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Abstract—High-level specification of how the brain repre- In the present approach, the map computation problem is
sents and categorizes the causes of its sensory input allows toformalized as a minimization problem define in equation (2).

link *what is to be done” (perceptual task) with *how to do it” e reader is advised to consider the previous references for
(neural network calculation). More precisely, a general class of further details

cortical map computations can be specified representing what . . . ) ) .
is to be done as an optimization problem, in order to derive the ~ We start in Section Il by introducing main definitions.
related neural network parameters considering regularization In Section 1ll, we propose to model one cortical map by
mechanisms (implemented using so-called partial-differential- variational formulation in the continuous setting. In Section
equations). - o _ IV, we show how to pass from this continuous variational
adg-hoeng. reI?eir;t ;%ngfitz'zg rte(;/ 'S;tslégirf ri:gglvo;llf mghn-tlri]rr\(::\r) formulation to the reIaFed discrete ngural network. In Sec_tion
map computations, including winner-take-all mechanisms. The V We consider the reciprocal result, i.e. how to relate a given
capability to represent standard “analog” neural network and  neural network to a variational apporach? Section VI extends
guaranty their convergence, providing their weights are local this framework it is shown that not only one map but a
and unbiased, is made explicit. The fact that not onlyone but — graph of maps can be specified in this framework to several
\fve‘,jl\;eggl s%(g\t,\'l%él maps can interact, with feed-backs, in a stable cortigal maps, under some biologica!y plausible assumptions.
Two experiments are provided as an illustration of this Sections VIl and VIl revisit some existing approaches under

general framework. the proposed framework, with some illustrations.
II. MAP INPUT, OUPUT, SAMPLING AND CONNECTIVITY

. . . Let us introduce main definitions and assumptions. The
Perceptual processes architecture, in computer or biolo

ical vision [1], [2], is based the computation of “maps” Ofgﬁecifications and the derivations of the proposed framework

o X . _.are explictly based on these choices so we have to make
guantitative values. Such maps encode retinotopic quantitigs Plcty

. . . em explicit first.
such as contrast magnitude, contrast orientation related he goal of neural map computation is to obtain an ouput
edge orientation, shape curvature, binocular disparity rEIat?ﬁjapv . R" — RP, from an input mapw : R® — R
to the visual depth, color cues, temporal disparity betwe%"ased on a variati(;nal approach. For example, rfor: 2’
two consecutive images in relation with visual motion dete h : ’

She spaceR? could be a representation of the retina domain,

Itlon,tietg. Oéh?r ll”napstﬁr(: notror?]lytp?rametrlz:aidnt;ytze'tqln(:tct)i[:r)]%c\:ll the retina intensity withy = 1 (or ¢ = 3 if color) and
ocations, but aiso ofher paramete s_(g.g. orientation, reindlihe motion estimation. We assume that the functiens
velocity, etc.) or more abstract quantities [3].

Usi | ¢ lued . ; tant feat andw belong to a dense linear subset of an Hilbert space
sing a scalar or vector valued map is an important featurg -, o precisely the Sobolev spaBle— W*>(R"). Note

whehn addres?mgi thelmodellzéatlolr: of cort|c|a| prhocleszlnfg l_mlltﬁat vectors, and also matrices, are written in bold characters,
such as cortical columns [2]. It may also help de NINGL atrices with capital letters and scalars in italic.
improved models of neurons or small neuronal assembhes,m Section Il we consider a continous framework because

where the state is not only defined by a scalar membra%S is the simplest way to specify the map computation. This

potential [A,']' ) , is however not exactly the gound truth of the neural units.
Introducing non-linear constraints between the map com- Sampling: In fact, if considering the micro-columns of a

ponents has several advantages, one is to take noisy measy&§ica| map [2], there is a clear sampling of the underlying
into account avoiding statistical bias (see e.g. [5] or qntinyous quantities. In Section IV we deal with such neural
development), another is to define physical parameters (€ york implementing map computations, only defined at a
3D orientation) with complex structure. finite set of positiong/; € R™. The value of the map aty,

High-level specification [1], [6], [4] of such map com-is 4 measure in a small neighborhoSd aroundy; defined
putation, as reviewed for instance in [7], consider the estj;

mation process as a mechanism which iteratively corrects

the output in order to correctly predicts the input (i.e. v =v(y;) :/_V(YWJ'(Y) dy,
with Expectationwhich “infers” the output from the given !

inputs andestiMationwhich “predicts” the input from “a- ) ,
priory” estimates of output). In the Bayesian frameworiscale factor and without loss of generality, we assume that
(but not only) this correspond to a criterion optimization,/s; dy = 1.

e.g. finding the “maximally probable output given the input. WO classical choices arg;(y) = d(y — ;) [8] or
w;(y) = 1 [9] which gives an average measure. Results
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where 11;(y) is the measure density i§;. Up to a simple



Connections: For one neuronal positiox € R™, we s, whenu is a vector, a symmetric positive matrix, while
assume it is connected to a finite set 8f samples whereM is a tensor ifu is a matrix.
{y¥1,-..,¥j,...,ym} in a neighborhood aroundx. Figure 2 is a representation of the model (2)—(4). The first

Considering a biological neural network, it is importantterm in (3) is a fidelity attached term specifying how the
due to the huge complexity of the underlying mechanismsutput is related to the input, the second term is a smoothing
to consider the weakest assumption about how each samf#em which defines the regularity of the output and the third
neighborhoods. More precisely consider overlapped neigterm allows to constraint the form of the solution. The equa-
borhoodsS; N'S; # (0 or partial partitioningu,;S; ¢ S are  tion (4) shows the choosen relation between the estimation of
allowed (see Fig. 1). the input given an output. So the formulation (2)—(4) specifies
the cortical map computation in the sense that it explains the
“goal”, what is to be done, but without any reference to how
it is done. The rest of this section is devoted to the analysis
of each term.
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Fig. 1. Schematic representation of the sample neighborhoods.
Fig. 2. Cortical map computation: how to obtainfrom w? Note that the
In order to related the continuous specification (defined isutput is used to modify model parameters and to have an estimation of the
Section I1) to the discrete implementation (detailed in SectioPut map.
[l) based on such connectivity we must relate the discrete . .
measuresv(y;) to the underlying continuous quantity. In  The functionsA : R™ — ST H, where S is the set of
the derivation of the main result in [7] reported here, thi§quare symmetric positive semi-definite matrices of size
link relies on the followingsummation propertylefining a defines a so-calletheasurement information metrighich
measureu(y): represents
« The precision of the inputthe higher this precision in
/ v(y) uly) dy a given direction, the higher the value of in this
(1) direction (in a statistical framework\ corresponds to
=3 / y) dy +/ v(y) e (y) dy, the inverse of a covariance matrix);
§-U;8 « Partial observations and missing datd the input is
defining . (y) as the measure density where no sample only defined in some directions, it corresponds to a
is available. This formula simply states that measures are matrix A definite only in these directions.g. if only
linear related, i.e. that the different samples are combined defined in the directions, A = kuu” for somek), if the

additively. It is verified by any sampling model [8], [10], input is missing we simply have to state= 0.
[11], [9], although often implicitly and not at this level of ~ The functionsL : R" — T;)", where T;)" is the
generality. set of twice symmetric matrix metric tensors, defines a

diffusion tensorL, which is symmetric and positive (i.e.
[1l. SPECIFICATION OFCORTICAL MAP COMPUTATION vM, M7” LM > 0). The weighted norm of/v is modulated
According to generative approaches [1], [6], [4], the corpy a function¢ : R — R which controls the amount of
tical map computation can be modeled as an optimizatiasmoothness required. For examplgs) = s> is called a
problem. Let us state this in the very general form proposerikhonov penalty term: it strongly penalizes variations of

in [7]. v (high cost in the energy for high gradients) so that the
Given an input mapw, one look for an output mag  resultingv will be oversmoothed. If one want to preserve
verifying edges, i.e. the discontinuities of it is necessary to choose
V= argmin L(v), with @ a smoothing term less penalizing. Seve:balungtions havg
vEH /e(v)=0 been proposed (see [12] for a review and discussion): the
function ¢(s) = v1+ s2, convex and with linear growth
/|W wla +/¢> [Vv[L) /1/) (3) at infinity. Not only the smoothing is weaker but also it

allows to have smooth solutions in homogeneous regions,
with sharp discontinuities. Furthermoie,may be a function
whereV stands for the gradient operatex ), ¥(:), P, c(-), of v defining a feed-back as developed in the sequel.

A andL are commented hereafter. The norms defined in (3) When a problem is ill-posed, i.e. if there are many (and
are weighted norms defined by|ny = u”Mu, whereM  usually numerically unstable) solutions, adding some a priori

andw =P,



on the smoothness of the solution is the key idea to have a IV. THE NETWORK COMPILATION RULES

problem well-posed. When the input function is partially or The solution of (2)—(4) can be implemented using a
approximately defined at some points, as discussed preyiscrete network as defined in the following proposition.
ously, the value at such a point is defined using information

“around” which diffuses (as discussed now) from well- proposition 4.1: The optimization proble(@)—(4) is, in

defined values to undefined or ill-defined values. the general case, locally minimized by the following lin-
Three kinds of constraints are introduced in (2)—(4): earized differential equation:

« Structural constraints written c(v) = 0, force the ov;
solution to belong belong to a manifold defined by ot _ei(vi)+zaii(vi)vﬂ' T Ri Wi (5)
implicit equations. For example, to represent an orien- J
tation § € [—x..7] we considerv = (p,q) with p =  with: . .
cos(f) and ¢ = sin(f) well-defined by the constraint €(v) = piv+§% c+ g—f ,
c(v) = p? +¢®> — 1 = 0. This Euclidean embedding of pi = >..045+PTAP, (6)
an orientation allows one to estimagteand ¢ without Ki 7,

considering parametrization issues arouhd. So the T _ '
proposed framework is very general regarding norend ¢ = (1 —X)[§¢1/I55 ¢/ with A < 1. The weights
linear object representations (see e.g. [5] for a general = (ci;) are given by considering the linearized optimal

discussion). integral approximation up to order (r > 2) of the non-
« Optimization constraints(via the v (v) term of the linear diffusion operator
criterion) simply allows to weakly constraint to get L=¢ (Vv L, )

closer to a given set of solutions (e.g. the binarization '
term in the winner-take-all mechanism experimented idefined atM points, providingM > (nor)) ”(%“) They

n!r!

the sequel). are given by solving the systems:
. measurement constra|nib§nNeeT both the |np:Jt anq Lu(x) = %Zj i 'a?k-i-ez (%),
e quantity to estimate (via the “measurement” relation dive(D(x)) = 5 o1 a1 (x) (8)
w = Pwv). It is known that in order to obtained an k ’ 391 ’
unbiased estimation (e.g. [5]) the measure itself has toheré-: B§(x) = fs'_ (y —x)* u;(y) dy, while:
be estimated, which corresponds to integrétén the ’
estimation, thus inv, as made explicit via the relation Vi, Zj oij 5 (x) =0 2<la|<r ©)
linear relationP. Among allo;; verifying (8) and (9) we choose those which
In the cortex, such “neuronal unit” is a cortical hyper-verify (here|s;;|? represents theC? norm):
column. Our model can be be mapped onto usual compu- . 9
tational model of cortical columns processes (see also [2] m'”z loss1° (10)
3

for a treatise on the subject). Regarding such a “processing

a cortical map being a discrete implementation of such u
neural units network (see e.g. [13]), we propose in table | What is meant by general in the previous proposition is
a possible interpretation of such an abstract analog netwofRe fact (5) relates on the Euler-Lagrange conditions of (2)
This mapping is to be understood as a working assumptiot Which the integral approximation of the diffusion operator
It also make explicit the scale at which such analog networli@s been introduced. Tintes thus related to the convergence

should be situated. This mapp|ng has the chance to Qéthe minimization. This is a necessary condition which
leads to the solution of (2) at the convergence (see e.g. [12]

w Extra cortical input or intra-cortical inpu for details on such methods).
from previous layers Integral approximation of the diffusion operatointegral
v ES:;?H cortical or backward intra-cortical  gpproximation of differential operators have been introduced
73z Local connections weights in the field of neural networks by Cottet et al. [16], [17],
AL Remote backward connections [10], [11] and presented in the present form in [7], where
Iterative operations Internal connections the derivation of the present proposition is available. In

Variables of the models can be interpreted with respect to a cortical 00|U”particular, the present form provides an alternative to the
connectivity. use of so-called particles methods (e.g. [8]) which neural
TABLE | interpretation is weaker.
It is important to note, as demonstrated in [8], that this
integral approximation is not only closed to the related dif-
compatible with the laminar architecture of the cortex oferential operator, but that it also leads to sampled solutions
neocortex [14], [15] and with the related inter-layer circuitry. T - _ _ o
Excitatory but also inhibitory connectivity is included in the, _" e use the standag multl-lnd:ex notation, for vector of integer indices
a=(al,...,an) EN"and|a| =a1 + ...+ an
diffusion term as detailed in [9]. andx® =z ... zp"



which are closed to the continuous solutions. This is due twith w = s v, 1) = [e— Do+ P7P]v and L defined

the factL is a positive operator. by (8). |
Regarding the fact we limit the approximation up to order
r, since for a constank’: This result is applicable to analog Hopfield network (as
W . lal+1 detailled e.g. in [11]) and to the very powerful class of
15 (%) < Klojlo,co/ (laf +1)] € , models Cohen and Grossberg dynamical system (e.g. [18],

as shown in [11],¢ becomes arbitray small so than- [19]) for which it has been shown [7] that the previous result

biasnessconstraints (9) are automatically verified up to dS applicable. S
negligible quantity whena| increases. Here a sigmoidal non-linearity is introduced between the

In the form of the previous proposition, these approximar-‘e“ronal state input and ouput as illustrated in Fig. 3. The

tions are based on the summation property (1) and provider%sun is in fact true with or without this non-linear term [7].
direct link between a discrete integral approximation and the . . .
continunous differential operator, without the introduction of V=S4t v=Iv)u

a “discretization” step. This is an improvement with respect Sig
to [11], [8]. (Sigmoid function)
In fact, not only the optimal approximation defined
by (10), but awhole family of kernelthe linear sub-space
defined by (8) and (9) implements a diffusion operator,
including unbounded kernels [8], thus allowing to represent a
rather large class of networks as detailled in the next section.
Implementation of the networkSince the present inte- N N .
. . . . . L ig. 3. In analog networks a sigmoidal non-linearity (denoted by Sig)
gral approximation is obtained from a quadratlc MINIMIZ855 Sjntroduced between the neuronal statec RN (usually related to the
tion (10) with linear constraints (8) and (9), it is well-definedmembrane potential) and the neuronal output [0, 1]V (usually related
and the solution is a closed-form linear functionIofand to the average firing rate probability).
div(L). Furthermore, this linear function is only defined
by the network sampling, because only functiongf(x; ). One add-on of this specification is that convergence of the
Furthermore, it appears that the coefficients can also network is demonstrated without the restrictive assumption
easily derived from a Hebbian rule (see [7] for details). ~of symmetry of the weights;; (e.g. [18]).
As a consequence, the network parameters defined in (6)Th|S representaton is well-defined for neural network
are directly given in closed-form from the specificationconnectivity with short-range connections, since this con-

equationsP, c(-), ¢(-) and parametera and L. They are hectivity implements a local diffusion operator. Network
“compilable” and: mechanisms based on remote connections are not expected to

np}lave unbiased weigths, thus are not correctly represented
In this framework.

u

« ¢; contains a positive leakage term and corrective ter
related to the constraint to verify;

e k; acts as a gain product proportional to the input VI. STABLE INTERACTION BETWEEN MAPS

reliability as in usual, less general analog networks. ] ) )
The cortex can be considered as a hierarchy of cortical

As made explicit in [7], the coefficienf must besmall . . s . i .
: o levels with reciprocal extrinsic cortico-cortical connections
enough to decreasé and high enough to maintaire(v) = . ; . : .
among the constituent cortical areas. This notion of a hi-

0, which is obvious to adjust numerically, avoiding the oo
. : .~ “erarchy depends upon a distinction between forward and
explicit computation of the related formula. When non-linea,

constraints are not considereg= 0 backward extrinsic connections. This distinction rests upon
e different laminar specificites (see e.g. [20], [6] for a review).
V. REPRESENTATION OFANALOG NETWORK Main properties are summarized for the visual system in table

) ) IR
Let us now detail to which extends we can relate a given y; i jmportant to emphasize that forward/backward con-
analog network to a criterion of the form (2)—(4). nection is not only an “anatomical” but also a “functional”

- ) . distinction. Furthermore, feedback from one area to another
Proposition 5.1: Given a network dynamic of the form e hackward connections, eventually in the very early part
ou; of the processing of a given input [20]. As a consequence,
ot —€i(u;) +Zaiﬂ' () vj + Ky W (11)  given an input, backward connections are not necessarily
J acting “after” forward connections but as soon as a forward
with v; = Sig(u;), as soon as the weigths; are unbiased, connection feed a backward one.
i.e. verify (9), locally minimizes in the general case the Let us formalize these interactions, considering several
criterion: cortical mapsv,,, and defined as previously:

/ W — wl? + / |Vv|%+/ ov),  (12) V= argmin  Lo(ve),

Vi €H/Cm (Vim)=0




[ Forward connections | Backward connections |

to v,, in the general case:

Sparse axonal bifurcation Frequent bifurcation
Patchy axonal terminations | Diffuse axonal terminations| _
Topographic projections Non-topographic projections Le= Z )‘(‘Vmﬁm') Ly (13)
One-to-one / small divergence Large spatial divergence m
Define a lattice Transcend several levels writing V,, = 3/0vm and /\() S RY o RY a positive
Slow time-constants . . . . .
More nUMerous strictly increasing profile with

Forward connections are "driving” for promulgation and segregation of ’ _ . /
sensory information. Bacward connections are "modulatory” for mediation)‘(u) 20, (u) >0, A(O) =0 and 11}1)% A (u)/u < Foo.

of contextual effects, co=ordination of processing. This table describe their .
main caracteristics. (e.9- AM(u) = u® with a > 2).

Furthermore, locally minimizing each criteriof,,, us-
ing (5) locally minimizes the common criteriafy as soon
as the functions),,(-) are convex. |

TABLE Il

Jhe criterion defined in (13) provides a view of what is a

from (2)—(4) all quantites being indexed by the map inde oo / °
common objective for the different cortical maps computa-

m. .
Here, each cortical map value can tune the other ma{ﬁ’_rl]_f] , "y b , h o
computations, modifying the parametess, and L,,. The IS Is a crucial fact, because it means that minimizing

key point is that we use what has been observed in the cortSQCh criterion is a convergent process, since it corresponds
(e.g. [6]) to introduce three constrains: to a common criterion minimization. As a consequence,

) . _we have a formal verification that feedback links in our
« Feedback values are smoothed in space, before inflgz o\ ork yields a well-defined process

encing other maps, o _ The fact(-) is convex restrains the specification to
« A cortical map value modifies its state and may also it§ecific criteria and appears to be an important requirement

own parameters, _ _ _ as visible in the derivation of the proposition.
« Forward connections define a lattice (thus without loop). This derivation is given in the appendix and is based on

Let us writeS the smooth operator. Here we consider awo remarks:
spatial smoothing. In practicé is likely a spatio-temporal (1) In the absenceof backward connections, the final
smoother, with a small delay temporal low-pass filter. Fromesult is easy to predict: given some inputs, each iterative
the biology, the assumption is that feed-back are able bmputation in a cortical map yield a stable result and from
induce very rapid changes thus induce only very smaillpstream to downstream this stable result propagates. This is
delays. The main result proposed here is compatible withe case for very fast brain computation [21] where, due to
the introduction of such a delay. very short latencies, only feed-forward computations occur.
Furthermore, a rectification functiop(-) is also intro- (2) When backward connections are active, the conver-
duced, e.gp(u) = max(u,0) to take into account the fact gence is preserved by the fact that spatial smoothing allows
that only positive quantities is output by cortical maps.  to neglect possible perturbations from feedback loops onto
The vectorv, = (--- v, ---) is the concatenation of all the minimization process.
cortical maps values. It also corresponds to Haekward The previous derivation also describes qualitatively how
connections onto any map, since we do not introduce argteractions between different cortical maps occurs:

restriction at this stage. « Backward connections have a constant influence in the
We thus formalize feed-back connections Considering sense that they can Very rap|d|y tune the processing of a

A (S *p(ve)) @andLy, (S * p(vs)) @s continuous derivable cortical map but do not interfere with the convergence

functions. inside a such a map, they propagate information be-
A feed-forward connection from a cortical map of index tween the cortical maps, in a stable way; very fast prop-

m to a cortical map of indexn’ corresponds to the fact agation can occur in “one step”, i.e. without inducing

that w,,,, = p(v,,). Our understanding of the cortical maps transient effects:

interactions is that they form a graph with no cycle. « Forward connections act as a “data propagation” though

The situation is very different when backward connections  the related lattice and may induce transient effects on
interact: several criteria are to be minimized simultaneously, downstream layer;
yielding a apparently very complex dynamical system, with « If a cortical map input is changed (because the cortex
the risk of interferences, oscillations, chaotic behavior, etc..  inputs vary dynamically) the overall process is still
Thanks to biologically plausible properties introduces  convergent.
here, a solution of this problem is based on the following
fact. VIl. EXAMPLE 1: EDGE-PRESERVINGSMOOTHING
Let us revisit an edge-preserving smoothing approach
Proposition 6.1: Locally minimizing the criterig,, with  proposed by Cottet and Ayyadi [10] which corresponds to
respect tov,, is equivalent to locally minimize with respectthe framework presented in this paper. In [10], given an



initial imagew : R? — R, the authors proposed a diffusion
processes of the form :
ov
5=
wherel = 1/Sig~!, which is in fact related to the minimi-
sation of the criterion

v = argmin L(v) = )\/(w —v)? 4+ / Voli,  (14)

where \ is a small constant anHi is defined by

l(V) AL(V)V

f
3 i
L— [p2 Py +5 (147 1} (15)
g=S5*Vu,
witn § = min(1.15).
P, = 93 —9192 g i o 8 E £ | -
9 -9192 g3 ’ Initial image Isotropic Anisotropic

where s is the contrast threshold; is an adaptation time Fig. 4. Two examples of results using anisotropic diffusion (right image),

constant ands is a spatial smooting kerneP.. is the 2D the 1st example being the same as in [10] to validate the present method.
g The original image is on the left. As a comparison, a Gaussian filtering

o n . )
pr_OJectlon ontog—, thus qn th§ edge tangejgtbemg al'gned (isotropic diffusion) is shown in the middle. The synthetic image contains
with the edge normal direction. Depending on the norm of huge (80%) amount of noise. The real image contains features at several

the gradient of the intensity, the smoothing term will infe,scales. In both cases edges are preserved, while an important smoothing has
two kinds of behaviors: been introduced (from [9]-
« For low contrasts, whep is close to zero, we havke =
I: the smoothing term is quadratic which corresponds
an isotropic smoothing in the Euler-Lagrange equatio

« For high contrasts, whep is close to one, we have

L = P,.: the smoothing term will perform anisotropic

diffusion only in the normal direction to the edges.
Fig. 4 shows some comparison of this adaptive linear diff
sion process compared with classical linear diffusion. Than
to the short-term adaptation of the diffusion tenEodiscon-
tinuities are preserved. The adaptive rule (15) corresponds’
a Hebbian rule at the implgmentation Ieyel [10],' am:j it can Input Intermediate Output
interpreted as a feedback link from previous estimation of _ _ _
onto the forward diffusion process (see the dotted arrow ifi o e sing the proposed method. The very noisy (more than 50%)
Fig. 2). original image is on the left; the intermediate result shows how diffusion is

D L Sy i 0c 5 g on e i Srakis of e mage, W e
;deaitei/tlggi\lflvtltihs t?hea?Itf:;s:‘zzgt;giﬁsf?ol;zjcgr;\s/esr%eon(;tﬁr?nce perimented a correct behavior on many different inputs.
space and time.

Note that contrarily to [10],we have not introduced here
a non-linearity as discussed for (11): we have implemented VIIl. EXAMPLE 2: THE WINNER-TAKE-ALL (WTA)

a linear neural-network as in (5). We verified experimentaly
that this non-linearity is not determinant and does not influ-
ence significantly the resulting image.

At step ahead, in [10], a temporal filtering is introduce
in the feedback. Thus, it is not directly but an exponential ~ WTA mechanisms are usually realized (e.g. [22], [23],
temporal filtering ofL which is taken into account. Propo- [18]) using an ad-hoc mechanism with an explicit definition
sition 6.1 prediction is that such a low-pass filtering is no®f inter-neuron inhibition in order to allow one neuron to
required and we have been able to verify this fact in thighaintain its activity whereas all other activites vanish. They
context. More precisely, we have experimented that a smafif€ used in may neuronal computations (see the review in
delay (0 .. 10 times the sampling period) low-pass filter dod<2]) and the way they could be implemented is still an issue.
not significantly influence the result, whereas higher delay$is thus a important test for the present method to verify if
inhibit the feedback, inducing a convergence with only a podtich a mechanism is easily formalized.
edge-preserving smoothing. Given an initial conditionw, one look for a solutiorno

Let us now describe how WTA mechanism can be written
d’n this framework.



verifying

v = argmin L(v) = /(w—v)2+/|V1}|2+/w(v) (16)

v

where : [0,1] — R is a bi-modal function, for example

w(v) — v2t/(1—t)(1 _ U)Q7

(1]
(2]

with 4(0) = (1) = 0 and ¢'(t) = 0 in fact maximal [3]
att¢ €]0,1[> 1/2. This previous expression is the simplest
polynomial profile with the suitable craracteristics: this non-4
linear term will force the values of the network to be zero
or one, with a bias towards the zero value.

Formulation (16) is directly related to the general frame-
work (2—4) where no constraint is used aRd= I. 6]

In Fig. 5 an example of result is shown, with an adaptive,
profile ¢’ (-) (the threshold is initialized to the distribution
mean and incremented/decremented during the process 8
maintain a small binarization with respect to diffusion). The
iteration is stopped when the output has a predefined smag
size.

This very simple mechanism shows how the present foh0
malism may provide a complementary view with respect to
other analog network approaches [23], [18].

(5]

[11]
IX. CONCLUSION

In this paper we revisited the links between high—leveﬁlz]
specification of how the brain represents and categorizes
the causes of its sensory input and related analog. Vyﬁ]
represented what is to be done as an optimization problem
with regularization terms and showed how to to compile
the related analog or spiking neural network parameterl?.4
Although requiring non-negligible derivations, the presen
technical developments are rather elementary in the sense
that we deliberately avoid using the theory of functional®
spaces to specify and derive our results. [16]

It appears that not only analog networks but also deter-
ministic spiking neural network can be linked to the preser{im
specifications. With piece-wise approximations in the spg;
called Spike Response Model [24], it has been possible to
map equation (5) of the present framework on a spikint
neural network

« The resistive coefficienp;, being proportional to the
spiking threshold;

« The weightss;; being in direct relation with the synap-
tic weights;

« The corrective tern¥; being controlled by the axonal
delay;

« The input gain beings:; controlled by the input resis-
tance;

with closed-form correspondence allowing to explicitly cal-[2 4
culate the neural network parameters given an abstract con-
tinuous representation. This also leads to a fast event-baded
simulation of such networks. This is a perspective of thi&e]
work, drafted in [7] following the work of [25], [26] and it
will be the next step regarding the present development.

[20]
[21]

[22]

(23]
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APPENDIX A st2ep further, from (5) and (6):

V2 Ly

Let us derive the proposition 6.1. In (i) we show that if all =Vm [pT A [PV — Wi
L, are minimql__so iSC,, in (ii) we derive the recipropal ~Ap Vi + Vw(vm)] +o(1/w)
stat:emenz, )|n (i) we showdthat& v)vhenfno"forvr\gard Ir|]nks, ~ Vo [PT Ay [PV, — Wi
applying (5) minimizesC, and in (iv) we finally show that _ o ‘
it is still true with forward links. Z:g niVnj + 2050 V”;+ V?ﬁ(vm)} +o(l/w)

(i) if all £,, are minimal with respect tov,,, then :E AnP 45505+ Vi(vim) +o(1/w) _
VoLl = 0 thus A(|VynLm|) = 0 and Lo = 0, but £, Herevm,cm is the sum of positive symmetric matrices, since
is also positive as a sum of positive terms, so thas its V¥ iS positive assuming)(-) is convex, while3’; o; is
minimal value, now attainedZ, is thus minimal. positive becausé. is positive [7].

@iy If Lo is minimal, its gradient vanishes, i.e. Yet another step further:

L. vmﬁ.
Vel = (o Vmbay) = 0. WHING Ve = 0/0Ne 5 N (19,0L0l) VLo + N (VL) V(L) £
VWE' = Zn)‘(|vn£n|)vm£n+ :Z )‘(|vn£n|)vm£n+%v £ Vi Vi E
)‘/(lvnﬁn‘)vm(‘vnﬁn‘)ﬁn 7Zn)\(|v L) Vin Lo +)\(|V nln |)V Lo oo Lo

Let us rewrite this condition : ‘V Lo |

this expression being well defined even for small
o Ym 0=VaLe = A|ViLml) VinLm + ym V.L,, i.e even when closed to the optimum, because

with ) Ym = Zn;ém (|Vn£n|) ViLn + lim, o )\/(u)/u < 400.

S N (V0La Vol T0Lal) £, o Without forward link (i.e. no(m,n) with w,, = p(v,))
These two vectors/,,,L,, andym have a “huge” dimen- | o have noticed that when £ m, VLol = |V Lol =

sion (l/w) so that the previous expression reduces in this case
dim(V L) = dim(ym) = dim(v)

i.e. the dimension of the map (the number of neurons). In the Vmle = (\V L) Vi Lo+
general case, there are independent, becayseontains, if (\Vmﬁml)v Lo V2 Lo+ 0(1/w)
generic, terms which do not linearly dependsWp L,,,. As Let us rewrite 55 s
a consequence, their sum being equal to zero, both vectors Nm _ vy, T _ 3.
must vanish so that s 0
AV L) Von Lo = 0 = Vo Loy = 0 where 3,, = T Cm (vin) has been calculated when

deriving (5) to maintain:

VoL (Vo L8 4+ 3) >0
while 3, — 0, because (5) drives,,(v,,) — 0 whatever
the minimization process is [7].

The gradients of allZ,, vanish, so that these quadratic
criteria are locally minimized.
(i) Let us write:
m = f ‘P Vi — Wm|Am(5*p(v.))+

HIVVinlL, (septvar) + ¥ (Vi) A V., e
From a few algebra: T ov T * ot
VinLlyn = V&, L+ :—ZVLagtm
pT Am_[P Vm — Wm] - Af,mvm + vqﬁ(vm) = Zm VinLe (V E% + ﬁm)
e A o b S XVl VLo (Vi + )
# ) A [0~ BT, + XY, £ VL (Vi + )]
0 +o(1/w)
otherwise As a consequence, without forward links, the previous
writing V7, L 5 [Pva—waulg A, +IVVvml3, 1] expression is a sum of positive terms, so tha@(.% >0
while L. has been defined in (). and it appears that minimizing each criterion yields to the
Because of the action of the spatial smoothing operatorglobal minimization of the criterion.
VinAn = V[Ay(S*ven)] (iv) Considering now forward links, let us consider at time
= VAp(S*Ven) [VS * ven] ty the subsetv,, = (---v,,---) of cortical maps values

has a small magnitude since, by definition, of a smoothingipich 4o not receive any forward connection, i.e. which are
operator| VS| is small, say|VS| = o(1/w), wherew is the o1 connected to inputs. This defines a sub-lattice without
smoothing filter window S'Ze [(&.9. for an isotropic Gaussiagy,\yard connections. The related criterigy, is thus strictly
filter S(u) = 1/v/27/we™% =7 the reader can easily verify decreasing and reaches its minimum, thanks to what as being
that|VS| = o(1/w!*T4m()/2) Thisis also true ifS contains  discussed previously. Let us now consider the subset=
some small temporal filtering, since the gradigvisS| is still  (...v,,,---) of cortical map values which do not receive any
negligible in this case, from the previous arguments. forward connection, except from,__,. Becausel,__, is
Similarly V,,L,, = o(1/w). As a linear combination of already minimized, forward links do not influence the related
small quantitiesV¢, L, is thus small and we can write: criterion £,_ which is thus strictly decreasing and reaches
|V, Ll =0(1/w) its minimum, By induction it appears thdl, is minimized.



