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Abstract

High-level specification of how the brain represents and categorizes the causes of its sensory input allows to link ‘‘what is to be done’’
(perceptual task) with ‘‘how to do it’’ (neural network calculation). In this article, we describe how the variational framework, which
encountered a large success in modeling computer vision tasks, has some interesting relationships, at a mesoscopic scale, with compu-
tational neuroscience. We focus on cortical map computations such that ‘‘what is to be done’’ can be represented as a variational
approach, i.e., an optimization problem defined over a continuous functional space. In particular, generalizing some existing results,
we show how a general variational approach can be solved by an analog neural network with a given architecture and conversely.
Numerical experiments are provided as an illustration of this general framework, which is a promising framework for modeling
macro-behaviors in computational neuroscience.
� 2007 Published by Elsevier Ltd.
1. Introduction

Perceptual processes architecture, in computer or bio-
logical vision (Lee and Mumford, 2003; Burnod, 1993), is
based on the computation of ‘‘maps’’ of quantitative val-
ues. The retinal image itself is a ‘‘retinotopic map’’: for
each cell of the retina or each pixel of the image, there is
a value corresponding to the image intensity at this loca-
tion. This is a vectorial value for color images. A step fur-
ther, in early-vision, the retinal image contrast is computed
at each location, allowing to detect image edges related to
boundaries between image areas. Such maps encode not
only the contrast magnitude, but several other cues: con-
trast orientation related to edge orientation, shape curva-
ture, binocular disparity related to the visual depth, color
cues, temporal disparity between two consecutive images
in relation with visual motion detection, etc. There are such
detectors in both artificial visual systems (see e.g., Faugeras
(1993) for a general introduction) and in the brain neuronal
structures involved in vision perception (see e.g., Hubel
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(1994) for a classical overview). Such maps are not only
parametrized by retinotopic locations, but also 3D loca-
tions, or parametrized by other parameters such as orienta-
tion, retinal velocity, etc. or more abstract quantities
(Gisiger et al., 2000). Here, a map is going to be repre-
sented by a vector-value function from given domain
(e.g., the retina surface) to a given range (e.g., the depth
range).

In this context, the common point between computer or
biological vision, is that both systems have to solve the
same perceptual tasks and very likely make the same kind
of hypotheses about the observed surroundings: they share
the same internal representation. It is thus a relevant chal-
lenge to elaborate, at this level, a common theoretical
framework in both fields, considering that the cortical com-
putation is specified in a similar way although the models of
implementation are obviously going to strongly differ.

At the biological level, cortical maps are well-defined,
strongly architectured laminar structures of gray-matter
interconnected via the white-matter. These maps can be
scalar or vector-valued. This is an important feature when
addressing the modelization of cortical processing units
such as cortical columns (Burnod, 1993). It may also help
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defining improved models of neurons or small neuronal
assemblies, where the state is not only defined by a scalar
membrane potential (Dayan and Abbott, 2001). These
maps are also defined with non-linear constraints between
components. This is an important feature in order to take
into account the complex structure of a map (e.g. pin-wheel
organization) via a non-linear differential structure (Petitot
and Tondut, 1999). It is also useful to take noisy measures
into account without any statistical bias (Viéville et al.,
2001).

Computational neuro-scientists have a very profound
view of the cortical maps architecture and how the neuro-
nal micro and macro-circuitry allows the emergence of
visual functions (Grossberg, 1988; Lee and Mumford,
2003; Friston, 2002; Dayan and Abbott, 2001). Such visual
functions include edge detection, motion computation, seg-
mentation (e.g. figure-ground segmentation or motion seg-
mentation), focus of attention (on one visual token), etc.
Both computer vision and studies of the visual system in
computational neuroscience tackle such mechanisms.
However when the computational models are re-used for
artificial image processing on realistic inputs (not only for
‘‘toy’’ applications) the performances of the algorithms
are often far from what is obtained by biologically non-
plausible mechanisms.

Here, we obtain the following positive result: very pow-
erful variational approaches can be implemented on, say,
analog Wilson–Cowan-style recurrent networks, thus the
apparent gap does not in-fact exist. It is just a matter of
finding the suitable constraints on their connections. As a
consequence, at the present state of our knowledge about
cortical map processing, the main computer vision process-
ing can be implemented using existing cortical map pro-
cessing models. This is the main claim of this
contribution. Let us detail how we can come to this point.

This paper is organized as follows. In Section 2 we
review how the present variational approach is linked with
high-level specifications of the brain perceptual processes.
In Section 3, we introduce the notion of computational
map and propose a variational definition, detailing its
semantic and how it implements in analog networks at a
mesoscopic scale. Finally Section 5 proposes several illus-
trations of the proposed framework.

2. Variational approaches in computational neuroscience

2.1. From generative models to generic estimation loop

2.1.1. Starting with representation learning

Following (Lee and Mumford, 2003; Friston, 2002;
Dayan and Abbott, 2001), when considering high-level
specifications of how the brain represents and categorizes
its sensory input, we can start considering that the related
cortical architecture is: a machine to find ‘‘causes’’ m from

inputs w. In such a context, it has been proposed that the
perceived external world can be viewed as a deterministic
(or stochastic) dynamical system, e.g., of the form
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_xðtÞ ¼ f ðxðtÞ; vÞ;
wðtÞ ¼ gðxðtÞÞ;

�
ð1Þ

where the variable x is the ‘‘hidden’’ deterministic system
state (usually a complex multi-variate non-linear quantity),
with the initial condition x(�1) = 0.

In fact, using the so-called Fliess fundamental formula
and related Volterra kernels (see, e.g., Dayan and Abbott,
2001 Chapter 10 for a review), we can eliminate the influ-
ence of x and directly relate the input to the recent history
of the causes v:

wðtÞ ¼
Z t

0

j1ðsÞvðt � sÞds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
linear influence

from previous causes

þ
Z t

0

Z t

0

j2ðs; s0Þvðt � sÞvðt � s0Þdsds0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
modulatory influence between causes

þ � � � ð2Þ

including higher order terms, where the kernels ji are
defined by

b ¼ j1ðsÞ ¼
owðtÞ

ovðt � sÞ

����
t¼0

;

�
j2ðs; s0Þ ¼

o2wðtÞ
ovðt � sÞovðt � s0Þ

����
t¼0

; . . .

�
ð3Þ

Thus have an equation of the form

w ¼ P ðv; bÞ ð4Þ

These abstract equations have a profound meaning.
Dynamical system Eq. (1) can be considered as a universal
way to represent a continuous system (here deterministic).
Eqs. (2) and (3) state that providing that the ‘‘memory’’ is
bounded, it is always possible to parameterize the whole
class of representation (here with b). Thus, it is always pos-
sible to switch from the hidden state representation to a
parametric representation. As a consequence predicting in-
puts from related causes amounts to estimate a parameter
(of large dimension). It is hypothized that this is the way
internal representation are learned in the brain. The related
‘‘learning’’ task would be equivalent to some ‘‘parametric
learning’’. This key idea is in deep relation with the notion
of adaptation (Holland, 1975; Viéville et al., 2001). The
neural substrate for such mechanism of prediction and re-
ward is not discussed here (see, e.g. Schultz et al., 1997;
Sutton and Barto, 1998; Pasupathy and Miller, 2005).
The link with ‘‘reward learning’’ is discussed in details in
Friston (2002).
2.1.2. Yielding an estimation loop

Thanks to this previous formulation, estimating causes v

from inputs u is a feed-forward and feed-back based pro-
cess, which is described by several methods such as expec-
tation–minimization (EM) method. The EM method has
the two following stages (see Fig. 1):
-level specifications of the brain relate to ..., J. Physiol. (2007),



Fig. 1. Schematized view of the expectation–minimization (EM) loop. The
inference being coherent if and only if: w = P(R(w,U),b). The internal
representation of the causes is defined by function R and the internal
representation of the external system by function P.
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• Expectation, which ‘‘infers’’ the causes from the given
inputs (here parametrized by forward connections U).

• Estimation, which ‘‘predicts’’ the input from a priori

causes (here parametrized by backward connections b).

This abstract backward/forward duality shows that sim-
ply estimating the causes from the input would have been a
completely ill-defined problem, whereas introducing this
‘‘estimation loop’’ allows the estimation mechanism to be
well-defined and iteratively efficiently estimated (see, e.g.,
Rao and Ballard, 1999).

This very general architecture is probably the best sim-
ple view of cortical processing, assessed by the observation
of the brain activity, at the present state of the art (Rao and
Ballard, 1999; Ullman, 1995; Lee and Mumford, 2003;
Friston, 2002; Dayan and Abbott, 2001) (see also in Fris-
ton (2002) a discussion about models based on the minimi-
zation of the mutual information in the system).

How can this general specification leads to an effective
mechanism of estimation? The Bayesian framework is a
popular choice.
2.1.3. Link with the Bayesian framework

The popular Bayes approach (Lee and Mumford, 2003;
Friston, 2002; Dayan and Abbott, 2001) allows to instanti-
ate the general architecture presented in Fig. 1, considering
the ‘‘maximally probable’’ estimation (MAP) of the causes
v, knowing w, thus:

max
v

logðpðvjwÞÞ¼max
v
½logðpðwjvÞÞþ logðpðvÞÞ�� logðpðwÞÞ;

ð5Þ

where log(p(w)) is not to be considered because it is con-
stant with respect to the quantity v to optimize. This max-
imal likelihood (5) optimization rewrites

max
v

logðpðvjwÞÞ ¼ max
v

logðpðwjvÞÞ þ logðpðvÞÞ; ð6Þ

where the criterion is the sum of the conditional informa-
tion and the a priori information. In fact, the first term is
tuned by b so that w = P(v,b), and the second term is tuned
by U so that v = R(w,U). So (6) rewrites
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max
v

logðpðvjwÞÞ ¼ max
v

logðpðP ðv; bÞjvÞÞ

þ logðpðRðw;UÞÞÞ; ð7Þ

where each term is respectively the estimation and expecta-
tion. This is a canonical instantiation of the proposed
architecture. In this context, the key step is to choose a
probability model. The usual choice is to consider an addi-
tive random noise e such that w = P(v,b) + e, with an expo-
nential probability distribution phðeÞ ¼ e�V hðeÞ parametrized
by a vector-valued parameter h. The probability distribu-
tion parameter h is an a priori information, thus to be esti-
mated during the expectation phase. This choice includes
most distributions such as Gaussian, Poisson, binomial
and uniform. More generally any Gibbs distribution re-
lated to this criterion can be used.

Finally, we have a dual forward/backward expectation/
estimation criteria optimization:

min
U;h

V hðw� P ðRðw;UÞ; bÞÞ; ð8Þ

min
b

V hðw� P ðv; bÞÞ: ð9Þ

More generally, this framework provides a quite profound
highlight about important cortical mechanisms (e.g., con-
textual specialization, cues representation, etc.) as detailed
in (Lee and Mumford, 2003; Lee, 2002; Rao, 2004).

2.1.4. Beyond the Bayesian framework

Two arguments are often raised against Bayesian
formulations.

• One the one hand, certain aspects of the biological plau-
sibility have been questioned. The fact, that no biologi-
cally plausible scheme for learning the required priors
has ever been discovered. The fact that outside of sen-
sory pattern recognition, Bayesian decisions often do
not even roughly match those made by actual animals.
This first indictment is discussed and partially answered
in (Rao, 2004).

• On the other hand, it is emphasized that MAP-style reg-
ularization solutions are inadequate, and that rather
something about the whole probability distribution of
possible causes given the actual input, needs to be cap-
tured in neural population activity. This is because too
many possibilities are viable given just the tiny-dimen-
sional projection of the world in the input of which
the MAP solution offers a very poor representation. This
is discussed in Lee and Mumford (2003).

In fact, the right question is to know to which extends is
it mandatory to introduce all a priori related to the Bayes-
ian framework? If the answer is out of the scope of this
paper, the present proposal has the advantage to be com-

patible with the Bayesian formulation, since the minimized
criterion could be interpreted as a MAP estimation, but
without requiring such a framework.

More precisely, the criterion to minimize can be directly
specified, without any probabilistic interpretation. In
-level specifications of the brain relate to ..., J. Physiol. (2007),
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particular, the notion of prior simply corresponds to a term
of regularization. Among all possible solutions, the idea is
to select the most regular solution given a definition of reg-
ularity. A step further, the related probability distributions
are parameterized thus reduced to a manageable space
state.

Let us consider the expectation–estimation (EM) prob-
lem formalized in (8) and (9) for some cost function Vh(e)
parametrized by h, without any reference to a probabilistic
formalism.

The expectation term in (8) corresponds to the a priori

or internal knowledge, as discussed previously and the term
in (9) corresponds to the input or external knowledge. In
order to minimize simultaneously each term, we can mini-
mize a linear combination of both. This constraints the set
of possible solutions but the dual problem to solve is well-
defined and a simple control on the balance between each
term is available.

This is exactly what is used in a variational approach as
detailed now.

2.2. Presentation of the variational framework: calculus of

variations

Calculus of variations is a field of mathematics that
deals with functionals, as opposed to ordinary calculus
which deals with functions. A variational approach is
defined by a minimization problem, where a functional
L has to be minimized over a space of functions v defined
on a continuous space denoted by X, and belonging to a
functional space denoted here H(X) which defines its regu-
larity. This can be written

�v ¼ argmin
v2HðXÞ

LðvÞ

¼ argmin
v2HðXÞ

Z
X

F ðx; vðxÞ;rvðxÞ;HðvÞðxÞÞdx; ð10Þ

where �v denotes the solution (when it exists). The integral
in (10) shows the criterion to be minimized, which generally
depends on the function v and its spatial derivatives. The
standard way to estimate the solution �v is to derive and
solve the so-called Euler–Lagrange equation, which corre-
sponds to the gradient of the energy L

dL

dv
ð�vÞ ¼ 0:

Numerically, it is then classical to use a gradient descent
approach for instance, so that one introduce a dynamical
scheme and find �v as the steady state of

ov

ot
¼ � dL

dv
ðvÞ: ð11Þ

Eq. (11) is a partial differential equation (PDE), which re-
lates the temporal evolution of v (left-hand side term) to
its spatial derivatives (right-hand side term), i.e., values
of the function v in a small neighborhood.

One of the main interests in using PDEs is that the the-
ory behind the concept is well established. It means that
Please cite this article in press as: Viéville, T. et al., How do high
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functional analysis represents a wide literature which
allows one to prove existence and uniqueness of a solution,
but also its regularity. It is also our conviction that reason-
ing within a continuous framework makes the understand-
ing of physical realities easier and stimulates the intuition
necessary to propose new models.

Of course, PDEs are written in a continuous setting
referring to analog images, and once the existence and
the uniqueness have been proved, we need to discretize
them in order to find a numerical solutions. There is a lot
of flexibility regarding the way to discretize these PDEs.
If finite differences are the most popular approaches in
computer vision due to the regularity of the sampling, finite
elements or finite volume methods can also be considered.
In this article, we will show how to take into account a
geometry of a sampling attached to a given network (see
Section 4).

However, note that not all interesting visual processing
can be specified by variational approaches. One may also
define processes directly via PDEs which do not derive
from any variational formulation. This framework is thus
a very useful but not a universal approach to the low-level
and middle-level visual processing.

2.2.1. Variational approaches in computer science

Indeed, the idea that cortical map computations can be
related to variational approaches is not new. For example,
it has been studied in low-level vision (Cottet and Ayyadi,
1998) which is at the origin of one aspect of this study. We
also mentioned the link with high-level representation of
cortical processing (Lee and Mumford, 2003; Friston,
2002; Dayan and Abbott, 2001), discussed in Section 1.
For instance, the Mumford–Shah functional reviewed pre-
viously is well known in physiology (Carriero et al., 2003;
Petitot, 2003) where it is used as a plausible model to
account for image segmentation mechanisms at the percep-
tual level. Furthermore, a link has been proposed between
neural oscillations in the cortex and the class of functional
inspired from Mumford–Shah (Sarti et al., 2003).

A step further, the recurrent equation and related adap-
tation law of several neural networks models is derived
from a functional, as detailed in (Likhovidov, 1997). It is
shown in (Likhovidov, 1997) that the well known Gross-
berg networks (Grossberg, 1988; Raizada and Grossberg,
2003), counter-propagation networks, and Kohonen self-
organizing networks (Fort and Pagés, 1994) are among
them.

Interesting enough is the fact that, if the present paper
focus on early-vision processes, variational approaches
have been also used to formalized other cognitive func-
tions. For instance, the fast-brain capability to categorize
some ontology in 100–150 ms can be represented by a sta-
tistical learning criterion, the IT cortical map state corre-
sponding to the optimum of this criterion (Viéville and
Thorpe, 2004; Viéville and Crahay, 2004). Sensori-motor
functions related to ‘‘trajectory generation’’ is efficiently
represented by a so-called harmonic function potential
-level specifications of the brain relate to ..., J. Physiol. (2007),
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minimization (Viéville, 2006), this class of variational
approach being also used to model some striatal functions
(Connolly and Burns, 1993; Connolly et al., 2000) in rela-
tion with the generation of discrete and repetitive motions.

2.2.2. An efficient framework to model visual tasks

Traditionally applied in physics, variational approaches
and methods based on PDEs have been successfully and
widely transferred to computer vision over the last decade
(see Aubert and Kornprobst, 2006 for a review).

We illustrate in Fig. 2 applications of this framework.
The first line concerns image diffusion, which was histori-
cally at the origin of this success (isotropic smoothing,
anisotropic smoothing Perona and Malik, 1990, effects
Weickert, 1999). Notice the role of diffusion, done through
linear or nonlinear local operators. Second example is
image segmentation (Mumford, 1991), that will be com-
mented further in Section 5.4. Segmented regions are
shown here with random colors for display. Third example
is inpainting which allows to reinvent a content based on
local diffusion processes (Kornprobst and Aubert, 2006).
Fourth example is flow restauration, to show that diffusion
works for vector-valued images, with a flow that can be a
local velocity estimation (optical flow) (Aubert et al.,
Fig. 2. Variational approaches in computer vision: a success story. From top t
See text for details.
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1999; Tschumperle and Deriche, 2005). Last example is
about sequence segmentation: Variational approaches are
usually defined for still images but can be adapted for
changing environments, i.e., sequence of images (Kor-
nprobst et al., 2006).

Clearly computer vision addresses visual tasks similar to
what has been observed in the visual system. Some exam-
ples include noise reduction as in the early-visual pathways,
local edge detection as in V1, image completion (inpaint-
ing) as for the blind spot, motion detection as in MT,
motion grouping and segmentation as in MST, image seg-
mentation as in V2.

While modeling these different vision tasks, several gen-
eral properties of variational approaches are revealed and
can be related to cortical map computations. Main proper-
ties are:

• The process is specified as a criterion to minimize which
is an informative way to define what is to process.

• Once the specification given, the related implementation
is ‘‘automatically’’ derived from the Euler–Lagrange
equation. This Euler–Lagrange equation is usually
solved in dynamical process, defining a convergent
process.
o bottom, we illustrate some well-known applications in computer vision.

-level specifications of the brain relate to ..., J. Physiol. (2007),
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• The process is highly parallel, defined by a set of distrib-
uted local processes, which cooperative calculations cor-
respond to a global function.

• These local processes have two main ingredients: A local
dynamic and a diffusion in a local neighborhood (think
connectivity), exactly what happens in a neural network.

• The convergence is easy to control since we get a kind of
‘‘Lyapunov function’’ for free.

• The global result is obtained through a (generally non-
isotropic and non-linear) input/output filter.

• Different scales can interact together.
• Finally, one can defined systems of coupled PDEs where

several maps can interact together.

3. Specification of cortical map computation

3.1. General variational formulation

We consider that the goal of a neural map computation
is to obtain an output map v : Rn ! Rp, from an input map
w : Rn ! Rq. Note that vectors, and also matrices, are writ-
ten in bold characters, matrices with capital letters and sca-
lars in italic. For example, for n = 2, the space R2 could be
a representation of the retina domain. If w is the retina
monochromatic intensity, q = 1 (or q = 3 if color).

In this article, we focus on map computations which can
be formalized as optimization problems. We propose here a
very general variational formulation. Given an input map
w, one look for an output map �v verifying

�v ¼ argmin
v2H=cðvÞ¼0

LðvÞ; with ð12Þ

LðvÞ ¼
Z

X
jŵ� wj2K þ

Z
X

/ðjrvjLÞ þ
Z

X
wðvÞ; ð13Þ

and ŵ ¼ Pv; ð14Þ

where $ stands for the gradient operator. P, /(Æ), w(Æ), c(Æ),
K and L are commented hereafter. The norms defined in
(13) are weighted norms defined by jujM = uTMu, where
M is a given symmetric positive matrix. We also assume
that the functions v and w belong to a dense linear subset
of an Hilbert space H, more precisely the Sobolev space
H ¼ W 1;pðRnÞ (where p is related to the regularization term,
i.e., the ‘‘shape’’ of function /).

Let us interpret model (12)–(14) (see Fig. 3). The first
term in (13) is a fidelity attached term specifying how the
Fig. 3. The goal of a cortical map computation: obtain v from w. In the
sequel, we detail the different parameters drawn here.
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output is related to the input, the second term is a
‘‘smoothing’’ term which defines the regularity of the out-
put and the third term allows to constraint the form of
the solution. Eq. (14) shows the chosen relation between
the estimation of the input, given an output. So the formu-
lation (12)–(14) specifies the cortical map computation in
the sense that it explains the ‘‘goal’’, what is to be done,
but without any reference to how it is done. The rest of this
section is devoted to the analysis of each term.

We remark that model (12)–(14) is defined in a continu-
ous framework. Of course, the ground truth of the neural
units is discrete and we will show in Section 4 how to relate
this global continuous formulation to a local discrete
approach.

In the rest of this section, we comment some properties
of the model (12)–(14).

3.2. Discussion about model features

3.2.1. Input control

The function K : Rn ! Sþm 2 H , where Sþm is the set of
square symmetric positive semi-definite matrices of size
m, defines a so-called measurement information metric. It
represents two properties:

• The precision of the input: the higher this precision in a
given direction, the higher the value of K in this direc-
tion (in a statistical framework, K corresponds to the
inverse of a covariance matrix);

• Partial observations and missing data: if the input is only
defined in some directions, it corresponds to a matrix K
definite only in these directions (e.g. if only defined in
the direction u, K = ku uT for some k), if the input is
missing at one point we simply have to state K = 0.

Very easily, writing w = H*w 0 where H is any linear filter
of the input w 0, the present formalism is also usable to esti-
mate regularized version of any linear filtering (e.g., deriv-
ative to estimate a gradient or a velocity).

This corresponds to the ‘‘estimation’’ part of the EM
formalism sketched out in Section 2.

3.2.2. Output regularization

The function Lij : Rn ! Sn 2 H , where Sn is the set of
square symmetric matrices defines a diffusion tensor L,
which is symmetric (i.e. Lij = Lji) and positive (i.e.
8v 2 Rn; vTLijv P 0).

The weighted norm of $v is modulated by a function
/ : R! R which controls the amount of smoothness
required. For example, /(s) = s2 is called a Tikhonov pen-
alty term: it strongly penalizes variations of v (high cost in
the energy for high gradients) so that the resulting v will be
over-smoothed.

If one want to preserve edges, i.e. the discontinuities of
v, it is necessary to choose a smoothing term less penaliz-
ing. Several / functions have been proposed (see Aubert
and Kornprobst, 2006 for a review and discussion). For
-level specifications of the brain relate to ..., J. Physiol. (2007),



Fig. 4. Interpretation of the variables of the model with respect to a
minimal representation of a cortical column connectivity. Extra-cortical
input or intra-cortical input from previous layers, corresponds to w, extra-
cortical or intra-cortical output to v. Local connections implement the
diffusion operator parametrized by L, while the input gain control,
magnitude and geometry, is parametrized by K. Remote backward
connections allow to modulate K and L.
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instance, a good choice is often the function
/ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p

, convex and with linear growth at infinity.
When a problem is ill-posed, i.e. if there are many (and

usually numerically unstable) solutions, adding some priors
about the smoothness of the solution is the key idea to have
a problem well-posed. When the input function is partially
or approximately defined at some points, as discussed pre-
viously, the value at such a point is defined using informa-
tion ‘‘around’’ which diffuses from well-defined values to
undefined or ill-defined values.

This corresponds, with computational specification
coming next, to the ‘‘expectation’’ part of the EM formal-
ism sketched out in Section 2.

3.2.3. Computational specification

In order to further specify the computation, three kinds
of constraints are introduced in (12)–(14):

• Structural constraints (written c(v) = 0), force the solu-
tion to belong to a manifold defined by implicit equa-
tions. For example, to represent an orientation h 2
[�p,p] we consider v = (p,q) with p = cos(h) and
q = sin(h) well-defined by the constraint c(v) = p2 +
q2 � 1 = 0. This Euclidean embedding of an orientation
allows to estimate p and q without considering parame-
trization issues around ±p. So the proposed framework
is very general regarding non-linear object representa-
tions (see e.g. Viéville et al., 2001 for a general
discussion).

• Optimization constraints (via the w(v) term of the crite-
rion) simply allows to weakly constraint v to get closer
to a given set of solutions (e.g. the binarization term
in the winner-take-all mechanism experimented in the
sequel).

• Measurement relations (written ŵ ¼ Pv) between the
input and the quantity to estimate. It is known that in
order to obtained an unbiased estimation (see e.g. Vié-
ville et al., 2001 for details) the measure itself has to
be re-estimated or corrected. This corresponds to inte-
grate ŵ in the estimation, thus in v, as made explicit
via the linear relation P. This defines an internal feed-
back in the estimation process.

In this context, we consider P, /(Æ), w(Æ), c(Æ) as ‘‘fixed’’,
whereas K and L are tunable. It would have been however
easy to parametrized c(Æ), w(Æ) and P with some additional
parameters in order to allow more flexibility (e.g. a switch
between two kinds of estimation). In fact, this appears to
be useless in the present context: The simplest, the best.

One obvious question is how does a neuronal system
‘‘select’’ a given specification for a given cortical map. Here
we propose to consider that the previous specification con-
straints correspond to what emerges with phylogenetic evo-
lution, while the specification parameters are tuned by
other computational maps (as in illustrated in the numeri-
cal section): Complex behaviors emerge from the interac-
tions between computational maps.
Please cite this article in press as: Viéville, T. et al., How do high
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3.3. The neural scale represented by the present model

In the context of the present study, such variational
approaches allow to specify how a local neuronal unit con-
tributes to the global computation issued by the cortical
map. From the specification, the local state evolution and
the diffusion between neuronal units are derived and well-
defined.

In the cortex, such a ‘‘neuronal unit’’ is a cortical hyper-
column (see Burnod, 1993 for a treatise on the subject).
Our model can be mapped onto usual computational
model of cortical columns processes: regarding such a
‘‘processing unit’’, we propose in Fig. 4a possible interpre-
tation of such an abstract analog network. This mapping
makes explicit the scale at which such analog networks
should be situated and has the chance to be compatible
with the laminar architecture of the cortex or neocortex
(Mumford, 1991; Douglas and Martin, 2004) and with
the related inter-layer circuitry. However, this mapping is
to be understood as a working assumption.

The complex geometric structure of cortical maps (i.e.
pin-wheel organization) is known to correspond to non-lin-
ear differential structures of the cortical map (Petitot and
Tondut, 1999). This is taken into account in our formalism,
by the implicit equation c(v) = 0 as made explicit
previously.
4. Implementation on a neural network architecture

4.1. Network definition: sampling and connectivity

4.1.1. Sampling

If considering the micro-columns of a cortical map (Bur-
nod, 1993), there is a clear sampling of the underlying con-
tinuous quantities. In Section 4 we deal with such neural
-level specifications of the brain relate to ..., J. Physiol. (2007),
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network implementing map computations, only defined at
a finite set of positions yj 2 Rn. The value of the map v

at yj is a measure in a small neighborhood Sj around yj

defined by

vj ¼ vðyjÞ ¼
Z
Sj

vðyÞljðyÞdy;

where lj(y) is the measure density in Sj. Here, we consider
that Sj is bounded.

Two classical choices are lj(y) = d(y � yj) (Degond and
Mas-Gallic, 1989) or lj(y) = 1 (Viéville, 2005b). The latter
gives an average measure. Results presented hereafter do
not depend on the choice of lj, which is a clear advantage
since such a measure is never very specific in a biological
model.

4.1.2. Connectivity

Let us consider a neural unit position x 2 Rn, connected
to a finite set of M samples {y1, . . . ,yj, . . . ,yM} in a spatial
neighborhood S of x.

The word neighborhood is used here in his topological
sense. At the biological level, S defines the receptive field
of a sensory neuronal unit.

In order to model a biological neural network, it is
important to consider very general connectivity patterns,
as stated here. Furthermore, due to the huge complexity of
the underlying mechanisms, we have to consider the weak-
est assumption about how each sample neighborhood.

More precisely, overlapped neighborhoods Sj \Si 6¼ ;
or partial partitioning [jSj 6� S are allowed (see Fig. 5)
and need to be taken account.

In order to relate the continuous specification defined
previously to the discrete implementation formalized here,
we must relate the discrete measures v(yj) to the underlying
continuous quantity. In the derivation of the main result in
(Viéville, 2005a) reported here, this link relies on the fol-
lowing summation property which defines a measure l(y):

vðxÞ ¼
Z
S

vðyÞlðyÞdy

¼
X

j

Z
Sj

vðyÞljðyÞdyþ
Z
S�[jSj

vðyÞl�ðyÞdy: ð15Þ

Here l•(y) is the measure density where no sample is avail-
able. This formula simply states that measures are related
linearly, i.e., that the different samples are combined addi-
tively. It is verified by any sampling model we know
Fig. 5. Notations used to represent a sample neighborhoods with a
general connectivity.

Please cite this article in press as: Viéville, T. et al., How do high
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(Degond and Mas-Gallic, 1989; Cottet and Ayyadi, 1998;
Edwards, 1996; Viéville, 2005b), although often implicitly
and not at this level of generality.

4.2. Relation between variational approach and neural

network

4.2.1. Main proposition
Let us now make explicit the link between specification

and implementation. We introduce the time t correspond-
ing to the dynamics of the neural network state v(t).

Proposition 4.1. The optimization problem (12)–(14) is, in
the general case, locally minimized by the following linear-

ized differential equation
ovi

ot
¼ �eiðviÞ þ

X
j

rijðviÞvj þ jiwi; ð16Þ

with

eiðvÞ ¼ qivþ noc
ov

T
cþ 1

2
w0;

qi ¼
P

j
rij þ PTKiP;

ji ¼ PTKi

8>>><>>>: ð17Þ

and n ¼ kj oL
ov
j=joc

ov

T
cj with k > 1. The weights r = (rij) are gi-

ven by considering the linearized optimal integral approxima-

tion up to order r (r P 2) of the non-linear diffusion operator

L ¼ /0ðjrvjLÞL ð18Þ
defined at M points with

M >
ðnþ rÞ!

n!r!
� nðnþ 1Þ

2
: ð19Þ

They are given by solving the system

LklðxÞ ¼
1

2

X
j

rij�l
ekþel

j ðxÞ;

divkðLðxiÞÞ ¼
X

j

rij�l
ek

j ðxÞ;
ð20Þ

where1: �la
j ðxÞ ¼

R
Sj
ðy� xÞaljðyÞdy, while they verify the

following ‘‘unbiasness’’ conditions

8i;
X

j

rij�l
a
j ðxÞ ¼ 0; 2 < jaj 6 r: ð21Þ

Among all rij verifying (20) and (21) we can choose those
which verify:

min
X

ij

jrijj2: ð22Þ

The main message of Proposition 4.1 is to introduce Eq.
(16) which corresponds to the standard Euler–Lagrange
equation where the diffusion operator is discretized thanks
to an integral approximation (even for vector-valued func-
1 We use the standard multi-index notation, for vector of integer indices

a ¼ ða1; . . . ; anÞ 2Nn and jaj = a1 + � � � + an and xa ¼ xa1

1 � � � xan
n .

-level specifications of the brain relate to ..., J. Physiol. (2007),
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tions). The second message, developed in the sequel, is to
relate Wilson–Cowan networks defined by an equation of
the form of (16) with the functional defined in (12) which
is not only a specification but has also the role of Lyapunov
functional.

The proof of Proposition 4.1 being quite technical, we
preferred to put it in the end, and we refer to Appendix
A for more details.

In the following sections, we comment the different
equations of Proposition (4.1). Section 4.2.2 revisits the
main part of this proposition which is how to approximate
the diffusion operator L (Properties (18)–(20)). Section
4.2.3 presents the interest of this method on a simple exam-
ple. In Section 4.2.4, we are also going to see that the net-
work parameter calculation is fully automatic in this
framework, with obvious engineering advantage. More
than that, the fact that the specification/implementation
mapping is one-to-one means that other cortical area can
tune and feed-back on such cortical area, not only at the
implementation level but also at the specification level.
4.2.2. Integral approximation of the diffusion operator

Integral approximation of differential operators have
been introduced in the field of neural networks by Cottet
and Mas-Gallic (1990), Cottet (1995), Cottet and Ayyadi
(1998, 1996) and presented here in (Viéville, 2005a), where
the derivation of the previous proposition is available. In
particular, the present form provides an alternative to the
use of so-called particles methods (e.g. Degond and Mas-
Gallic, 1989) which neural interpretation is weaker.

The approximation of a differential operator by an inte-
gral operator is – in fact – mandatory since a differential
operator is ‘‘punctual’’, whereas in the real life, it is not
possible to apply an infinitesimally small operator. A step
further, considering uncertainty, it is always relevant to
relate an estimation not on one but on several values, i.e.
define a non-punctual measure. This is exactly what an
integral approximation, most often implicit, provides.

It is important to note, as demonstrated in (Degond and
Mas-Gallic, 1989), that, due to the fact L is a positive oper-
ator, this integral approximation is not only closed to the
related differential operator, but that it also leads to sam-
pled solutions which are closed to the continuous solutions.

In the form of the previous proposition, these approxi-
mations are based on the summation property (15) and
provide a direct link between a discrete integral approxima-
tion and the continuous differential operator, without the
introduction of a ‘‘discretization’’ step. This is an improve-
ment with respect to (Edwards, 1996; Degond and Mas-
Gallic, 1989).

Regarding the fact we limit the approximation up to
order r, since for a constant K:

�la
j ðxÞ 6 K½jre

klj0;1=ðjaj þ 1Þ�ejajþ1;

as shown in (Edwards, 1996), �la
j becomes arbitrary small so

that unbiasness constraints (21) are automatically verified
Please cite this article in press as: Viéville, T. et al., How do high
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up to a negligible quantity when jaj increases. r is the order
of the integral approximation unbiasness with respect to
the relate differential operator.

Finally, the choice of (22) is ‘‘optimal’’ in the sense that
the chosen integral approximation ‘‘as closed as possible’’
to the approximated operator in the least-square sense
(see Viéville, 2005a for a complete discussion). In brief:
the solution with the smallest ‘‘variance’’ is the closest to
the punctual differential operator. In fact, not only the
optimal approximation is defined by (22), but a whole fam-

ily of kernels.
Thus, the linear sub-space defined by (20) and (21)

implements a diffusion operator, including unbounded ker-
nels (Degond and Mas-Gallic, 1989), allowing to represent
a rather large class of networks as detailed in the next
section.
4.2.3. Illustration of integral approximation precision

We would like to show the benefits of using Property 4.1
for discretization on a simple 2D example (n = 2). Let us
consider a classical restoration problem defined by the min-
imization of the functional

LðvÞ ¼
Z

X
jv� wj2 þ

Z
X
jrvj2;

with a fidelity term and a quadratic regularization term
(Tikhonov and Arsenin, 1977). In this simple case, L is
the ‘‘identity matrix’’ (kronecker four order double sym-
metric tensor), and the Euler–Lagrange equation reduces
to

ov

ot
¼ Dv� ðv� wÞ:

So here we have to discretize the Laplacian operator, which
is usually discretized by a convolution with a 3 · 3 discrete
mask like M1:

Dv � M1 � v where M1 ¼
1 1 1

1 �8 1

1 1 1

264
375: ð23Þ

Now, let us show how the approach described in Proposi-
tion 4.1 (with a possible automatic implementation as de-
scribed in Section 4.2.4) allows to obtain discretization
with increased precision. In our approach, we need to
introduce another parameter: the order r of the integral
approximation, which also depends on the neighborhood
size s (see Section 4.1). Thus, we can explore different val-
ues of both s and r, and we automatically generate the re-
lated masks.

Let us consider a given neighborhood size, defined by
s = 2, i.e., 5 · 5 masks since M = (2s + 1)n for a simple
neighborhood. Given r verifying (19), we can solve equa-
tions (18)–(20) to obtain some masks. For r = 2 or 3
(respectively r = 4 or 5), we obtain mask M2 (respectively
M3) defined by
-level specifications of the brain relate to ..., J. Physiol. (2007),



Fig. 6. Integral approximation order value optimization in the 2D case, for a regular image with squared masks and isotropic diffusion: Error between
estimated discrete Laplacian and ground truth with different schemes and orders, with Gaussian noise.

Table 1
Optimal and maximal order r computation in function of the smallest
neighborhood size s

Smallest size s 1 2 3 4 5
Optimal order r 2 2 2 4 4
Maximal order r 3 5 8 11 14
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M2 ¼

8
135

1
27

4
135

1
27

8
135

1
27

2
135

3473
16230

2
135

1
27

4
135

1
135

�20
27

1
135

4
135

1
27

2
135

3473
16230

2
135

1
27

8
135

1
27

�4771
32460

1
27

8
135

26666666664

37777777775
;

M3 ¼

�1411
16230

257
2164

�4771
32460

257
2164

�1411
16230

257
2164

3578
8115

3473
16230

3578
8115

257
2164

�4771
32460

3473
16230

�1425
541

3473
16230

�4771
32460

257
2164

3578
8115

3473
16230

3578
8115

257
2164

�1411
16230

257
2164

�4771
32460

257
2164

�1411
16230

26666666664

37777777775
: ð24Þ
In order to compare the precision of these masks, let us
consider an image for which ground truth is known (i.e.,
the Laplacian is known explicitly). We chose here the im-
age of a Gaussian kernel. Fig. 6 shows the error curves be-
tween ground truth and estimated Laplacian with the
different masks, as a function of a Gaussian noise to test
robustness. Different values of r are shown. From this fig-
ure, we can observe that the masks computed with the pre-
vious formalism (24) give better approximations than the
standard Laplacian mask (23), and we can also estimate
the optimal value of the approximation order (for a given
neighborhood s = 2) to be r = 2 here (corresponding to
the smallest error curves in blue).

Similarly, considering the same problem with different s

(see Chemla, 2006), optimal order r can be estimated.
Results are shown in Table 1. Note that the maximal order
is estimated thanks to inequality (19), s being fixed. Note
that the maximal order is far from being optimal, and to
Please cite this article in press as: Viéville, T. et al., How do high
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given any other operator, deriving this optimal value is
an open issue.
4.2.4. Implementation of the network

Since the present integral approximation is obtained
from a quadratic minimization (22) with linear constraints
(20) and (21), it is well-defined and the solution is a closed-
form linear function of L and divðLÞ. Furthermore, this lin-
ear function is only defined by the network sampling,
because only function of �la

j ðxiÞ.
Since L is also a function of v, r is re-adjusted at each

step. This is the reason why we write rij(vi) in (16). The fact
r is finally defined as a linear function of L is essential at
this stage. Furthermore, this corresponds to a linearized
scheme and the convergence is obtained by an iterative
mechanism. It also appears that the coefficients rij can eas-
ily derived from a Hebbian rule (see e.g. Viéville (2005a) for
a review) since they are defined by a quadratic criterion
(22) with linear constraints (20).

As a consequence, the network parameters defined in
(17) are directly given in closed-form from the specification
equations P, c(Æ), w(Æ) and parameters K and L, and all
parameters are ‘‘compilable’’ in the following sense: Given
any algebraic expression for the specification parameters,
the implementation parameters are obtain by finite combi-
nation of parameter’s derivatives and other closed-form
symbolic derivations (see Chemla, 2006 for the develop-
ment of this part of the study).
-level specifications of the brain relate to ..., J. Physiol. (2007),
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As made explicit in (Viéville, 2005a), the coefficient n
must be small enough to decrease L and high enough to
maintain c(v) = 0, which is obvious to adjust numerically,
avoiding the explicit computation of the related formula.
This is easy to control numerically. When non-linear con-
straints are not considered, n = 0.

Thanks to effective derivations we are able to ‘‘compile’’
the specifications, i.e. derive all neural network parameters
in order to realize a computation. Clearly, the computa-
tional mechanism is not a ‘‘program’’ but is more likely
related to a ‘‘iterative non-linear filter’’.

At a numerical level, we must simulate the continuous
dynamics in a computer thus provide a temporal discretiza-
tion of the dynamics. Not straightforward, but easy to for-
malize, please refer to (Chemla, 2006) for details.

4.3. Representation of analog network

4.3.1. Qualitative interpretation of Proposition 4.1

There is something more to learn from the previous
result. If we consider an analog network defined in (16)
with (17), we can detail and interpret each term:

• ji is the input gain control. In our framework it is
directly proportional to the input reliability K and to
the input–output relationship P. At the implementation
level, both terms are combined in (17).

• rij are the neural network weights. In our framework
they are in direct correspondence with the output regu-
larization parametrized by L. There is a one to one cor-
respondence if we consider (22). Otherwise, many
combination of weights implement a given regulariza-
tion process as soon as (20) and (21) are verified up to
an order r. This very large degree of freedom allows to
hypothesize that a large set of diffusive neural networks
could be represented in the present framework.

• ei defines the neural unit dynamics and contains two
terms.
– A leakage term parametrized by qi which simply bal-

ances the terms related to the input gain control and
the neural network weights.

– Two corrective terms related to the constraints to ver-
ify, if any.

In other words, if the dynamics is defined by a leakage
term which does not strictly corresponds to the input gain
and network weights balance, it simply corresponds to the
introduction of some weak constraint on the neural state.
This again allows to account for a large range of neural
networks.

4.3.2. Reciprocal result: when does a neural network solve a

variational approach?

That we can make explicit the links between the neural
network parameters and the variational specification is
an interesting fact. Let us now formalize this fact and detail
to which extends we can relate so-called Wilson–Cowan-
Please cite this article in press as: Viéville, T. et al., How do high
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style recurrent networks to a criterion of the form (12)–
(14). Let us write Sig() the sigmoid function.

Proposition 4.2. Given a network dynamics of the form

oui

ot
¼ �eiðuiÞ þ

X
j

rijðuiÞvj þ jiwi; ð25Þ

with vi = Sig(ui), as soon as the weights rij are unbiased (i.e.
verify (21)), then (25) locally minimizes in the general case

the criterionZ
X
jŵ� wj2 þ

Z
X
jrvj2L þ

Z
X

wðvÞ; ð26Þ

with ŵ ¼ jTv, w ¼
R

e� ½
P

jrj þ jjT�v and L defined by
(20).

This result is applicable to analog Hopfield network (as
detailed e.g., in Edwards (1996)) and to the very powerful
class of models Cohen and Grossberg dynamical system
(e.g., Grossberg, 1988; Raizada and Grossberg, 2003) for
which it has been shown (Viéville, 2005a) that the previous
result is applicable. This has a very interesting conse-
quence, since (26) has the same role as a Lyapounov func-
tional: Since (25) minimizes (26) convergence of the related
dynamical system towards a fixed point is guarantied. This
property is verified for a very large class of weights r since
only (21) has to be verified. For instance, weights do not
need to be symmetric.

A step further, a very large class of neural unit dynam-
ics, defined by the non-linear term e is compatible with this
proposition: In fact, as soon as �e is well-defined. There is a
unique global solution if �e is convex. Otherwise the local
solution which depends upon the initial conditions.

Here a sigmoid non-linearity is introduced between the
neuronal state u 2 RN (usually related to the membrane
potential) and the neuronal output v 2 [0,1]N (usually
related to the average firing rate probability). This is
important since it is a model of the relation between the
membrane potential and the firing rate probability. At a
technical level, our result is in fact true with or without this
non-linear term (Viéville, 2005a). The reason is simple to
understand: In the partial differential equation, after deri-
vation, the non-linear term appears only as global gain fac-
tor in the minimization process. In other words, the non-
linear relationship between u and v does not modify the
variational criterion minimum, but only the rate of conver-
gence. Since there is a saturation effect, convergence is slo-
wed down for extreme values, which has very likely a
stabilization effect.

One add-on of this specification is that convergence of
such a network is demonstrated without the restrictive
assumption of symmetry of the weights rij (e.g. Grossberg,
1988).

Remark. This representation is well-defined for neural
network connectivity with short-range connections, since
this connectivity implements a local diffusion operator, and
unbiasness conditions are numerically easily verified with
-level specifications of the brain relate to ..., J. Physiol. (2007),
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such kind of connections. Network mechanisms based on
remote connections are, in the general case, not correctly
represented in this framework, unless they correspond to
unbiased weights r, as defined (21). This is the case if
remote connections implement diffusion at a large scale, or
if a remote connection corresponds to some iterative short-
range diffusion, integrated in one step in the remote link.

Since what is captured here is ‘‘anisotropic diffusion’’,
this representation is well-defined for diffusive neural
network connectivity. There is however no obstacle to
have some of the weights with negative values (that the
diffusion operator is positive does not means all coefficients
are positive, see the mask M3 in (24)). As a comparison,
note that in the cortex a minority of weights are negative
(about 20%, see (Burnod, 1993)).
5. Applications of proposed framework

5.1. Edge-preserving smoothing with contrast gain control in

feed-back

Let us revisit an edge-preserving smoothing approach
proposed by Cottet and Ayyadi (1998) which corresponds
to the framework presented in this paper. In Cottet and
Ayyadi (1998), given an initial image w : R2 ! R, the
authors proposed a diffusion processes of the form:

ov

ot
¼ lðvÞDLðvÞv;

where l = 1/Sig 0�1 (Sig being the sigmoid function), which
is in fact related to the minimization of the criterion

�v ¼ argmin
v

LðvÞ ¼ k
Z

X
ðw� vÞ2 þ

Z
X
jrvj2L; ð27Þ

where k is a small constant and L is defined by

L¼ q2Pg? þ
3

2
ð1�q2ÞI

� �
with

g¼ S �rv;

q¼min 1; jgj
2

s2

� 	
;

Pg? ¼
g2

2 �g1g2

�g1g2 g2
1

 !
;

8>>>>><>>>>>:
ð28Þ

where s is the contrast threshold, s is an adaptation time
constant and S is a spatial smoothing kernel. Pg? is the
2D projection onto g?, thus on the edge tangent, g being
aligned with the edge normal direction. Depending on the
norm of the gradient of the intensity, the regularization
term infers two complementary behaviors.

• For low contrasts, when q is close to zero, we have
L 	 I: The smoothing term is quadratic which corre-
sponds to an isotropic smoothing in the Euler–Lagrange
equation.

• For high contrasts, when q is close to one, we have
L 	 Pg? : The smoothing term will perform anisotropic
diffusion only in the normal direction to the edges.
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Fig. 6 shows some comparison of this adaptive linear
diffusion process compared with classical linear diffusion.
Thanks to the short-term adaptation of the diffusion tensor
L, discontinuities are preserved. The adaptive rule (28) cor-
responds to a Hebbian rule at the implementation level
(Cottet and Ayyadi, 1998), and it can interpreted as a
feed-back link from previous estimation of v onto the for-
ward diffusion process (see the dotted arrow in Fig. 3).

It has been formally shown (Cottet and Ayyadi, 1998)
that combining short-term adaptation with the diffusion
process is a convergent process: The key point is that the
feed-back from v to L is smooth in space, but not necessar-
ily in time.

Contrary to (Cottet and Ayyadi, 1998), we have not
introduced a non-linearity as discussed for (25): We have
implemented a linear neural network as in (16). In the
numerical simulations, we have verified that with or with-
out this non-linearity, results are similar (up to the numer-
ical precision), as expected since it does not modify the final
minimal state to reach.

At step ahead, in (Cottet and Ayyadi, 1998), a temporal
filtering is introduced in the feed-back. Thus, it is not
directly L but an exponential temporal filtering of L which
is taken into account. Our prediction is that such a low-pass
filtering is not required and we have been able to verify this
fact in this context. More precisely, we have experimented
that a small-delay (0� � �10 times the sampling period) low-
pass filter does not significantly influence the result, whereas
higher delays inhibit the feed-back, inducing a convergence
with only a poor edge-preserving smoothing.

Results are given in Fig. 7. The first example is the same
as in (Cottet and Ayyadi, 1998) to validate the present
method.
5.2. Iso-luminance estimation using constrained estimation

Let us revisit isotropic filtering, while a structural con-
straint c(v) = 0. More precisely, we choose to introduce
the following constraint, for a red (r), green (g), blue (b)
color image:

cðvÞ ¼ r þ g þ b� constant ¼ 0: ð29Þ

Fig. 8 shows the results on some of the previous images.
The image is filtered but after the iso-luminance constraint
is verified.

Furthermore, the convergence is very fast (only one iter-
ation to verify the constraint and few iterations for the iso-
luminance smoothing) since the constraint is linear. A step
further, we applied non-linear constraint, like r2 + g2 +
b2 � 2552 = 0, and have obtained similar convergence
speed.
5.3. A winner-take-all mechanism using weak constraints

Let us now describe how a winner-take-all (WTA)
mechanism can be written in this framework. WTA mech-
-level specifications of the brain relate to ..., J. Physiol. (2007),



Fig. 8. Color image filtering with iso-luminance introduced as a structural constraint in the process. In the case of iso-luminance, the blue part remains
almost perfectly blue and the dark black part becomes a gray-level part.

Fig. 7. Edge-preserving smoothing. The original image is on the left. As a comparison, a Gaussian filtering (isotropic diffusion) is shown in the middle.
The synthetic image contains a huge (80%) amount of noise. The real image contains features at several scales. In both cases edges are preserved, while an
important smoothing has been introduced.
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anisms are usually realized (e.g. Yu et al., 2003; Frezza-
Buet et al., 2001; Grossberg, 1988) using an ad hoc mech-
anism with an explicit definition of inter-neuron inhibition
in order to allow one neural unit to maintain its activity
whereas all other activities vanish. They are used in many
neuronal computations (see the review in Yu et al., 2003)
and the way they could be implemented is still an issue.
It is thus an important test for the present method to verify
if such a mechanism is easily formalized.

Given an initial condition w, one look for a solution �v
verifying

�v ¼ argmin
v

LðvÞ ¼
Z

X
ðw� vÞ2 þ

Z
X
jrvj2 þ

Z
X

wðvÞ; ð30Þ

where w : ½0; 1� ! R is a function, for example

wðvÞ ¼ v2t=ð1�tÞð1� vÞ2;

with w(0) = w(1) = 0 and / 0(t) = 0 in fact maximal at
t 2 [0, 1] > 1/2. This previous expression is the simplest
polynomial profile with the suitable characteristics: This
Please cite this article in press as: Viéville, T. et al., How do high
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non-linear term will force the values of the network to be
zero or one, with a bias towards the zero value.

In Fig. 9 examples of result are shown. In order to avoid
any parameter adjustment, the threshold t is initialized to
the distribution mean and incremented/decremented dur-
ing the process to maintain a small binarization with
respect to diffusion. The threshold adjustment policy is
not critical. Results can also be obtained with a fixed
threshold. The iteration is stopped when the output has a
predefined small size.

This very simple mechanism shows how the present for-
malism may provide a complementary view with respect to
other analog network approaches (Frezza-Buet et al.,
2001;Grossberg, 1988), regarding WTA.
5.4. Implementation of a segmentation approach

Finally we report the implementation of the Mumford–
Shah functional (Mumford and Shah, 1985), which is a
-level specifications of the brain relate to ..., J. Physiol. (2007),



Fig. 9. Winner-take-all mechanism implemented using the proposed method. The very noisy (more than 80%) original image is on the left; the
intermediate result shows how diffusion is combined with erosion yielding the final result, shown also with a zoom. Clearly the focus is given on the main
structures of the image.
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very classical problem in image processing. Results are pro-
posed in Fig. 10 (see also Fig. 2).

The goal of the process is to segment an image defined
on X into two or more regions of homogeneous intensity
W1,W2, . . . separated by a set of border K, of total length
jKj. Let us specify this wish in terms of a variational
approach: We want to find the best segmented image v

and the best region-border K with an optimal

• Fidelity: The output image v is as closed as possible to
the input image w.

• Homogeneity: In each homogeneous region, the inten-
sity variation is minimal.

• Parsimony: The length of the border should be minimal
in order to keep only separations between very different
regions.

Obviously, all these conditions cannot be fulfilled
together and this is a matter of compromise which can be
specified in the variational framework. This was proposed
by Mumford and Shah (Mumford, 1991) who proposed
the following variational approach:
Fig. 10. Segmentation with the Mumford–Shah approac

Please cite this article in press as: Viéville, T. et al., How do high
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min
v;K

Z
X
ðw� vÞ2 þ a

Z
W�K
jrvj2 þ bjKj; ð31Þ
where b > 0 controls the fine/coarse grained segmentation
and a > 0 controls the scale of the segmentation providing
an adjustable process with easily interpretable parameters.

There exists a wide literature on the theoretical study of
(31) (see Aubert and Kornprobst, 2006), but we focus here
on the implementation of this approach. The problem
comes from the term jKj which is difficult to derive.

We followed here the approach proposed by Ambrosio
and Tortorelli (1990) where the set K is replaced by an aux-
iliary variable z (a function) that approximates the charac-
teristic function (1 � vK), i.e., z(x) � 0 if x 2 K and z(x) � 1
otherwise. The authors proposed to minimize the following
sequence of functional:

Leðv; zÞ ¼
Z

X
ðv� wÞ2dxþ

Z
X

z2jrvj2 dx

þ
Z

X
ejrzj2 þ 1

4e
ðz� 1Þ2


 �
dx;
h, based on the Ambrosio–Tortorelli approximation.
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where e controls the degree of admissible discontinuities
thanks to compromise between the two terms in the inte-
gral. We refer to (Ambrosio and Tortorelli, 1990; Aubert
and Kornprobst, 2006) for the precise study of this approx-
imation, which is now under the form of our generic crite-
rion (13) with vector-valued unknown.

6. Conclusion

In this paper we revisited the links between high-level
specification of how the brain represents and categorizes
the causes of its sensory input and the related implementa-
tion on analog models.

Our goal was to show that the framework of variational
approaches, so successful in modeling physics but also
vision tasks in computer vision, had also some interest
and relevance in computational neuroscience. Beside the
proposed theoretical framework, we presented how quali-
tative properties of variational approaches match some
properties encountered in local map computations. We also
proposed some interpretations of our modeling in term of
cortical columns.

More precisely we focused here on map computations
that can be viewed as variational approaches, i.e., minimiz-
ing a global criterion, which has of course some relations
with Lyapunov function. Our contribution was twofold.
The first contribution was to generalize some results which
relate variational approaches with a neural networks:
Starting from a variational approach and a given geometry
of the neural network, one can find the suitable synaptic
weights which minimize the energy; Conversely, the energy
associated to a given neural network can be defined under
some assumptions. The second contribution was to investi-
gate how to couple several variational approaches in a sta-
ble way. We proved that efficient and stable coupling could
be obtained through some tuning parameters of the varia-
tional approach (namely the metrics involved in informa-
tion measurement and diffusion). In this way, backward
connections are ‘‘modulatory’’ for mediation of contextual
effects.

We gave in this article several illustrations of the pro-
posed framework, from vision task application to more
fundamental processing such as winner take all mechanism.
Mixing these applications will be the focus of our future
developments, i.e., applications with map computations
with feedbacks. Another focus will be to establish more
connections between variational approaches and spiking
neural networks.

In a nutshell, artificial networks are abstractions of bio-
logical entities and the variational approach allows to spec-
ify and compile them.
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Appendix A. Proof of Proposition 4.1

A.1. Deriving the Euler–Lagrange equations

Let us derive a differential equation

ov

ot
¼ F ðvÞ;

so that v converges to the minimum of LðvÞ with the con-
straint c(v) = 0.

Writing L ¼LðvÞ, c = c(v) and n = jcj2, the goal is to
have

oL

ot
¼Lv

ov

ot
< 0 and

on
ot
¼ cT oc

ov

ov

ot
< �e < 0; ð32Þ

where e > 0 is a positive constant to be defined, and Lv is
the derivative of L w.r.t. v (i.e., the Euler–Lagrange equa-
tion without constraint). Here we assume jLvj > 0, since
no extremum is attained. Moreover:

Lv ¼ 2PTK½ŵ� w� � 2divð/0ðjrvj2LÞLrvÞ þ ow
ov

T

; ð33Þ

which is obtained by standard calculus of variations (see
Aubert and Kornprobst, 2006 for more details). Since both
L and n are positive strictly decreasing quantities they will
converge to a minimum. Moreover, since on

ot < �e < 0, n
can not converge towards a strictly positive minimum
and thus converges to 0 as required.

In order that ov
ot to verify (32), we propose the following

equation:

ov

ot
	 �LT

v � k
jLT

v j
joc
ov

T
cj

oc

ov

T

c; ð34Þ

where k > 0 is a constant to be defined in the sequel. Intro-

ducing the notation h ¼ d
LT

v ;
oc
ov

T
c, we can rewrite the

expressions in (32) so that

oL

ot
¼ �jLT

v j
2ð1þ k cosðhÞÞ < 0 and

on
ot
¼ �jLT

v j j
oc

ov

T

cjðcosðhÞ þ kÞ < �e < 0: ð35Þ

If jcj = 0 the constraint is verified. In (32), the right-hand-
side condition is thus not to be considered, while the left-
hand-side condition is verified for any k in (34). Further-
more j oc

ov
j > 0 since the constraints are regular.

Let us now consider the case where jcj > 0. Conditions
in (35) reduce to

1þ k cosðhÞ > 0 and cosðhÞ þ k > e0

for some e 0 > 0 so that jLT
v jjoc

ov

T
cje0 > e. If cos(h) > 0 these

conditions are verified for any positive k > e 0 � cos(h).
-level specifications of the brain relate to ..., J. Physiol. (2007),
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If �1 < cos(h) < 0 (the case where cos(h) = �1 is a sin-
gular case, the present solution being only valid in the gen-
eral case) conditions are equivalent to:

�1

cosðhÞ < k < e0 � cosðhÞ

and a solution exists as soon as e0 < 1�cosðhÞ2
� cos h . More precisely

k > 1.
The required conditions are thus verified in any case.
Now, considering the evolution defined in (34) in a con-

tinuous spatial domain, the goal is to show how it can be
discretized in space, given a sampling and a connectivity
pattern. From (34), we look for an approximation of the
form of (16) and (17), which is directly derived from (33)
and (34).

Note that in (16) it is sufficient to defined ov
ot up to a scale

factor, which is a useful degree of freedom for time
discretization.
A.2. Unbiased integral approximation of the differential

operator

Clearly, the only difficult point is the regularization term
derivation because the Euler Lagrange equations lead to
the following well-known expression, which needs to be
implemented in a discrete way:

D�LðxÞðfðxÞÞ ¼ divð�LðxÞrfÞðxÞ: ð36Þ

Here we freeze L, i.e. do not consider its dependence with
respect to v. The approximation is thus going to be valid
for one step of the previous mechanism and iteratively ad-
justed with time.

Let us consider the following integral approximation:

D��LðxÞðfðxÞÞ ¼
Z
S

rðx; yÞfðyÞdy� mðxÞfðxÞdy

for a kernel r(x,y) defined in Rn 
 Rn, where
mðxÞ ¼

R
S

rðx; yÞdy.
This integral, in the discrete case where only f(yj),

l = 1, . . . ,M is available, cannot be estimated for a general
kernel r(x,y), since on each input field Sj, there is only one
measure f(yj) and we thus can only define a unique weight
r(x,yj). As a consequence, we choose a kernel of the form:

rðx; yÞ ¼
X

j=y2Sj

rðx; yjÞljðyÞ

and obtain:Z
S

rðx; yÞfðyÞdy ¼
X

j

Z
Sj

rðx; yjÞljðyÞfðyÞdy:

This appears to be the more general kernel compatible with
the present assumptions, yielding:
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D��LðxÞðfðxÞÞ ¼
Z
S

rðx; yÞfðyÞdy� mðxÞfðxÞdy

¼
X

j

Z
Sj

rðx; yjÞljðyÞfðyÞdy� mðxÞfðxÞdy

¼
X

j

rðx; yjÞ
Z
Sj

ljðyÞfðyÞdy� mðxÞfðxÞdy

¼
X

j

rðx; yjÞfðyjÞ � mðxÞfðxÞ;

since fðyjÞ ¼
R
Sj

ljðyÞfðyÞdy, while:

mðxÞ ¼
Z
S

rðx; yÞdy ¼
X

j

rðx; yjÞ
Z
Sj

ljðyÞdy:

This derivation gives the form of the integral operator in
the discrete case. The goal is now the coefficients r(x,yj)
of the discretization.

Let us now consider the Taylor expansion of
g(y,x) = f(y) � f(x) with respect to d = y � x

gðy; xÞ ¼
Xr

jaj¼1

oaf

a!
ðxÞ
����
y¼x

ðy� xÞa þ oðjy� xjrÞ

¼
Xr

jaj¼1

ðy� xÞa oa

a!

" #
fðxÞ þ oðjy� xjrÞ:

We obtain:

D��LðxÞðfðxÞÞ ¼
Z
S

rðx; yÞ½fðyÞ � fðxÞ�dy

¼
Z
S

rðx; yÞgðy; xÞdy

¼
X

j

Z
Sj

rðx; yjÞljðyÞ
Xr

jaj¼1

ðy� xÞa oa

a!
fðxÞ

" #
dy

þ Rrf

¼
Xr

jaj¼1

X
j

rðx; yjÞ
Z
Sj

ðy� xÞaljðyÞdy
oa

a!

" #
fðxÞ

þ Rrf

¼
Xr

jaj¼1

X
j

rðx; yjÞ�la
j ðxÞ

o
a

a!

" #
fðxÞ þ Rrf;

where the remainder Re
klf of this expansion may be written

using an integral form:

Rrf ¼
X
jaj¼rþ1

r þ 1

a!

Z
S
½0;1�

rðx; yÞðy� xÞað1� uÞroafj


 ðxþ uðy� xÞÞdydu

and because the support is bounded (as discussed in Sec-
tion 4.1) thus included in a ball of radius e, the remainder
is bounded by the standard condition:

jRrfj0;1 < Cer�1jfjrþ1;1;

where C is a constant.
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This would have been also true for an unbounded sup-
port providing

P
jrðx; yjÞ�la

j ðxÞ < þ1; jaj ¼ r þ 1 (see e.g.
Degond and Mas-Gallic, 1989).

If we expand the diffusion operator with the same
notations:
DLðxÞðfðxÞÞ ¼ divð�LðxÞðDfÞðxÞÞ

¼ divðLðxÞÞðDfÞðxÞ þ traceðLðxÞðD2fÞðxÞÞ

¼
X

k

divkðLðxÞÞoek þ
X

kl

LklðxÞoekþel

" #
fðxÞ

and identify with the previous expression of D��LðxÞðfðxÞÞ up
the rth order we obtain the conditions (20) and (21) for
jaj > 0.

We also finally obtain:

D�LðxÞðfðxÞÞ � D��LðxÞðfðxÞÞ ¼ Rrf

leading to the proposed approximation.
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