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Abstract— High-level specification of how the brain repre-
sents and categorizes the causes of its sensory input allows to
link “what is to be done” (perceptual task) with “how to do it”
(neural network calculation). More precisely, a general class of
cortical map computations can be specified representing what
is to be done as an optimization problem, in order to derive the
related neural network parameters considering regularization
mechanisms (implemented using so-called partial-differential-
equations).

The present contribution revisits this framework with three
add-ons. It is generalized to a larger class of (non-linear)
map computations, including winner-take-all mechanisms. The
capability to represent standard “analog” neural network and
guaranty their convergence, providing their weights are local
and unbiased, is made explicit. The fact that not onlyone but
several cortical maps can interact, with feed-backs, in a stable
way is shown.

Two experiments are provided as an illustration of this
general framework.

I. I NTRODUCTION

Perceptual processes architecture, in computer or biolog-
ical vision [1], [2], is based the computation of “maps” of
quantitative values. Such maps encode retinotopic quantities
such as contrast magnitude, contrast orientation related to
edge orientation, shape curvature, binocular disparity related
to the visual depth, color cues, temporal disparity between
two consecutive images in relation with visual motion detec-
tion, etc. Other maps are not only parametrized by retinotopic
locations, but also other parameters (e.g. orientation, retinal
velocity, etc.) or more abstract quantities [3].

Using a scalar or vector valued map is an important feature
when addressing the modelization of cortical processing units
such as cortical columns [2]. It may also help defining
improved models of neurons or small neuronal assemblies,
where the state is not only defined by a scalar membrane
potential [4].

Introducing non-linear constraints between the map com-
ponents has several advantages, one is to take noisy measures
into account avoiding statistical bias (see e.g. [5] for a
development), another is to define physical parameters (e.g.
3D orientation) with complex structure.

High-level specification [1], [6], [4] of such map com-
putation, as reviewed for instance in [7], consider the esti-
mation process as a mechanism which iteratively corrects
the output in order to correctly predicts the input (i.e.
with Expectationwhich “infers” the output from the given
inputs andestiMation which “predicts” the input from “a-
priory” estimates of output). In the Bayesian framework
(but not only) this correspond to a criterion optimization,
e.g. finding the “maximally probable output given the input.
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In the present approach, the map computation problem is
formalized as a minimization problem define in equation (2).
The reader is advised to consider the previous references for
further details.

We start in Section II by introducing main definitions.
In Section III, we propose to model one cortical map by
variational formulation in the continuous setting. In Section
IV, we show how to pass from this continuous variational
formulation to the related discrete neural network. In Section
V we consider the reciprocal result, i.e. how to relate a given
neural network to a variational apporach? Section VI extends
this framework it is shown that not only one map but a
graph of maps can be specified in this framework to several
cortical maps, under some biologicaly plausible assumptions.
Sections VII and VIII revisit some existing approaches under
the proposed framework, with some illustrations.

II. M AP INPUT, OUPUT, SAMPLING AND CONNECTIVITY

Let us introduce main definitions and assumptions. The
specifications and the derivations of the proposed framework
are explictly based on these choices so we have to make
them explicit first.

The goal of neural map computation is to obtain an ouput
map v : Rn → Rp, from an input mapw : Rn → Rq,
based on a variational approach. For example, forn = 2,
the spaceR2 could be a representation of the retina domain,
w the retina intensity withq = 1 (or q = 3 if color) and
v the motion estimation. We assume that the functionsv
and w belong to a dense linear subset of an Hilbert space
H, more precisely the Sobolev spaceH = W s,∞(Rn). Note
that vectors, and also matrices, are written in bold characters,
matrices with capital letters and scalars in italic.

In Section III we consider a continous framework because
this is the simplest way to specify the map computation. This
is however not exactly the gound truth of the neural units.

Sampling: In fact, if considering the micro-columns of a
cortical map [2], there is a clear sampling of the underlying
continuous quantities. In Section IV we deal with such neural
network implementing map computations, only defined at a
finite set of positionsyj ∈ Rn. The value of the mapv at yj
is a measure in a small neighborhoodSj aroundyj defined
by

vj = v(yj) =
∫
Sj

v(y)µj(y) dy,

whereµj(y) is the measure density inSj . Up to a simple
scale factor and without loss of generality, we assume that∫
Sj
dy = 1.

Two classical choices areµj(y) = δ(y − yj) [8] or
µj(y) = 1 [9] which gives an average measure. Results
presented hereafter do not depend on the choice ofµj .



Connections: For one neuronal positionx ∈ Rn, we
assume it is connected to a finite set ofM samples
{y1, . . . ,yj , . . . ,yM} in a neighborhoodS aroundx.

Considering a biological neural network, it is important,
due to the huge complexity of the underlying mechanisms,
to consider the weakest assumption about how each sample
neighborhoods. More precisely consider overlapped neigh-
borhoodsSj ∩ Si 6= ∅ or partial partitioning∪jSj * S are
allowed (see Fig. 1).
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Fig. 1. Schematic representation of the sample neighborhoods.

In order to related the continuous specification (defined in
Section II) to the discrete implementation (detailed in Section
III) based on such connectivity we must relate the discrete
measuresv(yj) to the underlying continuous quantity. In
the derivation of the main result in [7] reported here, this
link relies on the followingsummation propertydefining a
measureµ(y):

v(x) =
∫
S
v(y)µ(y) dy

=
∑
j

∫
Sj

v(y)µj(y) dy +
∫
S−∪jSj

v(y)µ•(y) dy,
(1)

defining µ•(y) as the measure density where no sample
is available. This formula simply states that measures are
linear related, i.e. that the different samples are combined
additively. It is verified by any sampling model [8], [10],
[11], [9], although often implicitly and not at this level of
generality.

III. SPECIFICATION OFCORTICAL MAP COMPUTATION

According to generative approaches [1], [6], [4], the cor-
tical map computation can be modeled as an optimization
problem. Let us state this in the very general form proposed
in [7].

Given an input mapw, one look for an output map̄v
verifying

v̄ = argmin
v∈H/c(v)=0

L(v), with (2)

L(v) =
∫
|ŵ −w|2Λ +

∫
φ(|∇v|L) +

∫
ψ(v), (3)

and ŵ = Pv, (4)

where∇ stands for the gradient operator,φ(·), ψ(·), P, c(·),
Λ andL are commented hereafter. The norms defined in (3)
are weighted norms defined by|u|M = uTMu, whereM

is, whenu is a vector, a symmetric positive matrix, while
whereM is a tensor ifu is a matrix.

Figure 2 is a representation of the model (2)–(4). The first
term in (3) is a fidelity attached term specifying how the
output is related to the input, the second term is a smoothing
term which defines the regularity of the output and the third
term allows to constraint the form of the solution. The equa-
tion (4) shows the choosen relation between the estimation of
the input given an output. So the formulation (2)–(4) specifies
the cortical map computation in the sense that it explains the
“goal”, what is to be done, but without any reference to how
it is done. The rest of this section is devoted to the analysis
of each term.
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Fig. 2. Cortical map computation: how to obtainv from w? Note that the
output is used to modify model parameters and to have an estimation of the
input map.

The functionsΛ : Rn → S+
mH, whereS+

m is the set of
square symmetric positive semi-definite matrices of sizem,
defines a so-calledmeasurement information metricwhich
represents
• The precision of the input: the higher this precision in

a given direction, the higher the value ofΛ in this
direction (in a statistical framework,Λ corresponds to
the inverse of a covariance matrix);

• Partial observations and missing data: if the input is
only defined in some directions, it corresponds to a
matrix Λ definite only in these directions (e.g. if only
defined in the directionu, Λ = k uuT for somek), if the
input is missing we simply have to stateΛ = 0.

The functionsL : Rn → Tn×np×p , where Tn×np×p is the
set of twice symmetric matrix metric tensors, defines a
diffusion tensorL, which is symmetric and positive (i.e.
∀M,MT LM ≥ 0). The weighted norm of∇v is modulated
by a functionφ : R → R which controls the amount of
smoothness required. For example,φ(s) = s2 is called a
Tikhonov penalty term: it strongly penalizes variations of
v (high cost in the energy for high gradients) so that the
resultingv will be oversmoothed. If one want to preserve
edges, i.e. the discontinuities ofv, it is necessary to choose
a smoothing term less penalizing. Severalφ functions have
been proposed (see [12] for a review and discussion): the
function φ(s) =

√
1 + s2, convex and with linear growth

at infinity. Not only the smoothing is weaker but also it
allows to have smooth solutions in homogeneous regions,
with sharp discontinuities. Furthermore,L may be a function
of v defining a feed-back as developed in the sequel.

When a problem is ill-posed, i.e. if there are many (and
usually numerically unstable) solutions, adding some a priori



on the smoothness of the solution is the key idea to have a
problem well-posed. When the input function is partially or
approximately defined at some points, as discussed previ-
ously, the value at such a point is defined using information
“around” which diffuses (as discussed now) from well-
defined values to undefined or ill-defined values.

Three kinds of constraints are introduced in (2)–(4):

• Structural constraints, written c(v) = 0, force the
solution to belong belong to a manifold defined by
implicit equations. For example, to represent an orien-
tation θ ∈ [−π..π] we considerv = (p, q) with p =
cos(θ) and q = sin(θ) well-defined by the constraint
c(v) = p2 + q2 − 1 = 0. This Euclidean embedding of
an orientation allows one to estimatep and q without
considering parametrization issues around±π. So the
proposed framework is very general regarding non-
linear object representations (see e.g. [5] for a general
discussion).

• Optimization constraints(via the ψ(v) term of the
criterion) simply allows to weakly constraintv to get
closer to a given set of solutions (e.g. the binarization
term in the winner-take-all mechanism experimented in
the sequel).

• Measurement constraintsbetween both the input and
the quantity to estimate (via the “measurement” relation
ŵ = Pv). It is known that in order to obtained an
unbiased estimation (e.g. [5]) the measure itself has to
be estimated, which corresponds to integrateŵ in the
estimation, thus inv, as made explicit via the relation
linear relationP.

In the cortex, such “neuronal unit” is a cortical hyper-
column. Our model can be be mapped onto usual compu-
tational model of cortical columns processes (see also [2]
for a treatise on the subject). Regarding such a “processing
a cortical map being a discrete implementation of such
neural units network (see e.g. [13]), we propose in table I
a possible interpretation of such an abstract analog network.
This mapping is to be understood as a working assumption.
It also make explicit the scale at which such analog networks
should be situated. This mapping has the chance to be

w Extra cortical input or intra-cortical input
from previous layers

v Extra cortical or backward intra-cortical
output

σij Local connections weights
Λ,L Remote backward connections

Iterative operations Internal connections

Variables of the models can be interpreted with respect to a cortical column
connectivity.

TABLE I

compatible with the laminar architecture of the cortex or
neocortex [14], [15] and with the related inter-layer circuitry.
Excitatory but also inhibitory connectivity is included in the
diffusion term as detailed in [9].

IV. T HE NETWORK COMPILATION RULES

The solution of (2)–(4) can be implemented using a
discrete network as defined in the following proposition.

Proposition 4.1: The optimization problem(2)–(4) is, in
the general case, locally minimized by the following lin-
earized differential equation:

∂vi
∂t

= −εi(vi) +
∑
j

σij(vi)vj + κiwi (5)

with: 
εi(v) = ρi v + ξ ∂c∂v

T
c + ∂ψ

∂v

T
,

ρi =
∑
j σij + PT ΛiP,

κi = PT Λi,

(6)

and ξ = (1 − λ) |∂L∂v |/|
∂c
∂v

T
c| with λ � 1. The weights

σ = (σij) are given by considering the linearized optimal
integral approximation up to orderr (r ≥ 2) of the non-
linear diffusion operator

L̄ = φ′(|∇v|L)L, (7)

defined atM points, providingM > (n+r)!
n! r! − n (n+1)

2 . They
are given by solving the systems:

L̄kl(xi) = 1
2

∑
j σij µ̄

ek+el
j (x),

divk(L̄(xi)) =
∑
j σij µ̄

ek
j (x),

(8)

where1: µ̄αj (x) =
∫
Sj

(y − x)α µj(y) dy, while:

∀i,
∑
j σij µ̄

α
j (x) = 0 2 < |α| ≤ r (9)

Among allσij verifying (8) and (9) we choose those which
verify (here|σij |2 represents theL2 norm):

min
∑
ij

|σij |2, (10)

�
What is meant by general in the previous proposition is

the fact (5) relates on the Euler-Lagrange conditions of (2)
in which the integral approximation of the diffusion operator
has been introduced. Timet is thus related to the convergence
of the minimization. This is a necessary condition which
leads to the solution of (2) at the convergence (see e.g. [12]
for details on such methods).

Integral approximation of the diffusion operator:Integral
approximation of differential operators have been introduced
in the field of neural networks by Cottet et al. [16], [17],
[10], [11] and presented in the present form in [7], where
the derivation of the present proposition is available. In
particular, the present form provides an alternative to the
use of so-called particles methods (e.g. [8]) which neural
interpretation is weaker.

It is important to note, as demonstrated in [8], that this
integral approximation is not only closed to the related dif-
ferential operator, but that it also leads to sampled solutions

1We use the standart multi-index notation, for vector of integer indices
α = (α1, . . . , αn) ∈ Nn and |α| = α1 + . . . + αn

andxα = xα1
1 . . . xαn

n



which are closed to the continuous solutions. This is due to
the factL is a positive operator.

Regarding the fact we limit the approximation up to order
r, since for a constantK:

µ̄αj (x) ≤ K [|σεkl|0,∞/(|α|+ 1)] ε|α|+1,

as shown in [11],µ̄αj becomes arbitray small so thatun-
biasnessconstraints (9) are automatically verified up to a
negligible quantity when|α| increases.

In the form of the previous proposition, these approxima-
tions are based on the summation property (1) and provide a
direct link between a discrete integral approximation and the
continunous differential operator, without the introduction of
a “discretization” step. This is an improvement with respect
to [11], [8].

In fact, not only the optimal approximation defined
by (10), but awhole family of kernel(the linear sub-space
defined by (8) and (9) implements a diffusion operator,
including unbounded kernels [8], thus allowing to represent a
rather large class of networks as detailled in the next section.

Implementation of the network:Since the present inte-
gral approximation is obtained from a quadratic minimiza-
tion (10) with linear constraints (8) and (9), it is well-defined
and the solution is a closed-form linear function ofL̄ and
div(L̄). Furthermore, this linear function is only defined
by the network sampling, because only function ofµ̄αj (xi).
Furthermore, it appears that the coefficientsσij can also
easily derived from a Hebbian rule (see [7] for details).

As a consequence, the network parameters defined in (6)
are directly given in closed-form from the specification
equationsP, c(·), ψ(·) and parametersΛ and L. They are
“compilable” and:

• εi contains a positive leakage term and corrective terms
related to the constraint to verify;

• κi acts as a gain product proportional to the input
reliability as in usual, less general analog networks.

As made explicit in [7], the coefficientξ must besmall
enough to decreaseL and high enough to maintainc(v) =
0, which is obvious to adjust numerically, avoiding the
explicit computation of the related formula. When non-linear
constraints are not considered,ξ = 0.

V. REPRESENTATION OFANALOG NETWORK

Let us now detail to which extends we can relate a given
analog network to a criterion of the form (2)–(4).

Proposition 5.1: Given a network dynamic of the form

∂ui
∂t

= −εi(ui) +
∑
j

σij(ui)vj + κiwi (11)

with vi = Sig(ui), as soon as the weigthsσij are unbiased,
i.e. verify (9), locally minimizes in the general case the
criterion: ∫

|ŵ −w|2 +
∫
|∇v|2L +

∫
ψ(v), (12)

with ŵ = κT v, ψ =
∫
ε− [

∑
j σj + PTP]v andL defined

by (8). �

This result is applicable to analog Hopfield network (as
detailled e.g. in [11]) and to the very powerful class of
models Cohen and Grossberg dynamical system (e.g. [18],
[19]) for which it has been shown [7] that the previous result
is applicable.

Here a sigmoidal non-linearity is introduced between the
neuronal state input and ouput as illustrated in Fig. 3. The
result is in fact true with or without this non-linear term [7].

u

(Sigmoid function)
Sig

v = l(v) uv=      (u)Sig
. .

Fig. 3. In analog networks a sigmoidal non-linearity (denoted by Sig)
is introduced between the neuronal stateu ∈ RN (usually related to the
membrane potential) and the neuronal outputv ∈ [0, 1]N (usually related
to the average firing rate probability).

One add-on of this specification is that convergence of the
network is demonstrated without the restrictive assumption
of symmetry of the weightsσij (e.g. [18]).

This representaton is well-defined for neural network
connectivity with short-range connections, since this con-
nectivity implements a local diffusion operator. Network
mechanisms based on remote connections are not expected to
have unbiased weigthsσ, thus are not correctly represented
in this framework.

VI. STABLE INTERACTION BETWEEN MAPS

The cortex can be considered as a hierarchy of cortical
levels with reciprocal extrinsic cortico-cortical connections
among the constituent cortical areas. This notion of a hi-
erarchy depends upon a distinction between forward and
backward extrinsic connections. This distinction rests upon
different laminar specificites (see e.g. [20], [6] for a review).
Main properties are summarized for the visual system in table
II.

It is important to emphasize that forward/backward con-
nection is not only an “anatomical” but also a “functional”
distinction. Furthermore, feedback from one area to another
use backward connections, eventually in the very early part
of the processing of a given input [20]. As a consequence,
given an input, backward connections are not necessarily
acting “after” forward connections but as soon as a forward
connection feed a backward one.

Let us formalize these interactions, considering several
cortical maps̄vm and defined as previously:

v̄m = argmin
vm∈H/cm(vm)=0

Lm(vm),



Forward connections Backward connections

Sparse axonal bifurcation Frequent bifurcation
Patchy axonal terminations Diffuse axonal terminations

Topographic projections Non-topographic projections
One-to-one / small divergence Large spatial divergence

Define a lattice Transcend several levels
Slow time-constants

More numerous

Forward connections are ”driving” for promulgation and segregation of
sensory information. Bacward connections are ”modulatory” for mediation
of contextual effects, co=ordination of processing. This table describe their
main caracteristics.

TABLE II

from (2)–(4) all quantites being indexed by the map index
m.

Here, each cortical map value can tune the other map
computations, modifying the parametersΛm and Lm. The
key point is that we use what has been observed in the cortex
(e.g. [6]) to introduce three constrains:

• Feedback values are smoothed in space, before influ-
encing other maps,

• A cortical map value modifies its state and may also its
own parameters,

• Forward connections define a lattice (thus without loop).

Let us writeS the smooth operator. Here we consider a
spatial smoothing. In practiceS is likely a spatio-temporal
smoother, with a small delay temporal low-pass filter. From
the biology, the assumption is that feed-back are able to
induce very rapid changes thus induce only very small
delays. The main result proposed here is compatible with
the introduction of such a delay.

Furthermore, a rectification functionρ(·) is also intro-
duced, e.g.ρ(u) = max(u, 0) to take into account the fact
that only positive quantities is output by cortical maps.

The vectorv• = (· · ·vm, · · · ) is the concatenation of all
cortical maps values. It also corresponds to thebackward
connections onto any map, since we do not introduce any
restriction at this stage.

We thus formalize feed-back connections considering
Λm(S ∗ ρ(v•)) andLm(S ∗ ρ(v•)) as continuous derivable
functions.

A feed-forward connection from a cortical map of index
m to a cortical map of indexm′ corresponds to the fact
that wm′ = ρ(vm). Our understanding of the cortical maps
interactions is that they form a graph with no cycle.

The situation is very different when backward connections
interact: several criteria are to be minimized simultaneously,
yielding a apparently very complex dynamical system, with
the risk of interferences, oscillations, chaotic behavior, etc..

Thanks to biologically plausible properties introduces
here, a solution of this problem is based on the following
fact.

Proposition 6.1: Locally minimizing the criteriaLm with
respect tovm is equivalent to locally minimize with respect

to v•, in the general case:

L• =
∑
m

λ(|∇mLm|)Lm (13)

writing ∇m = ∂/∂vm and λ(·) : R+ → R+ a positive
strictly increasing profile with

λ(u) ≥ 0, λ′(u) > 0, λ(0) = 0 and lim
u→0

λ′(u)/u < +∞.

(e.g.λ(u) = uα with α > 2).
Furthermore, locally minimizing each criterionLm us-

ing (5) locally minimizes the common criterionL• as soon
as the functionsψm(·) are convex. �

The criterion defined in (13) provides a view of what is a
common objective for the different cortical maps computa-
tions.

This is a crucial fact, because it means that minimizing
each criterion is a convergent process, since it corresponds
to a common criterion minimization. As a consequence,
we have a formal verification that feedback links in our
framework yields a well-defined process.

The fact ψ(·) is convex restrains the specification to
specific criteria and appears to be an important requirement
as visible in the derivation of the proposition.

This derivation is given in the appendix and is based on
two remarks:

(1) In the absenceof backward connections, the final
result is easy to predict: given some inputs, each iterative
computation in a cortical map yield a stable result and from
upstream to downstream this stable result propagates. This is
the case for very fast brain computation [21] where, due to
very short latencies, only feed-forward computations occur.

(2) When backward connections are active, the conver-
gence is preserved by the fact that spatial smoothing allows
to neglect possible perturbations from feedback loops onto
the minimization process.

The previous derivation also describes qualitatively how
interactions between different cortical maps occurs:

• Backward connections have a constant influence in the
sense that they can very rapidly tune the processing of a
cortical map but do not interfere with the convergence
inside a such a map, they propagate information be-
tween the cortical maps, in a stable way; very fast prop-
agation can occur in “one step”, i.e. without inducing
transient effects;

• Forward connections act as a “data propagation” though
the related lattice and may induce transient effects on
downstream layer;

• If a cortical map input is changed (because the cortex
inputs vary dynamically) the overall process is still
convergent.

VII. E XAMPLE 1: EDGE-PRESERVINGSMOOTHING

Let us revisit an edge-preserving smoothing approach
proposed by Cottet and Ayyadi [10] which corresponds to
the framework presented in this paper. In [10], given an



initial imagew : R2 → R, the authors proposed a diffusion
processes of the form :

∂v
∂t

= l(v)∆L(v)v

wherel = 1/Sig−1, which is in fact related to the minimi-
sation of the criterion

v̄ = argmin
v

L(v) = λ

∫
(w − v)2 +

∫
|∇v|2L, (14)

whereλ is a small constant andL is defined by

L =
[
ρ2 Pg⊥ +

3
2

(1− ρ2) I
]

(15)

with


g = S ?∇v,
ρ = min

(
1, |g|

2

s2

)
,

Pg⊥ =
(

g2
2 −g1g2

−g1g2 g2
1

)
,

where s is the contrast threshold,τ is an adaptation time
constant andS is a spatial smooting kernel.Pg⊥ is the 2D
projection ontog⊥, thus on the edge tangent,g being aligned
with the edge normal direction. Depending on the norm of
the gradient of the intensity, the smoothing term will infer
two kinds of behaviors:
• For low contrasts, whenρ is close to zero, we haveL ≡

I: the smoothing term is quadratic which corresponds to
an isotropic smoothing in the Euler-Lagrange equation.

• For high contrasts, whenρ is close to one, we have
L ≡ Pg⊥ : the smoothing term will perform anisotropic
diffusion only in the normal direction to the edges.

Fig. 4 shows some comparison of this adaptive linear diffu-
sion process compared with classical linear diffusion. Thanks
to the short-term adaptation of the diffusion tensorL discon-
tinuities are preserved. The adaptive rule (15) corresponds to
a Hebbian rule at the implementation level [10], and it can
interpreted as a feedback link from previous estimation ofv
onto the forward diffusion process (see the dotted arrow in
Fig. 2).

It has been formally shown [10] that combining short-term
adaptation with the diffusion process is a convergent process:
the key point is that the feedback fromv to L is smooth in
space and time.

Note that contrarily to [10],we have not introduced here
a non-linearity as discussed for (11): we have implemented
a linear neural-network as in (5). We verified experimentaly
that this non-linearity is not determinant and does not influ-
ence significantly the resulting image.

At step ahead, in [10], a temporal filtering is introduced
in the feedback. Thus, it is not directlyL but an exponential
temporal filtering ofL which is taken into account. Propo-
sition 6.1 prediction is that such a low-pass filtering is not
required and we have been able to verify this fact in this
context. More precisely, we have experimented that a small-
delay (0 .. 10 times the sampling period) low-pass filter does
not significantly influence the result, whereas higher delays
inhibit the feedback, inducing a convergence with only a poor
edge-preserving smoothing.

Initial image Isotropic Anisotropic

Fig. 4. Two examples of results using anisotropic diffusion (right image),
the 1st example being the same as in [10] to validate the present method.
The original image is on the left. As a comparison, a Gaussian filtering
(isotropic diffusion) is shown in the middle. The synthetic image contains
a huge (80%) amount of noise. The real image contains features at several
scales. In both cases edges are preserved, while an important smoothing has
been introduced (from [9]).

Input Intermediate Output

Fig. 5. Two examples of result for the winner-take-all mechanism
implemented using the proposed method. The very noisy (more than 80%)
original image is on the left; the intermediate result shows how diffusion is
combined with erosion yielding the final result, shown also with a zoom.
Clearly the focus is given on the main structures of the image, We have
experimented a correct behavior on many different inputs.

VIII. E XAMPLE 2: THE WINNER-TAKE-ALL (WTA)

Let us now describe how WTA mechanism can be written
in this framework.

WTA mechanisms are usually realized (e.g. [22], [23],
[18]) using an ad-hoc mechanism with an explicit definition
of inter-neuron inhibition in order to allow one neuron to
maintain its activity whereas all other activites vanish. They
are used in may neuronal computations (see the review in
[22]) and the way they could be implemented is still an issue.
It is thus a important test for the present method to verify if
such a mechanism is easily formalized.

Given an initial conditionw, one look for a solution̄v



verifying

v̄ = argmin
v

L(v) =
∫

(w−v)2 +
∫
|∇v|2 +

∫
ψ(v) (16)

whereψ : [0, 1] → R is a bi-modal function, for example

ψ(v) = v2 t/(1−t)(1− v)2,

with ψ(0) = ψ(1) = 0 and φ′(t) = 0 in fact maximal
at t ∈]0, 1[> 1/2. This previous expression is the simplest
polynomial profile with the suitable craracteristics: this non-
linear term will force the values of the network to be zero
or one, with a bias towards the zero value.

Formulation (16) is directly related to the general frame-
work (2–4) where no constraint is used andP ≡ I.

In Fig. 5 an example of result is shown, with an adaptive
profile ψ′(·) (the thresholdt is initialized to the distribution
mean and incremented/decremented during the process to
maintain a small binarization with respect to diffusion). The
iteration is stopped when the output has a predefined small
size.

This very simple mechanism shows how the present for-
malism may provide a complementary view with respect to
other analog network approaches [23], [18].

IX. CONCLUSION

In this paper we revisited the links between high-level
specification of how the brain represents and categorizes
the causes of its sensory input and related analog. We
represented what is to be done as an optimization problem
with regularization terms and showed how to to compile
the related analog or spiking neural network parameters.
Although requiring non-negligible derivations, the present
technical developments are rather elementary in the sense
that we deliberately avoid using the theory of functional
spaces to specify and derive our results.

It appears that not only analog networks but also deter-
ministic spiking neural network can be linked to the present
specifications. With piece-wise approximations in the so
called Spike Response Model [24], it has been possible to
map equation (5) of the present framework on a spiking
neural network

• The resistive coefficientρi being proportional to the
spiking threshold;

• The weightsσij being in direct relation with the synap-
tic weights;

• The corrective termεi being controlled by the axonal
delay;

• The input gain beingκi controlled by the input resis-
tance;

with closed-form correspondence allowing to explicitly cal-
culate the neural network parameters given an abstract con-
tinuous representation. This also leads to a fast event-based
simulation of such networks. This is a perspective of this
work, drafted in [7] following the work of [25], [26] and it
will be the next step regarding the present development.
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APPENDIX

Let us derive the proposition 6.1. In (i) we show that if all
Lm are minimal so isL•, in (ii) we derive the reciprocal
statement, in (iii) we show that, when no forward links,
applying (5) minimizesL• and in (iv) we finally show that
it is still true with forward links.

(i) if all Lm are minimal with respect tovm, then
∇mLm = 0 thus λ(|∇mLm|) = 0 and L• = 0, but L•
is also positive as a sum of positive terms, so that0 is its
minimal value, now attained:L• is thus minimal.

(ii) If L• is minimal, its gradient vanishes, i.e.
∇•L• = (· · ·∇mL•, · · · ) = 0, writing ∇• = ∂/∂v•
but:

∇mL• =
∑
n λ(|∇nLn|)∇mLn+

λ′(|∇nLn|)∇m(|∇nLn|)Ln
Let us rewrite this condition :

∀m 0 = ∇mL• = λ(|∇mLm|)∇mLm + γm
with γm =

∑
n 6=m λ(|∇nLn|)∇mLn +∑

n λ
′(|∇nLn|)∇m(|∇nLn|)Ln.

These two vectors∇mLm andγm have a “huge” dimen-
sion

dim(∇mLm) = dim(γm) = dim(v)
i.e. the dimension of the map (the number of neurons). In the
general case, there are independent, becauseγm contains, if
generic, terms which do not linearly depends on∇mLm. As
a consequence, their sum being equal to zero, both vectors
must vanish so that

λ(|∇mLm|)∇mLm = 0 ⇒ ∇mLm = 0
The gradients of allLm vanish, so that these quadratic

criteria are locally minimized.
(iii) Let us write:

Lm =
∫
|Pvm −wm|2Λm(S∗ρ(v•))+

φ(|∇vm|2Lm(S∗ρ(v•))) + ψ(vm)
From a few algebra:

∇mLn = ∇εmLn+

PT Λm [Pvm −wm]−∆L̄m
vm +∇ψ(vm)

if m = n
ρ′(vm)Λn [wn − p(vn)]

if wn = ρ(vm)
0

otherwise
writing ∇εmLn = 1

2

[
|Pvn −wn|2∇mΛn

+ |∇vm|2∇mLn

]
while L̄ has been defined in (7).

Because of the action of the spatial smoothing operator:
∇mΛn = ∇[Λn(S ∗ v•n)]

= ∇Λn(S ∗ v•n) [∇S ∗ v•n]
has a small magnitude since, by definition, of a smoothing
operator|∇S| is small, say|∇S| = o(1/ω), whereω is the
smoothing filter window size (e.g. for an isotropic Gaussian

filter S(u) = 1/
√

2π/ωe−
1
2
|u|2

ω2 the reader can easily verify
that|∇S| = o(1/ω1+dim(v)/2). This is also true ifS contains
some small temporal filtering, since the gradient|∇S| is still
negligible in this case, from the previous arguments.

Similarly ∇mLn = o(1/ω). As a linear combination of
small quantities,∇εmLn is thus small and we can write:

|∇εmLn| = o(1/ω)

A step further, from (5) and (6):
∇2
mLm

= ∇m
[
PT Λm [Pvm −wm]

−∆L̄m
vm +∇ψ(vm)

]
+ o(1/ω)

' ∇m
[
PT Λm [Pvm −wm]

−
∑
j σn.jvnj +

∑
j σj vm +∇ψ(vm)

]
+ o(1/ω)

= PT ΛmP +
∑
j σj +∇2ψ(vm) + o(1/ω)

Here∇2
mLm is the sum of positive symmetric matrices, since

∇2ψ is positive assumingψ(·) is convex, while
∑
j σj is

positive becausēL is positive [7].
Yet another step further:
∇mL•
=

∑
n λ(|∇nLn|)∇mLn + λ′(|∇nLn|)∇m(|∇nLn|)Ln

=
∑
n λ(|∇nLn|)∇mLn + λ′(|∇nLn|)

|∇nLn| ∇nLn ∇m∇nLn
=

∑
n λ(|∇nLn|)∇mLn + λ′(|∇nLn|)

|∇nLn| ∇nLn ∇n∇mLn
this expression being well defined even for small
∇nLn, i.e even when closed to the optimum, because
limu→0 λ

′(u)/u < +∞.
Without forward link (i.e. no(m,n) with wn = ρ(vm))

we have noticed that whenn 6= m, |∇mLn| = |∇εmLn| =
o(1/ω) so that the previous expression reduces in this case
to:

∇mL• = λ(|∇mLm|)∇mLm+
λ′(|∇mLm|)
|∇mLm| ∇mLm∇2

mLm + o(1/ω)
Let us rewrite (5) as:

∂vm
∂t

= −∇mLTm − βm

where βm ≡ ∂cm

∂vm

T
cm(vm) has been calculated when

deriving (5) to maintain:
∇mLm (∇mLTm + βm) > 0

while βm → 0, because (5) drivescm(vm) → 0 whatever
the minimization process is [7].

This yields:
−∂L•
∂v

= −∇•L• ∂v•∂t
= −

∑
m∇mL•

∂vm
∂t

=
∑
m∇mL• (∇mLTm + βm)

=
∑
m

[
λ(|∇mLm|)∇mLm (∇mLTm + βm)

+ λ′(|∇mLm|)
|∇mLm| ∇mLm∇2

mLm (∇mLTm + βm)
]

+o(1/ω)
As a consequence, without forward links, the previous

expression is a sum of positive terms, so that−∂L•
∂v

> 0
and it appears that minimizing each criterion yields to the
global minimization of the criterion.

(iv) Considering now forward links, let us consider at time
t0 the subsetv•0 = (· · ·vn, · · · ) of cortical maps values
which do not receive any forward connection, i.e. which are
only connected to inputs. This defines a sub-lattice without
forward connections. The related criterionL•0 is thus strictly
decreasing and reaches its minimum, thanks to what as being
discussed previously. Let us now consider the subsetv•τ =
(· · ·vn, · · · ) of cortical map values which do not receive any
forward connection, except fromv•τ−1 . BecauseL•τ−1 is
already minimized, forward links do not influence the related
criterion L•τ

which is thus strictly decreasing and reaches
its minimum, By induction it appears thatL• is minimized.


