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ABSTRACT
Neural network information is mainly conveyed
through (i) event-based quanta, spikes, whereas high-
level representation of the related processing is almost
always modeled in (ii) some continuous framework.
Here, we propose a link between (i) and (ii) which
allows to derive the spiking network parameters given
a continuous processing and also obtain an abstract
interpretation of the related processing. .
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1 Introduction

High-level specification [1, 2, 3] of how the brain rep-
resents and categorizes the causes of its sensory in-
put allows to link “what is to be done” (perceptual
task) with “how to do it” (neural network calcula-
tion). More precisely, a general class of cortical map
computations can be specified representing what is to
be done as an optimization problem, in order to derive
the related neural network parameters considering reg-
ularization mechanisms (implemented using so-called
partial-differential-equations).

A recent contribution of our team [4] revisits this
framework with three add-ons.

[1] It is generalized to a larger class of (non-linear)
map computations which specifies a n dimensional vec-
torial computation map, taking unbiased partial ob-
servation of a noisy input into account and using non-
linear anisotropic diffusion in order to reduce the noise
while preserving the data variation.

Using a scalar or vector valued map is an im-
portant feature when addressing the modelization of
cortical processing units such as cortical columns [5].
It may also help defining improved models of neurons
or small neuronal assemblies, where the state is not
only defined by a scalar membrane potential [3].

Introducing non-linear constraints between the
map components has several advantages, one is to take
noisy measures into account avoiding statistical bias
(see e.g. [6] for a development), another is to define
physical parameters (e.g. 3D orientation) with com-
plex structure.

The local solution of the previous criterion can

be implemented -in the general case- using a network
dynamics of the form of Cohen-Grossberg analog net-
work, using linearized integral approximation of a dif-
fusion operator introduced by Cottet, Degond and
Mas-Gallic.

In practice, several non trivial mechanisms (seg-
mentation using the Mumford-Shah method fam-
ily, transparent motion analysis, winner-take all see
above) can be derived within this framework, as illus-
trated during the talk.

[2] On the reverse, standard “analog” neural net-
work, providing their weights are local and “unbiased”,
can be represented in this framework providing a guar-
anty of convergence and an abstract view of the un-
derlying processing.

[3] Finally, we also can verify within this frame-
work not only one but several cortical maps can inter-
act, with feed-backs, in a stable way using two biolog-
ical assumptions:
(i) feedback values are smoothed in space, before in-
fluencing other maps,
(ii) forward connections define a lattice (thus without
loop).

Here we would like to go a step further and dis-
cuss how not only analog models of biological neural-
networks, but also spiking-neural networks could be
implemented using this formalism.

2 Specification of neural-networks
from a variational approach.

Perceptual processes architecture, in computer or bi-
ological vision [1, 5], is based the computation of
“maps” of quantitative values. Such maps encode
retinotopic quantities such as contrast magnitude, con-
trast orientation related to edge orientation, shape cur-
vature, binocular disparity related to the visual depth,
color cues, temporal disparity between two consecutive
images in relation with visual motion detection, etc.
Other maps are not only parametrized by retinotopic
locations, but also other parameters (e.g. orientation,
retinal velocity, etc.) or more abstract quantities [7].

According to generative approaches [1, 2, 3], the
cortical map computation can be modeled as an opti-
mization problem. Let us state this in the very general
form proposed in [8].



Given an input map w, one look for an output
map v̄ verifying

v̄ = argmin
v∈H/c(v)=0

L(v), with (1)

L(v) =
∫
|ŵ −w|2Λ +

∫
φ(|∇v|L) +

∫
ψ(v), (2)

and ŵ = Pv, (3)

where ∇ stands for the gradient operator, φ(·), ψ(·),
P, c(·), Λ and L are commented hereafter. The norms
defined in (2) are weighted norms defined by |u|M =
uT Mu, where M is a given symmetric positive matrix.
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Here is a representation of the model (1)–(3).
The first term in (2) is a fidelity attached term spec-

ifying how the output is related to the input, the second
term is a smoothing term which defines the regularity of
the output and the third term allows to constraint the form
of the solution. The equation (3) shows the chosen relation
between the estimation of the input given an output. So
the formulation (1)–(3) specifies the cortical map compu-
tation in the sense that it explains the “goal”, what is to
be done, but without any reference to how it is done.

The functions Λ define a so-called measurement infor-
mation metric which represents the precision of the input
(the higher this precision in a given direction, the higher
the value of Λ in this direction) and allows to take into ac-
count (in a statistical framework, Λ corresponds to the
inverse of a covariance matrix) partial observations and
missing data (i.e. null precision)

The functions L, define a diffusion tensor modulated
by a function φ which controls the amount of smooth-
ness required. Low variations, assumed to be “noise”, are
smoothed (using e.g. quadratic and isotropic smoothing
for additive white noise), while high contrasts, assumed to
be the “signal” are preserved (e.g. with diffusion only in
the direction tangential to the edges). Furthermore, when
a problem is ill-posed, adding some a priory on the smooth-
ness of the solution regularizes the problem (e.g. with dif-
fusion from well-defined values to undefined or ill-defined
values).

Three kinds of constraints are introduced: structural

constraints (via c()) , to define a nonlinear solution, i.e. to

force the solution to belong belong to a manifold defined

by implicit equations; optimization constraints (via ψ()) to

control the form of the solution; measurement constraints

between both the input and the quantity to estimate (via

P) to obtain an unbiased estimation [6] in this non-linear

case.

In the cortex, such “neuronal unit” is a cortical
hyper-column. Our model can be be mapped onto
usual computational model of cortical columns pro-
cesses (see also [5] for a treatise on the subject). Re-

garding such a “processing a cortical map being a
discrete implementation of such neural units network.
unit” (see e.g. [9]), we propose here a possible inter-
pretation of such an abstract analog network.

w Extra cortical input or intra-cortical in-
put from previous layers

v Extra cortical or backward intra-cortical
outputP

j σ.j vj Local connections

Λ, L Remote backward connections
Iterative operations Internal connections

This mapping is to be understood as a working
assumption. It also make explicit the scale at which
such analog networks should be situated. This map-
ping has the chance to be compatible with the lami-
nar architecture of the cortex or neocortex [10, 11] and
with the related inter-layer circuitry. Excitatory but
also inhibitory connectivity is included in the diffusion
term as detailed in [12].

3 Analog network implementation

The local solution of the previous criterion can be im-
plemented -in the general case- using a network dy-
namics of the form of Cohen-Grossberg analog net-
work, using linearized integral approximation of a dif-
fusion operator introduced by Cottet, Degond and
Mas-Gallic [13, 14, 15, 12]. More precisely, for a neu-
ron of index i, it writes:

v̇i = −ε̄i(vi) +
∑

j σ̄ij(vi) vj + κ̄i wi

The derivation [4] is however far from being trivial
with two key points:

• the term κ̄i is a simple gain, while the corrective
term ε̄i(vi) is a straight-forward but very complex
non-linear function of the criterion parameters. It
is thus a real issue to obtain an automatic sym-
bolic derivation. The obtained derivation turns
out to be a short-term adaptive rule.

• the term σ̄ij(vi) corresponds to the synaptic
weights and a linear family of solutions for σ̄ is
derived for a given diffusion tensor L. Among
those solutions:

– an optimal solution (here the closest discrete
approximation with respect to the continu-
ous one, in the least-square sense, given a
well-formed distance) is chosen [12],

– the synaptic weights are related to the re-
lated diffusion operator using a Hebbian
learning scheme [8]

obtaining, a biologically plausible mechanism of
short-term adaptation.

We have been able to not only make the math-
ematical derivation explicit [8, 4], but, using the
maple symbolic calculator, make also the computa-
tional derivation automatic, including the temporal



discretization of the equations for computer implemen-
tation [16].

This allows, as illustrated e.g. in Fig. 3 for a
simple example of isotropic/anisotropic diffusion, to
simulate visual functions considering neural-networks.

Initial image Isotropic Anisotropic

Figure 1. Two examples of results using anisotropic dif-
fusion (right image), the 1st example being the same as in
[14] to validate the present method. The original image is
on the left.

4 Spiking neuron implementation

In event based neural network models, the output of
a neuron of index i is entirely characterized by the
sequence of spike firing times: Fi = {· · · tni · · · }

At a computational level, it has been shown (see
e.g. [17] for a review) that any feed-forward or recur-
rent (multi-layer) analog neuronal network (à-la Hop-
field, e.g. McCulloch-Pitts) can be simulated arbitrar-
ily closely by a insignificantly larger network of spik-
ing neurons with analog inputs and outputs encoded
by temporal delays of spikes (even in the presence of
noise) [18, 19].

The Gerstner and Kistler Spike Response Model
[20] of a biological neuron defines the state of a neuron
via a single variable:
ui(t) = νi(t− t∗i )︸ ︷︷ ︸

+
∑

j

∑
tn
j ∈Fj

wij εij(t− t∗i , (t− tnj )− δi)︸ ︷︷ ︸
+ Ri I(t)

where
ui() is the neuron state, related to the membrane po-
tential, while
νi() describes the neuronal response to its own spike
(neuronal refractoriness),
t∗i being the last spiking time of the ith neuron, and
εij() describes the neuronal response to pre-synaptic
spikes at time tnj post-synaptic potential,
wij being the connection strength (excitatory if wij > 0
or inhibitory if wij < 0),
δi being the adaptive delay (including axonal delay),
I() being the continuous input currents, for an input

resistance Ri.
The neuron fires when ui(t) ≥ θi, for a given threshold.

At the computational level, using piece-wise lin-
ear profiles yields a closed-form calculation of the spik-
ing events, thus allows to obtain an efficient and ex-
act implementation of (1) in event-based massive neu-
ronal simulators such as MVASPIKE. A complete de-
scription of such a mechanism is detailed in e.g. [21].
This is to be compared with other simulations (e.g.
[22, 23]) where stronger simplifications of the S.R.M.
models have been introduced to obtain a similar effi-
ciency, whereas other authors (e.g. [21]) propose heavy
numerical resolutions at each step.

Using this model and following Maas and Natch-
slager [18, 19], we1:
- represent the signal vi = ti − T• as the last spike
delay tj with respect to a given temporal reference T•,
- consider piece-wise linear response profiles (as ap-
proximations of Hodhkins-Huxley related profiles),
- introduce a temporal discretization of the input cur-
rent,
and obtain a direct link with continuous representation
of neural map computation:

v̇i = −ν̄(vi) vi +
∑

j σ̄ij(vi) vj − ε̄i(vi) + κ̄i Ii

while vi = g(vi) g() :
- the resistive coefficient ν̄i being

proportional to the spiking threshold θi;
- the weights σ̄ij being

in direct relation with the synaptic weights wij ;
- the corrective term ε̄i being

controlled by the axonal delay δi;
- the input gain κi being

controlled by the input resistance.
with closed-form correspondence allowing to ex-

plicitly calculate the neural network parameters given
an abstract continuous representation.

This relationship is valid only in a given tem-
poral window, with saturation outside, as for analog
networks. Here it appears that fast adaptive delays
(as observed in recent intra-cellular experiments of e.g.
[24]) is a crucial element in this model. In the deriva-
tion the constraint ν̄ =

∑
j σ̄ij appears. It is coher-

ent with S.T.D.P. adaptation rules (yielding the same
constraint) as derived by, e.g., [25] It also corresponds
to what is obtained from a variational framework re-
lating the neuronal weights to a continuous diffusion
operator, as introduced by Cottet and also1. This last
formulation is in direct relation with a sub-class of
Cohen-Grossberg dynamical systems.

We, for instance, illustrate the previous deriva-
tion with an event-based implementation of an early-
vision processing layer, (in relation to what has been
shown in Fig. 3 in 2D). In Fig 2 where, a 1D spiking
neural network (each abscissa corresponds to a neu-
ron and each ordinate to its related temporal value),

1 See http://www.inria.fr/rrrt/rr-5657.html for details



receives a noisy input (top view) its output after a
few iterations (bottom view) correspond to an edge-
preserving smoothing of the input, using a non-linear
diffusion operator.

Figure 2. An example of 1D implementation of
anisotropic smoothing using a spiking network. The ab-
scissa represent the spatial 1D dimension of the linear
neural-network with local connections. The ordinates rep-
resent, at a given instant, the last spike time with respect
to a reference. This is thus in relation with the “instanta-
neous phase” of the spiking-neurons, thus with short-term
coherence between firings.o p view: noisy input. Bottom
view: edge-preserving smoothed output.

5 Conclusion

The previous derivation allows to relate variational for-
mulation of perceptual tasks, as defined in computer
vision, to neuronal spiking networks. Although, formal
derivations have been worked out [8] and implemented,
this is still to be considered as a working assumption
and a starting point for further investigations.

At a 1st glance, this derivation seems at least
valid in situations where spike delays are short, i.e.
in the “fast-brain” mode (see e.g. [26]) or when large
activity is observed as it is often the case in the related
cortical areas (see e.g. [27]). Please refer to [18, 19, 23]
for a precise discussion about the validity of consider-
ing the spiking network for computing such a weighted
sum.

With respect to the state of the art, we not only
consider the 1st rising part of post-synaptic potential
but also the 2nd decreasing slope, with the potential
effects of having excitatory post-synaptic potentials
yielding a relative inhibitory effect (with a symmet-
ric effect for inhibitory potentials); the fact we do not
exclude such “reverse” effect for delayed responses is
in direct relation with recent experimental finding of
this kind [28].

A step further, if the previous derivation makes
sense, this means that we must observed fast adaptive
synaptic mechanisms, with respect to the weights, but
also fast adaptive mechanism of delay. This is indeed
a recent assumption (see e.g. [29]) which has been ob-

served experimentally and which importance for com-
putational models is to be better understood.

Both elements are key aspects of the model: they
must be confronted with biological facts. This is the
next step of this work.

This work is realized within the scope of the European Facets
project in direct relation with scientific contributions of partners
of this consortium.
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