Formal certification of ElGamal encryption
A gentle introduction to CertiCrypt *

Gilles Barthe!, Benjamin Grégoire?3, Sylvain Heraud?, and
Santiago Zanella Béguelin®3

! IMDEA Software, Madrid, Spain, Gilles.Barthe@imdea.org
2 Microsoft Research - INRIA Joint Centre, France
3 INRIA Sophia Antipolis - Méditerranée, France,
{Benjamin.Gregoire,Sylvain.Heraud,Santiago.Zanella}@inria.fr

Abstract. CertiCrypt [1] is a framework that assists the construction
of machine-checked cryptographic proofs that can be automatically ver-
ified by third parties. To date, CertiCrypt has been used to prove for-
mally the exact security of widely studied cryptographic systems, such
as the OAEP padding scheme and the Full Domain Hash digital signature
scheme. The purpose of this article is to provide a gentle introduction
to CertiCrypt. For concreteness, we focus on a simple but illustrative ex-
ample, namely the semantic security of the Hashed ElGamal encryption
scheme in both, the standard and the random oracle model.

1 Introduction

CertiCrypt [1] is a framework that assists the construction of machine-checked
cryptographic proofs in the style advocated by provable security [2,3]. Accord-
ing to this style, the interplay between the cryptographic system and the adver-
sary must be specified precisely and the proof of security must be established
rigorously, making explicit all the assumptions used in the process. CertiCrypt
concentrates on the game-playing approach to cryptographic proofs [4-6]. This
approach uses techniques that help reduce the complexity of cryptographic proofs
by structuring them in steps of manageable size. To date, CertiCrypt has been
used to prove formally the exact security of widely studied cryptographic sys-
tems, such as the OAEP padding scheme and the Full Domain Hash digital
signature scheme, and to establish results of wide applicability to cryptographic
proofs, such as the PRP/PRF Switching Lemma and the Fundamental Lemma
of game-playing.

CertiCrypt is built on top of the general purpose proof assistant Coq [7], from
which it inherits a high level of trustworthiness and the ability to provide in-
dependently verifiable evidence that proofs are correct. One long-term ambition
of CertiCrypt is to contribute to increase confidence in cryptographic proofs. In-
deed, constructing a correct security proof can be such a delicate task that some

* This work has been partially supported by the ANR project SCALP.

cryptographic systems are notorious for having flawed proofs that stood unchal-
lenged for years. The situation is even worse, as there are concerns about the
trustworthiness of cryptographic proofs in general [4,5]. As a possible solution,
Halevi [5] suggested the construction and use of dedicated tools, and singled out
some desirable features and functionalities of these tools. In a sense, CertiCrypt
provides a first step towards the completion of Halevi’s programme, although it
focuses more in delivering automation, expressiveness and high assurance, than
in providing a user interface to sketch proofs.

The main difficulty in building a tool to certify cryptographic proofs is that
they usually involve a broad set of concepts and reasoning methods, drawing
on probability, group and complexity theory. In the case of the game-playing
approach, proofs additionally rely on programming language semantics and pro-
gram transformation and verification. While all these aspects are covered in Cer-
tiCrypt, this is the first time we address some essential details that arise when
using the tool to build a concrete proof.

The purpose of this article is to provide a gentle introduction to CertiCrypt.
We give a step-by-step presentation of security proofs for (Hashed) ElGamal
encryption, in the hope of helping readers understand some fine-grained details of
the framework. Following Shoup’s introductory paper on game-based proofs [6],
we provide proofs both in the standard model, assuming that the hash function is
entropy smoothing, and in the random oracle model, assuming the hash function
is indistinguishable from a truly random function. These proofs generalize our
earlier proof of ElGamal encryption, which was presented briefly in [1].

2 Provable security and the game-playing technique

The aim of cryptography is to achieve a particular security goal, independently
of the behavior of adversaries. However, one cannot just enumerate every way an
adversary may behave to break the security goal and design a cryptographic sys-
tem to counter them all. That methodology is bound to fail because adversaries
will behave in unpredicted ways to overcome any anticipated countermeasures.
Therefore, valid proofs must establish security against all feasible adversaries.
As explained below, not all adversaries are feasible, and some restrictions on
their abilities are necessary to construct a security proof. In particular, it must
be assumed that the adversary is not omniscient (i.e. it does not know some
secrets) nor omnipotent (i.e. it cannot perform arbitrarily expensive computa-
tions). Both assumptions will be formalized using access control and resource
usage policies on the one hand, and complexity classes on the other hand.

In the flavour of the game-playing technique that is adopted by CertiCrypt,
the security goal is expressed through a probabilistic program that captures the
interaction between the cryptographic system and an adversary. In the context
of this paper, we shall focus on public-key encryption schemes and on their
semantic security (equivalently, IND-CPA security), which guarantees ciphertext
indistinguishability against chosen plaintext attacks. Informally, a public-key
encryption scheme is semantically secure if any feasible adversary that only

knows the public key and that chooses a pair of messages (mg,m1), cannot
distinguish a scenario where it is given an encryption of mg from a scenario where
it is given an encryption of m;. Clearly, a necessary condition for an encryption
scheme to be semantically secure is to be probabilistic, because otherwise an
adversary can just compare the encryption of mg with the ciphertext it is given to
tell apart both scenarios. In a game-based setting, semantic security is specified
by means of the following probabilistic program:

(Game IND-CPA :
(sk,pk) — KG();
(mo, ml) — A(pk)§
b {0,1};
¢ <« Enc(pk, ms);
v — A(pk, Q);

(d—b=V

J

Here, KG is the key generation algorithm of the scheme and Enc the encryp-
tion algorithm, whereas A and A’ are procedures representing an adversary. In
addition to the procedures that appear in the above program, the game may
involve oracles that can be called by the adversary; e.g. in Hashed ElGamal
the adversary is given access to a public hash oracle. The specification of the
IND-CPA game is completed by stating that the adversary belongs to the class of
probabilistic polynomial time (PPT) programs, and that has access to a global
variable to maintain state, read-only access to pk, but does not have access to sk
or b. There are two ways to control access to variables: one can declare a variable
as local, in which case it shall only be accessible in the scope of the procedure,
or global, in which case its access is restricted by an explicit policy.

The IND-CPA property states that the probability of an adversary guessing
which message has been encrypted is not significantly higher than 1/2. The
precise definition involves a security parameter 7 (which determines the scheme
parameters) and requires that the probability of d = 1 holding at the end of
the game, written Prinp.cpan[d = 1], is negligibly close to 1/2 as a function of 7.
Formally, a function v:N — R is negligible iff

negligible(v) %' Ve, Ine. Vn. n > n. = |v(n)] <n~¢
We say that a function v is negligibly close to a constant & when the function
An.|v(n) — k| is negligible.

The essence of the game-playing technique is to prove a security property,
such as the IND-CPA security of an encryption scheme, through successive trans-
formations of the original attack game. More precisely, proofs that follow the
game-playing technique are organized as a sequence of transitions of the form
G,A — G, A" where G and G’ are games, and A and A’ are events. The goal is
to establish for each transition Prg[A] < f(Prg/[A']), for some monotonic func-
tion f. By combining the consecutive inequalities drawn from each transition,
one can extract from a game-based proof an inequality Prg,[Ao] < f(Prg,, [4n])-
Thus, if Gy, Ap denotes the original attack game and event, one can obtain a
bound of Prg,[A] from a bound of Prg, [A,].

In many cases, transitions G, A — G’, A" are such that Prg[A] = Prg/[A’].
Such transitions, which are called bridging steps, include semantics-preserving
program transformations. Formally, semantics preservation is defined by means
of probabilistic non-interference [8], since we are only interested in preserving the
observable behavior of games. However, there are many cases in which semantics
preservation is context-dependent; to account for such cases, it is necessary to
resort to a relational logic that generalizes probabilistic non-interference and
that allows to reason modulo pre- and postconditions.

Game-based proofs also rely frequently on failure events, which help bound
the probability loss in transitions by the probability of a flag being raised. One
essential tool to reason about failure events is the so-called Fundamental Lemma:
given two games (G; and Gy whose code only differ after a certain bad flag is
raised (i.e. after an assignment bad « true, where bad is initially set to false
and always remains raised once set), one can conclude that for any event A,
Prg, [A A —bad] = Prg,[A A —bad]. This implies in turn

|PI"G1 [A] — Prg, [A” < Prg, [bad] = Prg, [bad]

provided both games terminate with the same probability.

Finally, some transitions are justified by security assumptions. For instance,
the proof in Section 4.2 relies on the Decisional Diffie-Hellman assumption or
DDH assumption for short. For a family of finite cyclic groups, this assumption
states that no efficient algorithm can distinguish between triples of the form
(9%,gY,¢™¥) and triples of the form (g%, g¥, g*), where x,y, z are uniformly sam-
pled from Z,, ¢ is the (prime) order of the group, and g a generator. One char-
acteristic of game-based proofs is to formulate these assumptions using games;
the DDH assumption is formulated as follows

Definition 1 (DDH assumption). Consider the games

Game DDHg : Game DDH; :
xyy(iZQ’ 1’:yvz<iZq§
d — B(g”, 9%, 9™) d+— B(g", 9%, 9°)

and define
def
coon(n) & [Propuy[d = 1] — Prpppy[d = 1]|
Then, for every PPT adversary B, eppn is a negligible function. Note that the

semantics of the above games (and in particular the order q of the group) depends
on the security parameter 1.

3 An introduction to CertiCrypt

The goal of this section is to provide a brief overview of the framework. We first
present the syntax and semantics of the language used to describe games, and
then the tools the framework provides to reason about them.

3.1 Syntax and semantics of games

The lowest layer of CertiCrypt is the formalization of a probabilistic programming
language with procedure calls. Given a set V of variables and a set P of procedure
names, commands can be defined inductively by the clauses:

T:=V<¢& deterministic assignment
| V&D random assignment
| if € then C else C conditional
| while £ doC while loop
| V<—"P(E,....,E) procedure call
C == nil nop
| Z; C sequence

where £ is the set of expressions and D is the set of distributions from which
values can be sampled in random assignments. Common data types and op-
erators are provided, but in order to adapt to different settings, the syntax is
user-extensible: users can define new data types and operations by providing an
adequate interpretation in terms of Coq constructions. In addition, the syntax
is typed, so that operators and expressions have a total semantics.

Games consist of a main command and an environment that maps a pro-
cedure identifier to its declaration, consisting of a list of formal parameters, a
body, and a return expression (we use an explicit return when writing games,
though),

declaration %' {params : V*; body : C; re : £}
Formally, the type of games is C x (P — declaration). The semantics of games
is defined using the measure monad M (X) of Audebaud and Paulin [9]; its type
constructor, unit and binding are defined as:

M(X) < (x —[0,1]) — [0,1]
unit X — M(X) € Xz Af. fz

bind s MX)—=» (X —=MY)) - M(®Y)
e N AMLAf. p(N . Mz f)

This monad can be viewed as a specialization of the continuation monad, and
allows to provide a continuation-passing style semantics of games. Intuitively,
an element in M(X) may be interpreted as the expectation operator of a (sub)
probability distribution on X. Thus, the denotation of a game relates an initial
memory to the expectation operator of the (sub) probability distribution of final
memories that results from its execution. The denotational semantics of games
is defined internally by means of a small-step semantics that uses frames to
deal with procedure calls. From a user point of view, however, these details can
be ignored without hindering understanding; the formal definition of small-step
semantics can be found in [1]. The denotation of games is presented in Fig. 1; in
the figure we represent a memory m as a pair (m.loc, m.glob), making explicit its
local and global components. Expressions are deterministic and their semantics

is given by a function [-]¢ that evaluates an expression in a given memory and
returns a value. The semantics of distributions in D is given by another function
[[]o; we give as examples the semantics of the uniform distribution on B and on
integer intervals of the form [0..n]. In the figure, we have omitted the procedure
environment E for the sake of readability. In the remainder we will frequently
make no distinction between a game G = (¢, F) and its main command ¢ when
the environment where it is evaluated either has no relevance, or is clear from
the context.

[nil] m = unit m

[#] m = bind ([:] m) []

[x —e] m = unit m{[e]e m/x}

[z & d] m = bind ([d]p m) (Av. unit m{v/z})

v — f(e)] m _ bind ([E(f)-body] (0{[e]> m/E(f).params}, m.glob))
(Am’. (m.loc,m’ .glob){[E(f).rele m'/z})
{ [ea] if [e]e m = true

[e2] if [e]e m = false

[if e then ¢ else c2] m =

[while e do ¢]| m = [[if e then ¢; while e do]| m
[{0,1}]p m =\ % f(true) + % f(false)
[[0..e]]p m =)\f.; RL—H f(@) where n = [e]e m

Fig. 1. Denotational semantics of games

CertiCrypt provides an alternative, more convenient rule for while loops:
[while e do ¢] m f = sup{[[while e do ¢],] m f:n € N}
where [while e do (], is the n-step unrolling of the loop, i.e.

[while e do ¢ = nil

[while e do c],,, = if e then ¢; [while e do c],,

Note that the function [-] maps M to M (M), but it is trivial to define a seman-
tic function [-]’ from M (M) to M (M) using the bind operator of the monad:
[G) 1 % bind 1 [G]. One of the major advantages of using the monad M (M)
is that the probability of an event A, represented as a Boolean predicate over
memories, can be readily defined using the characteristic function I4 of A:

Prg.m[A] % [G] m 14 (1)

In what follows, we sometimes omit the initial memory m; in that case one may
safely assume that the memory initially maps variables to default values of the
right type.

3.2 Reasoning about games

In game-based proofs, bridging steps correspond in a sense to semantics preserv-
ing transformations; they are used to restate the way certain quantities are com-
puted to prepare the ground for a subsequent transformation. Hence, in a bridg-
ing step from G, A to G’, A’ the goal is to establish Prg ,,[A] = Prg ,m[A']. If we
take alook at definition (1), this amounts to proving that [G] m 4 = [G'] m L4/,
or generalizing this to a pair of initial memories m;, mo and arbitrary functions
fyg9: M —0,1], that [G] m1 f = [G'] ma g.

The main tool CertiCrypt provides to establish such equalities is the relational
logic pRHL, which generalizes Relational Hoare Logic [10] to a probabilistic set-
ting. Judgments in pRHL are of the form = G; ~ Gy : ¥ = @, where G; and
G5 are games, and ¥ and @ are relations over deterministic states. A judgment
E G ~ Gy : ¥ = @ is valid iff for every pair of initial memories my,ms such
that m1 ¥ ma, [G1] m1 ~& [G2] ma holds. The relation ~g¢ is a lifting of @ to
measures. If @ is a PER, the definition of ~g is rather intuitive:

1~ pz X Va. pg Igp = p2 Iy

where I[4) is the characteristic function of the equivalence class of a. The defini-
tion of ~g for arbitrary relations is less immediate, and involves an existential
quantification:

range P d:d: Vf. Va.Pa= fa=0)=pu f=0
pa ~e o 3w () = pa Aa(p) = po Arange @

where the projections of u are defined as
71 (1) € bind g (Ap.unit (fst p)) w2 (1) € bind 1 (Ap.unit (snd p))

This definition stems from work on probabilistic bisimulations, and generalizes
lifting to arbitrary relations. Both definitions coincide for PERs [11].

In order to reason about pRHL judgments, CertiCrypt provides a set of derived
rules and a (partial) weakest precondition calculus. The rules can be found in [1].
An important implication of a pRHL judgment = Gy ~ G3 : ¥ = &, is that if
two functions f and g are unable to distinguish memories in the @ relation, i.e.

VYmy ma. my @ ma = f my =g mo

then
VYmi mg. mi1 ¥ mo = [[Gl]] mi f = [[GQ]] mso g (Zm)

In particular, if @ is the equality on the free variables of a Boolean predicate A,

we obtain Prg, m,[A4] = Pra,, m,[A]. This property extends to the < relation.
By specializing pRHL judgments to equality predicates on sets of variables,

one recovers probabilistic non-interference: given a set X of variables, define

mi =x Mo dZCfoEX,mlzzr:mzx

Probabilistic non-interference w.r.t. a set I of input variables and a set O of
output variables is defined as | - ~ - 1 =1 = =g, we use = - ~L - as a
shorthand.

CertiCrypt provides several tools to reason about non-interference. In partic-
ular, CertiCrypt implements several tactics that help establish non-interference
or reduce it to a simpler goal. For example, the tactic eqobs_in implements a
semi-decision procedure for judgments of the form = ¢, E ~f ¢, E’. Other tac-
tics, such as eqobs_hd, eqobs_t1, eqobs_ctxt, deadcode, and swap simplify the
goal by using functions that take games c1, F1 and co, F5 and sets of variables

1,0 and return ¢}, ¢, and I’, O’ such that
Ed By ~b By = o, B~ E
1 1 —0 €2, 2 1, 1 —0 2, 2

The tactics differ in their strategy to compute ¢}, ¢5 and I', O’. Tactic eqobs_t1
searches for a maximal common prefix ¢ such that ¢; = ¢;¢} and ¢ = ¢; b,
eqobs_hd searches similarly for a maximal suffix, and eqobs_ctxt combines
both. The tactic swap rearranges instructions in programs to generate a largest
common suffix while preserving observational equivalence, i.e. ¢| = é;;¢ and
¢l = éa; ¢ are permutations of ¢; and ¢z (and I’ = I and O’ = O). The tactic
deadcode produces slices of the original commands using the variables in O as
slicing criteria.

In addition, CertiCrypt automates other common program transformations:
expression propagation (ep), variable allocation (alloc), and inlining (inline).
These tactics are shown to preserve non-interference. The tactic sinline com-
bines inline, alloc, ep, and deadcode in one powerful tactic.

To be able to deal with procedure calls the tactics need information about
procedures in the environment of games. This information cannot be computed
recursively due to the presence of adversaries whose code is unknown. Given
two environments F; and Es, and a procedure f, tactics assume the following
information is given:

— For each environment: a set W; of global variables that f might modify, sets
I; and O; of global variables, and a subset P; of its formal parameters such
that for every execution of the body of the procedure, the final values of
variables in O; U fv(E;(f).re) depend only on the initial values of variables
in I; U P;. Formally,

W; = globals(modifies(E;(f).body, E;)) A

P, C E;(f).params A

': El(f)bOdya E’L zgfui\ll(El(j)re) El(f)bOdya E’L
(modifies computes an over approximation of the variables modified by a
piece of code.) This information is used by the tactics swap, deadcode, ep,
and inline;

— Relational information: sets I and O of global variables, and a subset P

of the formal parameters of f such that the execution of the body of f
in each environment, starting from memories equal on variables in I U P,

results in measures equivalent on O U fv(E;(f).re). We further require that
E1(f).re = E5(f).re. Formally,

P C Ey.(f).params A P C Es.(f).params A
': El ('f)bOdy’ El 2IOLiJI?’)v(ET(f)re) E2 (f)bOd% E2

This information is used by tactics eqobs_in, eqobs_hd, and eqobs_t1.

CertiCrypt provides several mechanisms to build the above information incre-
mentally and automatically when the bodies of procedures in F; and E5 are
observationally equivalent modulo expression propagation and dead code elim-
ination. It is also possible to derive the information for an adversary from the
information about the oracles it may call. This is possible provided the adversary
is well-formed, since in this case we know that the adversary and any subpro-
cedures it may call respect an access control policy (O, RO, RW): they may
only call oracles in O, read global variables in RO, and read or modify global
variables in RW.

As said before, some transformations performed during proofs are context-
dependent. CertiCrypt allows for a rich specification of the context in which a
transformation is valid using program invariants. Tactics are thus extended to
deal with invariants on global variables; the information they use is specified
instead by judgments of the form

Ec,By~c,Ey:=1Np=>=0AN¢

4 Semantic security of Hashed ElGamal encryption

Let G be a cyclic group of prime order ¢ and g a generator, and let (Hy), o, be
a family of keyed hash functions mapping elements in G to bitstrings of a certain
length /. Hashed ElGamal is a public-key encryption scheme whose security is
believed to be related to the discrete logarithm problem in G. Its key generation,
encryption and decryption algorithms are defined as follows:

KG() L p s K xs Zg; return ((k,), (k, g%))
Enc(k,a,m) %' y & Z,; b Hy(a¥); return (g%, h & m)
Dec(k,z,3,¢) %' h— Hy(3%); retum h @ ¢

The plaintext space of Hashed ElGamal is {0,1}¢, in contrast to the original
ElGamal encryption scheme whose plaintext space is simply G.

In the remainder of this section we present game-based proofs of the semantic
security of Hashed ElGamal encryption in two different settings. The first proofis
done in the standard model of cryptography; it assumes that the family (Hy), x
of hash functions is entropy smoothing and reduces semantic security to the
hardness of the DDH problem. The second proof is done in the Random Oracle
Model (ROM); it assumes hash functions behave as perfectly random functions
and reduces semantic security to the hardness of the (list) CDH problem.

To formalize the proofs in CertiCrypt we first need to extend the syntax and
semantics of games to include the types and operators used in the description
of the scheme that are not already defined. As explained in Sec. 3, this is done
in a modular way. We declare a family of cyclic groups (Gn)n cn indexed by the
security parameter and extend the types of the language with user-defined types
for elements in G, and bitstrings of length ¢. We extend D with the uniform
distribution on bitstrings of length £. We finally extend the language operators
with nullary operators ¢ and g to retrieve the order and a generator of G,
respectively, binary operators for the product and power in the group, and &
for exclusive or on bitstrings of length ¢. For the security proof in the standard
model, we represent the hash function of the scheme as a binary operator taking
a key in K and a value in G,, and returning a bitstring of length ¢, whereas in
the proof in the random oracle model we directly encode the hash function as a
procedure and no further extensions are needed.

4.1 Security in the standard model

The proof we present next relies on two assumptions: the assumption that the
family of hash functions (Hy), is entropy smoothing, and the hardness of the
DDH problem in G,,. The latter assumption was already formalized in Sec. 2 as
Definition 1. The former is formally stated below.

Definition 2 (Entropy Smoothing (ES) assumption). Consider the games

Game ESg : Game ES; :
k& K; ha {01} k&K 28 Zg;
d<—'D(h) d(—'D(H(k,gz))

and define
ees(n) ' [Pres,[d = 1] — Pres, [d = 1]]

Then, for every PPT adversary D, €egs is a negligible function.

To avoid cluttering the description of games, we slightly modify the presentation
of the key generation algorithm: instead of returning the hash key as a component
of the secret and public key, we model it as a global variable k. This will allow
us at the same time to nicely illustrate the use of global variables in CertiCrypt.

Theorem 1 (Security of Hashed ElGamal in the standard model). For
every PPT and well-formed adversary (A, A’),

1
Prinp-cpald] — 3 < eppH(n) + €es(n)

Furthermore, under the DDH and ES assumptions, Prinp_cpald)] is negligibly close
to L.
2

Figure 2 gives an overview of the proof; proof scripts appear inside grey boxes.
We model the adversary as two procedures sharing state via global variables in
G 4. The well-formedness condition simply states that the adversary has read-
only access to k and that it cannot call procedures named B or D as these are
the names reserved for adversaries in the reduction. Note that this is without
loss of generality, and the adversary is free to define and call any other private
procedures of its own as long as they are also well-formed. The information i
used by the tactics is thus inferred automatically.

(Game IND-CPA : (Game Gs :

(z,a) — KG(); k& Kia,y & Lo
(mo,m1) — A(a); (mo, m1) — A(g");
b & {0,1} b & {0,1}
(5,0) — Enclo,ms) | i i K v {015
b — A (04/757 v); sinline_1 ¢ Enc; h,<_ v 6,9 Mo
d—=b=b swap %; eqobs_in ¢ b <—A(g/,gy,v);
L) Ld—b=1»)
~9A T ~YA
(—d N\ l (—d N
Game G : Game Gs :

eqobs_ctxt i;
clean nm ¢;

apply equiv_sub;
apply opt_sampling

k& Kix,y & Zg,
(mo,m1) — Alg°);
b & {0,1};

b H(k,g");

v — h ® mp;

Vo= A(g", g%, v);

k& Kix,y & Zg,
(mo, m1) — A(g");
b & {0,1};

h& {0,1}%

v — h @ mp;

sinline_r i B3; B — A'(g%, g¥,0);

swap ¢; eqobs_in ¢

Ld—b=1V) Ld—b=10)
A T ~9A
— l e — N
(Game DDHg :) s ; Game ESj :
sinline_r i D; ¢
x,y & Lqg; k& K;h & {0,1}5

swap %; eqobs_in ¢

d—B(g*, 9%, 9") d — D(h)

Adversary B(a, 3,7) : Adversary D(h) :

b/ — A/(a767 h @ mb):

_ 1/
_return b=b

J
Game DDH; :
Lyy?«’ &Zlh
4 Bly",9",97))

Fig. 2. Game-based proof of semantic security of Hashed ElGamal encryption in the
standard model

ep ¢; deadcode i;
swap ¢; eqobs_in ¢

!

~9A
=~d

k & K; T,y & ZLg;

(mo, m1) — A(e); : (mo, m1) — A(g");

b {0,1} inline_1 i B; b {0,1};

h— H(k,); sz i D) B A(g7, g b my);

return b = b’

(. J

Game ES; :
k& Kz & Zg,

_d— D(H(k.g"))

We begin by proving
Prinp-cpald] = Prpph, [d]
For clarity, we introduce an intermediate game G; and show that

= IND-CPA ~94 G; and | G; ~* DDH,

Since the ~ relation is transitive,

~L VAN
Fe _O':c)1: c” =0 ¢ [R-Trans]
cog ¢

we obtain |= IND-CPA ~54 DDH,. Equation (2) follows then from (=q)- Next

we show that
PrDDH1 [d] = PI‘ES1 [d]

(3)

To this end, we prove first = DDH; :g"‘ ES;. We illustrate this transition in
detail, showing the intermediate goals obtained after applying each tactic in the

proof script:

|:c,y,z<¥$;Zq; d— B(g",9%,9%) | gdgAlk&K; 2z & Zg; d— D(H(k,g%))

inline_l ¢ B; inline.r ¢ D
(2,y,2 & Zg; a0 — g% 8 — g% 7 — g7 (k& K; 2 & Zg; h— H(k,g%);
k & K; (mo,m1) — Aa); o |TY & Ly (mo,m1) — A(g”);
b& {0,1}; h— H(k,v); =d" | b & {0,1}
10— A(a,B8,h®dmy); d—b="¥] b — A, g%, hdmp); d—b=1

ep i
(2,y,2 & Zg; 0 —g"; 3 — %7 — 73) (k& K; 2 & Zg; h — H(k,g%);
k & K; (mo,m1) — A(g”); o |TY & Ly (mo,m1) — A(g%);
b {0,1}; h«— H(k,g*); =a" | b& {0,1};
b o— A/(gzuquH(kuqz) D mb); b o— Al(gz7gy7H(k7gz) @mb);
ld—b=1¥ J ld—b=1¥
deadcode %
r:c,y,z&Zq;] (k& K; z & Ly,
k & K; (mo,m1) — A(g”); z,y & Zg; (mo, m1) — A(g");
b & {0,1}; gdgA b & {0,1};
b o— A/(gzuquH(kuqz) D mb); b o— Al(gz7gy7H(k7gz) @mb);
ld—b=1¥ J ld—b=1¥
swap %

(z,y,2z & Zg;] (z,y,2z & Zg;
k & K; (mo,m1) — A(g%); k & K; (mo,m1) — A(g%);
b & {0,1}; gdgA b & {0,1};
b — Alg", 9", H(k,g%) & my); o — A(g", g, H(k,g%) &my);
ld—b=1¥ ld—b=1¥

eqobs_in ¢

We first inline the calls to B and D in each game. When inlining a procedure
call, the expressions appearing in the list of actual parameters are assigned to
the corresponding formal parameters appearing in its declaration and the return
expression is assigned to the return variable. We use ep to propagate assignments

along the game, and deadcode to eliminate instructions that do not affect —
either directly or indirectly— the value of d. (The tactic sinline would achieve
the same result as this combination of tactics.) At this point the resulting pro-
grams are the same modulo reordering of instructions; we use swap to rearrange
the instructions of the program in the right hand side in the same order as in
the program in the left hand side. The tactic eqobs_in concludes by perform-
ing a dependency analysis to show that in the resulting program the value of d
depends only on the initial value of variables in G 4.
Finally, we show that
Pres, [d] = Pre,[d] (4)

As before, we introduce an intermediate game Go and prove = ESg :g"‘ Go,
and = Gy ~54 Gz. By [R-Trans| we get = ESg ~94 Gy which together with
(=) gives (4). The transition from ESy to Gy is similar to the one detailed
above. However, the transition from Gy to Gz is more interesting since we use
an algebraic property of & which we call optimistic sampling:

Foa (01} sy e~ ya {01}z ey (5)

Let us give a step-by-step trace of the interaction with CertiCrypt:

k& K; x,yd Zg; k&K x,y & Zg;
(mo,m1) < A(g"); b {0,1}; (mo,m1) «— A(g"); b & {0,1}

~9A

h & {01} v — h @ my; —d v {0,155 h — v @ mye;
b= A", 9", v); v — A(g”,g",v);
d—b="V d—b=1b

eqobs_ctxt %
(=00 v—hom __ J=urrisiel A lva 05 h—vamy

clean_nm

k,@,y,mo,m1,b}UG

[h e {0,350 —ham, ~ o UGAL T 0 1Y B — v e my
apply equiv_sub

[h e {01} v—hom ~h) [ve {01} h—vam

apply opt_sampling

First, eqobs_ctxt is used to remove the common prefix and suffix in the pro-
grams. Then, clean_nm removes from the output set the variables appearing in
the input set that are not modified throughout the programs. This is justified
by the rule:

X Nmodifies(cy) =0 X N modifies(ca) =0 XCI Eea~he

Foa 2IOuX C2

Finally, we apply the subsumption rule

I'cI)zclf:IOCQ Ooco

): C1 ’ZIO, Co

[R-Sub]

to strengthen the postcondition and weaken the precondition so as to obtain
a goal that suits the statement of optimistic sampling (5), which allows us to
conclude the proof.

The last transition effectively removed the dependency of v on b, and thus
the dependency of ' on b. It is then easy to prove that

Pro,d] = 5 (6)
Indeed, in G3 the variable b is only used to compute h, which is not used anymore.
We can use tactics swap and deadcode to prove that the game is equivalent to
a game where b is sampled after calling A’. Since VG e d, Prg.q—.[d] = Prgle],
we have Prg,[d] = Prg,[b = V']. To conclude, we use the fact that for any game
G and Boolean variables b, V', PrG;b&_{Oyl}[b =V = %, provided G is absolutely
terminating. CertiCrypt provides a semi-decision procedure for absolute termi-
nation which can automatically discharge this condition for Gz based on the
assumption that A and A’ are PPT procedures and thus absolutely terminating.

To summarize, from Equations (2), (3), (4), and (6) we obtain

|Prinp-ceald] — 3 |PropH, [d] — 3
[Proow, [d) — Proow, [d] + Propw, [d] — 3

[d]
= [d] [d]
< |PrppH,[d] — Proown, [d]| + |Prppw, [d] —
= |Proow,[d] — Proow, [d]] + |Pres, [d] — 3]
= |Prppw,[d] — Prppw, [d]| + [Pres, [d] — Pre,[d]|
= |Propw,[d] — Prpow, [d]| + [Pres, [d] — Pres,[d]|

€ppH (1) + €es(n)

From the above equation, Priyp.cpald] is negligibly close to % under the DDH
and ES assumptions. It suffices to check that the adversaries B and D used in the
reduction are PPT procedures. This is indeed the case because we assumed that
both A and A’ are PPT procedures. In CertiCrypt, the tactic PPT_proc proves
this automatically.

4.2 Security in the Random Oracle Model

Hashed ElGamal encryption is semantically secure in the random oracle model
under the Computational Diffie-Hellman (CDH) assumption on the underlying
group family (G))nen. This is the assumption that it is hard to compute g*¥
given g” and g¥ where 2 and y are uniformly random elements in Z,. If the DDH
assumption holds for the group family, then it is computationally unfeasible to
test the success of an adversary against CDH (knowing only ¢g* and ¢¥). For this
reason, we consider the following slightly different formulation that is equivalent
in an asymptotic setting.

Definition 3 (List CDH assumption). Consider the game

Game LCDH :
z,y & ZLg;
L —C(g9",9")

and define
eLcon(n) % Pricpulg®™ € L)

Then, for every PPT adversary C, e .cpn is a negligible function.

The DDH assumption implies the CDH assumption which in turns is equivalent
to the list CDH assumption. To see this, note that an adversary against list
CDH whit a non-negligible advantage can be converted into an adversary against
CDH by returning a random element in the result list L; since L is necessarily
of polynomial size, the list CDH advantage of the resulting adversary is still
non-negligible.

Theorem 2 (Security of Hashed ElGamal in the ROM). For every PPT
and well-formed adversary (A, A’),

1

Prinp-cpald] — 3 < eLcoH(n)

Furthermore, under the CDH assumption, Prinp-cpald] is negligibly close to %

What allows us to achieve semantic security under a (possibly) weaker as-
sumption on the group family is a stronger assumption about the underlying
family of hash functions. In the random oracle model, we model hash functions
as truly random functions represented as stateful procedures. Queries are an-
swered consistently: if some value is queried twice, the same response is given.
In this model, there is no reason to continue viewing hash functions as keyed, so
in the following we drop hash keys in the formalization.

The proof is sketched in Figure 3. The figure shows the sequence of games
used to relate the success of the IND-CPA adversary in the original attack game
to the success of the list CDH adversary C in game LCDH; the definition of the
hash oracle is shown alongside each game. As in the proof in the standard model,
we begin by inlining the calls to KG and Enc in the IND-CPA game to obtain an
observationally equivalent game G; such that

Prinp-cpalb = b'] = Prg, [b = V] (7)

Then, we perform a nonlocal program transformation: at the beginning of the
game we sample the value A1 that the hash oracle gives in response to ¢g*¥.
This is an instance of lazy sampling, a technique automated in CertiCrypt that
is described in greater detail in [1]. We get

Prg, [b =] = Prg,[b =] (8)

We can then modify the hash oracle so to not store in L the response given to a
g™ query; this will later let us remove h1 altogether from the hash oracle. To
do this, define the following relational invariant

$a3 L (A € dom(L) = L[A] = h1)(1) A
YA\ # A1) = LI\(1) = L[\](2)

(Game IND-CPA :

Oracle H(\) : A

L[] if A & dom(L) then
(2,) — KG(); h & {0,1}
(mo, m1) — A(c); L— (\h):L
b & {0,1}; else h +— L()\)
(8, v) «Enc(a, my);| return h
\b' — A'(a, B,v))
~9A
iy

(Game Gy
L~ []vay&zcﬁ

Oracle H(\) : A
if A\ & dom(L) then

L —[]iz,y & Zg;
A — g™,

(mo, m1) «— A(g");
b {0,1}

h «— H(A);

v — h ®my;

W = A'(g", g% v)

(mo,m1) — A(g"); | h & {0,1}%
b & {0,1}; L~ (\h):L
h — H(g™); else h — L()\)
v+ h & mp; return h
V= A(g%, 9")]
~9A
—{bb'}
(Game G : Oracle Ho(\):)
ht & {0,1}% if A & dom(L) then

if A= A then
h«— hT;
else h s {0,1}*
L~ (\h):L
else h — L()\)
return h

~IA
{b,b'}N23

\b/ — A/(gl" gy7 'U)

(Game G : Oracle Hs(\):)
ht & {0,1}% if A = A then
L—[lizy&Zy | heh*

A — g™, else

(mo,m1) — A(g®);| if A & dom(L) then

b {0,1}; h & {0,1}*

h—hT; L — (\h):L

v — h @ mp; else h «+ L()\)
return h

a

(Game Gy} : Oracle Hy5(\) :)
bad « false; if A & dom(L) then
ht & {0,1}% if A= A then
L—[lay & Ly bad « true;

A — g™ .= h1
(mo,m1) — A(g");
b {01} else h < {0,1}*
v —ht & my; L— (\h):L
b= A'(g% g%,v) | else h — L(X\)
L return h)

ga
~{L,A,b,b' } A(bad=>A€dom(L))(1)

(Gameng
L —[fz,y & Zg

Oracle H()) :)
if A & dom(L) then

(Mo, m1) «— A(a);
v & {0,1}5
b — A, B,v)

_return dom(L)

A — g"¥; h s {0,1}%;
(mo, m1) — A(g*);| L < (\h):L
b & {0,1} else h + L()\)
v & {0,1} return h
ht — v @ ms;
b = A'(g", 9", v))
~9A
—{Lzy}
(Game LCDH : Oracle H()) :)
x,y & ZLg; if A & dom(L) then
L' —C(g%,g") h s {0,1}%
Adversary C(a, 3):| L« (A h):L
L[] else h — L()\)
return h

Fig. 3. Game-based proof of semantic security of Hashed ElGamal encryption in the
Random Oracle Model

where by e(1) (resp., e(2)) we mean the value that expression e takes in the left
hand side (resp., right hand side) program. It is easy to prove that oracles Ho
and Hs are semantically equivalent under this invariant and preserve it. Since
¢o3 is established just before calling A and is preserved throughout the games,
we can prove = G ~ Gz : G4 = {b,b'} A 23 by inlining the call to H in game
Ggz, hence

Prg,[b =] = Prg,[b =] 9)

Then, we undo the modification to the hash oracle to prove that games G3 and
G4 are observationally equivalent, i.e. = Gg :({jg‘b, } Gy, from which we obtain

Pre,[b = b'] = Pr,[b = V'] (10)

Games G4 and Gy are syntactically equal to up to the point where the flag bad
is raised. From the Fundamental Lemma described in Sec. 2, it follows that

|Prg,[b =] — Prg,[b=V']| < Prg,[bad] (11)
We then prove
E Gs ~ Gg: =G4 = ={L,Abb} N (bad = A € dom(L))(1)

Using ep we coalesce the branches in the innermost conditional statement of Hs
to recover the original hash oracle. We defer the sampling of h™ in G5 to the
point just before computing v using swap, and we substitute

v {0,1}5 At —vamy for ht & {0,1}% v —ht ®my
using the equivalence (5) presented in Sec. 4.1. Thus,
Prg,[b =] = Prg,[b= V] (12)

and by (<),
Pre, [bad] < Pre,[A € dom(L)] (13)

Observe that in Gg, b’ does not depend anymore on b, so we may as well sample
b at the end of the game, thus obtaining

Pre,b=¥] = 5 (14)
We construct an adversary C against list CDH that interacts with the adversary
(A, A') playing the role of an IND-CPA challenger. It returns the list of queries
that the adversary (A,.A’) makes to the hash oracle. Observe that C does not
need to know z or y because it gets ¢g* and ¢g¥ as parameters. The success
probability of C is the same as the probability of A = ¢g*¥ being in the domain
of L in Gg. Therefore, we finally have that

Prg,[A € dom(L)] = Prg,[¢g"Y € dom(L)] = Pricpu[¢™ € L] (15)

To summarize, from Equations (7)—(15) we obtain

[Privo.cralb =] = 5| = [Prg,[b =]~ }
= |Prg,[b=b/] — Pre,[b =/
Pre, [b =] — Pre, [b = b']|

PI‘(;5 [bad
Prg,[A € dom(L)]
Pricon[g™ € L]
eLcoH(n)

A IA

From the above equation and under the list CDH assumption (or equivalently,
under the plain CDH assumption), the IND-CPA advantage of adversary (A, A")
results negligibly close to % To see this, it suffices to verify that adversary C
runs in probabilistic polynomial time. This is the case because adversary (A4, .A")
does, and C does not perform any costly computations.

5 Related work

ElGamal is a standard example of a game-based cryptographic proof that pro-
vides a benchmark against which other works can be compared. We briefly com-
ment on three proofs that are closely related to ours. For a more general account
of related work, we refer to [1].

The most recent, and closely related is a formalization in Coq of a game-based
proof of ElGamal semantic security by Nowak [12]. While we opt for a deep em-
bedding, Nowak uses a shallow embedding and models adversaries directly as
Coq functions. As a consequence, the resulting framework only provides lim-
ited support for proof automation. For the same reason, Nowak’s formalization
cannot deal with random oracles, so that he only presents the proof of Hashed
ElGamal in the standard model of cryptography. Finally, it is not clear how to
formalize complexity in the context of a shallow embedding, and Nowak’s for-
malization ignores complexity altogether; as a result, security assumptions such
as DDH cannot be modelled faithfully.

An earlier work by Barthe, Cederquist and Tarento [13] provides the foun-
dations of a formal proof of security of Signed ElGamal encryption in Coq. In
contrast to our work, they consider an idealized model of cryptography that ab-
stracts away many details of the system and the security definition. Thus, the
connection between the formalization and the security statement is not as strong
as desired.

Corin and den Hartog [14] developed a (non-relational) Hoare logic for reason-
ing about probabilistic algorithms. They used it to construct a proof of semantic
security of ElGamal encryption, but we are not aware of any other system ver-
ified using this logic. Being based on a mere probabilistic extension of Hoare
logic, their formalism is not sufficiently expressive to model the notion of PPT
complexity, and so security goals and hypotheses cannot be expressed precisely.
More generally, the logic by itself provides no means to reason about context-
dependent program transformations or transformations made in oracles.

6

Conclusion

CertiCrypt is a fully formalized framework that assists the construction of cryp-
tographic game-based proofs. Proofs in CertiCrypt rely on a minimal trusted
base and their correctness can be verified automatically by third parties. In this
paper, we have illustrated some key aspects of CertiCrypt through the formaliza-
tion of semantic security proofs of the Hashed ElGamal public-key encryption
scheme in the standard and random oracle model, and we have highlighted some
essential differences between our proofs and those that appear in the literature.

Acknowledgments We would like to thank Daniel Hedin for his helpful comments
on an earlier draft of this work.

References

1.

10.

11.

12.

13.

14.

Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based
cryptographic proofs. In: Proceedings of the 36th ACM Symposium on Principles
of Programming Languages, ACM Press (2009)

. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2)

(1984) 270299

Stern, J.: Why provable security matters? In: Advances in Cryptology — EURO-
CRYPT’03. Volume 2656 of Lecture Notes in Computer Science., Springer-Verlag
(2003)

Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Advances in Cryptology — EUROCRYPT’06.
Volume 4004 of Lecture Notes in Computer Science. (2006) 409-426

Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryp-
tology ePrint Archive, Report 2005/181 (2005)

Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004)

The Coq development team: The Coq Proof Assistant Reference Manual v8.2
(2008) Available at http://coq.inria.fr.

Sabelfeld, A., Sands, D.: A per model of secure information flow in sequential
programs. Higher-Order and Symbolic Computation 14(1) (2001) 59-91
Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci-
ence of Computer Programming (2008)

Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Proceedings of the 31th ACM Symposium on Principles of
Programming Languages, ACM Press (2004) 14-25

Jonsson, B., Larsen, K.G., Yi, W.: Probabilistic extensions of process algebras. In:
Handbook of Process Algebra. Elsevier (2001) 685711

Nowak, D.: A framework for game-based security proofs. In: Information and
Communications Security. Volume 4861., Springer-Verlag (2007) 319-333

Barthe, G., Cederquist, J., Tarento, S.: A machine-checked formalization of the
generic model and the random oracle model. In: 2nd International Joint Conference
on Automated Reasoning, Springer-Verlag (2004) 385-399

Corin, R., den Hartog, J.: A probabilistic Hoare-style logic for game-based crypto-
graphic proofs. In: Proceedings of the 33rd International Colloquium on Automata,
Languages and Programming. Volume 4052 of LNCS. (2006) 252263

