively to successfully
provide a machine-checked proof of IND-CCA security of the OAEP padding
scheme. Our ultimate goal is to provide a comprehensive coverage of the tech-
niques used by cryptographers, and to turn CertiCrypt into an effective platform
for verifying a wide range of cryptographic proofs.

References

1. Affeldt, R., Tanaka, M., Marti, N.: Formal proof of provable security by game-
playing in a proof assistant. In: Proceedings of International Conference on Prov-
able Security. Volume 4784 of LNCS., Springer-Verlag (2007) 151–168

2. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci-
ence of Computer Programming 74(8) (2009) 568–589

3. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based
cryptographic proofs. In: Proceedings of the 36th ACM Symposium on Principles
of Programming Languages, ACM Press (2009) 90–101

4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, ACM Press (1993) 62–73

5. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Advances in Cryptology – EUROCRYPT’06.
Volume 4004 of LNCS., Springer-Verlag (2006) 409–426

6. Briggs, P., Cooper, K.D., Torczon, L.: Rematerialization. In: Proceedings of the
ACM SIGPLAN’92 Conference on Programming Language Design and Implemen-
tation, ACM Press (1992) 311–321

7. Corin, R., den Hartog, J.: A probabilistic Hoare-style logic for game-based crypto-
graphic proofs. In: Proceedings of the 33rd International Colloquium on Automata,
Languages and Programming. Volume 4052 of LNCS. (2006) 252–263

8. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. Journal of Cryptology 17(2) (2004) 81–104

9. Hurd, J., McIver, A., Morgan, C.: Probabilistic guarded commands mechanized in
HOL. Theor. Comput. Sci. 346(1) (2005) 96–112

10. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, ACM Press (1989) 44–61

11. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: Proceedings of the 33rd ACM Symposium Principles of
Programming Languages, ACM Press (2006) 42–54

12. McIver, A., Morgan, C.: Abstraction, Refinement, and Proof for Probabilistic
Systems. Springer-Verlag (2005)

13. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004) Online – http://eprint.

iacr.org/2004/332.
14. Stern, J.: Why provable security matters? In: Advances in Cryptology – EURO-

CRYPT’03. Volume 2656 of LNCS., Springer-Verlag (2003) 449–461
15. The Coq development team: The Coq Proof Assistant Reference Manual Version

8.2 (2009) Online – http://coq.inria.fr.
16. Tristan, J.B., Leroy, X.: Verified validation of lazy code motion. In: Proceedings

of the 2009 ACM SIGPLAN Conference on Programming Language Design and
Implementation, ACM Press (2009) 316–326

