Empirical Risk Minimization and Zero-Sum Games with Noisy Observations

Samir M. Perlaza

Join work with Ke Sun and Alain Jean-Marie.

Inria. Centre d'Université Côte d'Azur

Industrial Engineering and Operations Research Department
Indian Institute of Technology
Mumbai, November 9, 2022

Research reported in:

Ke Sun, Samir M. Perlaza, and Alain Jean-Marie. "**Zero-Sum Games** with **Noisy Observations**". Preprint arXiv:2211.01703 [cs.GT].

Samir M. Perlaza, Iñaki Esnaola, and H. Vincent Poor. "Sensitivity of the Gibbs Algorithm to Data Aggregation in Supervised Machine Learning". Research Report, INRIA, No. RR-9474, Sophia Antipolis, France, Jun., 2022.

Samir M. Perlaza, Gaetan Bisson, Iñaki Esnaola, Alain Jean-Marie, Stefano Rini, "Empirical Risk Minimization with Relative Entropy Regularizations". Research Report, INRIA, No. RR-9454, Sophia Antipolis, France, Feb., 2022.

Table of Contents

- Empirical Risk and Zero-Sum Games
- Zero-Sum Games with Noisy Observations
 - Noisy Observations of the Actions
 - Noisy Observations of the Commitment and Actions
- Connections with Existing Results
 - Aumann's Games with Incomplete Information
 - Equilibrium Refinements and Relative Entropy Regularizations
- Final Remarks

The Problem of Supervised Learning

Notation and Definitions

Consider the following **supervised learning** scenario:

- ullet three sets $\mathcal X$ (patterns), $\mathcal Y$ (labels) and $\mathcal M\subset\mathbb R^d$ (models), with $d\in\mathbb N$.
- a function $f: \mathcal{M} \times \mathcal{X} \to \mathcal{Y}$ (explicit expression **is known**)

Statistical Assumptions

Two random variables X and Y satisfy

$$Y = f(\boldsymbol{\theta}^*, X), \tag{1}$$

for some specific model θ^* (optimal model or hypothesis).

- model θ^* is **unknown**
- a dataset $z = ((x_1, y_1), (x_2, y_2), ..., (x_n, y_n)) \in (\mathcal{X} \times \mathcal{Y})^n$ is available

The Problem of Supervised Learning

Notation and Definitions

Consider the following **supervised learning** scenario:

- ullet three sets $\mathcal X$ (patterns), $\mathcal Y$ (labels) and $\mathcal M\subset\mathbb R^d$ (models), with $d\in\mathbb N.$
- ullet a function $f:\mathcal{M}\times\mathcal{X}\to\mathcal{Y}$ (explicit expression is known)

Statistical Assumptions

Two random variables X and Y satisfy

$$Y = f(\boldsymbol{\theta}^*, X), \tag{1}$$

for some specific model θ^* (optimal model or hypothesis).

Objective: Model Selection

Given a dataset $z \in (\mathcal{X} \times \mathcal{Y})^n$, find the model θ^{\star} in (1)

Empirical Risk Minimization: The Problem of Supervised Learning

Problem Formulation

• Let $\ell: \mathcal{Y} \times \mathcal{Y} \to [0, +\infty)$ be a **risk (or loss or cost)** function.

Risk

Given a data point $(x,y) \in \mathcal{X} \times \mathcal{Y}$, the model $\theta \in \mathcal{M}$ induces the **risk** $\ell(f(\theta,x),y)$.

Empirical Risk

Given a dataset $z = ((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)) \in (\mathcal{X} \times \mathcal{Y})^n$, the *empirical risk* induced by the model $\theta \in \mathcal{M}$ is

$$L_{z}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell\left(f(\boldsymbol{\theta}, x_{i}), y_{i}\right). \tag{2}$$

Empirical Risk Minimization: The Problem of Supervised Learning

Problem Formulation

• Let $\ell: \mathcal{Y} \times \mathcal{Y} \to [0, +\infty)$ be a **risk (or loss or cost)** function.

Risk

Given a data point $(x,y) \in \mathcal{X} \times \mathcal{Y}$, the model $\theta \in \mathcal{M}$ induces the **risk** $\ell(f(\theta,x),y)$.

Empirical Risk

Given a dataset $z = ((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)) \in (\mathcal{X} \times \mathcal{Y})^n$, the *empirical risk* induced by the model $\theta \in \mathcal{M}$ is

$$L_{z}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell\left(f(\boldsymbol{\theta}, x_{i}), y_{i}\right). \tag{2}$$

Problem Formulation: Empirical Risk Minimization (ERM)

Given the dataset z, solve $\min_{\theta \in \mathcal{M}} L_z(\theta)$.

Problem Formulation: Empirical Risk Minimization (ERM)

Given a **noisy** dataset \tilde{z} , $\min_{\theta \in \mathcal{M}} L_{\tilde{z}}(\theta)$.

Strong connection with other problems:

- M-Estimation
 - minimum contrast estimation
 - sample average approximation

Appears in: machine learning, statistical physics, statistics, operations research, decision making, game theory, information theory, stochastic optimization, ...

Problem Formulation: Empirical Risk Minimization (ERM)

Given a **noisy** dataset \tilde{z} , $\min_{\theta \in \mathcal{M}} \mathsf{L}_{\tilde{z}}\left(\theta\right)$.

Problem Formulation: Empirical Risk Minimization (ERM)

Given a **noisy** dataset \tilde{z} , $\min_{\theta \in \mathcal{M}} L_{\tilde{z}}(\theta)$.

- The probability measure $P_{\mathbf{Z}}$ is **unknown**.
- A channel estimation can be obtained with arbitrary precision by the Learner.
- A **prior** Q_{Z} on the data might be available:
 - Perfect prior: $D(P_{\mathbf{Z}} || Q_{\mathbf{Z}}) = 0$ (ideal case)
 - Mismatch: $D(P_Z||Q_Z) > 0$ (practical case)
- Consider $P_{\mathbf{Z}}$ is the measure that maximizes the expected empirical risk

Key Question:

How to **model** this interaction?

Key Question:

How to model this interaction?

is this a Zero-Sum Game?

Notation and Definitions

Consider a 2×2 ZSG in normal form, denoted by $\mathscr{G}(\underline{u})$, with payoff matrix

$$\underline{\boldsymbol{u}} = \begin{pmatrix} u_{1,1} & u_{1,2} \\ u_{2,1} & u_{2,2} \end{pmatrix}.$$

- Two actions for Player 1: $A_1 \triangleq \{a_1, a_2\}$; and for Player 2: $A_2 \triangleq \{b_1, b_2\}$.
- ullet $\forall (i,j) \in \{1,2\}$, when Player 1 plays a_i and Player 2 plays b_j , the payoff is $u_{i,j}$

Player 1 chooses lines and Player 2 chooses columns

- $\forall k \in \{1,2\}$, a **strategy** for Player k is a probability measure $P_{A_k} \in \triangle(\mathcal{A}_k)$.
- Expected Payoff determined by the function $u: \triangle(A_1) \times \triangle(A_2) \to \mathbb{R}$:

$$u(P_{A_1}, P_{A_2}) = \sum_{(i,j)\in\{1,2\}^2} P_{A_1}(a_i) P_{A_2}(b_j) u_{i,j},$$
(3)

Player 1 maximizes, while Player 2 minimizes the payoff.

Nash Equilibria

Relevant solution concept when actions are chosen simultaneously: Nash Equilibrium.

Nash Equilibrium

The strategies $P_{A_1}^{\star} \in \triangle\left(\mathcal{A}_1\right)$ and $P_{A_2}^{\star} \in \triangle\left(\mathcal{A}_2\right)$ form an NE of the game $\mathscr{G}\left(\underline{\boldsymbol{u}}\right)$ if:

• For all $Q \in \triangle(\mathcal{A}_1)$,

$$u(P_{A_1}^{\star}, P_{A_2}^{\star}) \geqslant u(Q, P_{A_2}^{\star}); \text{ and}$$
 (4)

• For all $Q \in \triangle(\mathcal{A}_2)$,

$$u(P_{A_1}^{\star}, P_{A_2}^{\star}) \leqslant u(P_{A_1}^{\star}, Q).$$
 (5)

Nash Equilibria

Lemma (Nash Equilibria)

Let $P_{A_1}^{\star} \in \triangle\left(\mathcal{A}_1\right)$ and $P_{A_2}^{\star} \in \triangle\left(\mathcal{A}_2\right)$ form one NE of the game $\mathscr{G}\left(\underline{\boldsymbol{u}}\right)$. If the matrix $\underline{\boldsymbol{u}}$ satisfies

$$(u_{1,1}-u_{1,2})(u_{2,2}-u_{2,1})>0$$
 and $(u_{1,1}-u_{2,1})(u_{2,2}-u_{1,2})>0$, (6)

then, the NE is unique and

$$P_{A_1}^{\star}(a_1) = \frac{u_{2,2} - u_{2,1}}{u_{1,1} - u_{1,2} - u_{2,1} + u_{2,2}} \in (0,1)$$
 (7)

$$P_{A_2}^{\star}(a_1) = \frac{u_{2,2} - u_{1,2}}{u_{1,1} - u_{1,2} - u_{2,1} + u_{2,2}} \in (0,1), \text{ and}$$
 (8)

$$u(P_{A_1}^{\star}, P_{A_2}^{\star}) = \frac{u_{1,1}u_{2,2} - u_{1,2}u_{2,1}}{u_{1,1} - u_{1,2} - u_{2,1} + u_{2,2}}.$$
(9)

If the matrix \underline{u} satisfies

$$(u_{1,1} - u_{1,2})(u_{2,2} - u_{2,1}) \leqslant 0 \text{ or } (u_{1,1} - u_{2,1})(u_{2,2} - u_{1,2}) \leqslant 0.$$
 (10)

then, there exist either a unique NE or infinitely many NEs. Moreover,

$$u(P_{A_1}^{\star}, P_{A_2}^{\star}) = \min_{i \in \{1, 2\}} \max_{j \in \{1, 2\}} u_{i,j} = \max_{j \in \{1, 2\}} \min_{i \in \{1, 2\}} u_{i,j}. \tag{11}$$

Stackelberg Equilibrium

Solution concept with irrevocable and public commitments: Stackelberg Equilibrium.

- Player 2 (the leader) commits to choose its action by sampling a strategy $P_{A_2} \in \triangle(\mathcal{A}_2)$.
- Player 1 (the follower) observes P_{A_2} but not the action chosen by Player 2.
- Player 1 (the follower) chooses its strategy $P_{A_1} \in \triangle(\mathcal{A}_1)$ as a best response to P_{A_2} .

Definition (Stackelberg Equilibrium)

The strategies $P_{A_1}^{ullet}\in\triangle\left(\mathcal{A}_1\right)$ and $P_{A_2}^{ullet}\in\triangle\left(\mathcal{A}_2\right)$ form an SE of the game $\mathscr{G}\left(\underline{\boldsymbol{u}}\right)$ if:

$$P_{A_2}^{\bullet} \in \arg \min_{Q \in \Delta(A_2)} \max_{P \in \Delta(A_1)} u(P, Q); \text{ and}$$
 (12)

$$P_{A_1}^{\bullet} \in \arg \max_{P \in \wedge (A_1)} u(P, P_{A_2}^{\bullet}). \tag{13}$$

Stackelberg Equilibrium

Solution concept with irrevocable and public commitments: Stackelberg Equilibrium.

- Player 2 (the leader) commits to choose its action by sampling a strategy $P_{A_2} \in \triangle(\mathcal{A}_2)$.
- Player 1 (the follower) observes P_{A_2} but not the action chosen by Player 2.
- Player 1 (the follower) chooses its strategy $P_{A_1} \in \triangle(\mathcal{A}_1)$ as a best response to P_{A_2} .

Lemma

Let $P_{A_1}^{\star} \in \triangle\left(\mathcal{A}_1\right)$ and $P_{A_2}^{\star} \in \triangle\left(\mathcal{A}_2\right)$ form one NE of the game $\mathscr{G}\left(\underline{\boldsymbol{u}}\right)$. Let also $P_{A_1}^{\bullet} \in \triangle\left(\mathcal{A}_1\right)$ and $P_{A_2}^{\bullet} \in \triangle\left(\mathcal{A}_2\right)$ form one Stackelberg equilibrium of the game $\mathscr{G}\left(\underline{\boldsymbol{u}}\right)$. Then,

$$u(P_{A_1}^{\bullet}, P_{A_2}^{\bullet}) = u(P_{A_1}^{\star}, P_{A_2}^{\star}).$$
 (12)

Stackelberg Equilibrium - Special Case: Commitments in Pure Strategies

Solution concept with irrevocable and public commitments in pure strategies

• Player 2 (the leader) **constrained** to commit to a strategy $P_{A_2} \in \triangle(A_2)$ such that

$$P_{A_2}(b_1) \in \{0, 1\}. \tag{13}$$

- The follower observes P_{A_2} , which is equivalent to **observing the action** w.p. one.
- The follower chooses its strategy knowing the action played by Player 2.

Lemma

If the matrix \underline{u} satisfies

$$(u_{1,1}-u_{1,2})(u_{2,2}-u_{2,1})>0$$
 and $(u_{1,1}-u_{2,1})(u_{2,2}-u_{1,2})>0,$ (14)

then,

$$\max_{j \in \{1,2\}} \min_{i \in \{1,2\}} u_{i,j} \leqslant \frac{u_{1,1} u_{2,2} - u_{1,2} u_{2,1}}{u_{1,1} - u_{1,2} - u_{2,1} + u_{2,2}} \leqslant \min_{i \in \{1,2\}} \max_{j \in \{1,2\}} u_{i,j}. \tag{15}$$

Summary

- Two popular solution concepts: Nash and Stackelberg equilibria
- Commitments are immaterial as long as the follower observes the actions
- Commitments in pure strategies are equivalent to perfect observation of the actions
- No solution concept for noisy observation of the actions

Table of Contents

- Empirical Risk and Zero-Sum Games
- Zero-Sum Games with Noisy Observations
 - Noisy Observations of the Actions
 - Noisy Observations of the Commitment and Actions
- 3 Connections with Existing Results
 - Aumann's Games with Incomplete Information
 - Equilibrium Refinements and Relative Entropy Regularizations
- 4 Final Remarks

Game Formulation

Consider the 2×2 ZSG in normal form $\mathscr{G}(\underline{\boldsymbol{u}})$.

• Assumptions:

- Player 2 **publicly and irrevocably** commits to use a strategy;
- Player 2 plays an action, which is observed by the Player 1 through a **binary channel**;
- Player 1 chooses its strategy knowing the strategy and the leader's action **up to some noise**.

Game Formulation

Consider the 2×2 ZSG in normal form $\mathscr{G}(\underline{\boldsymbol{u}})$.

Three Random Variables:

- Action of Player 1: A_1
- Action of Player 2: A_2
- Noisy Observation of the Action of Player 2: \tilde{A}_2 .
- Joint Probability Distribution: For all $\left(a, \tilde{b}, b\right) \in \mathcal{A}_1 \times \mathcal{A}_2 \times \mathcal{A}_2$,

$$P_{A_{1}\tilde{A}_{2}A_{2}}\left(a,\tilde{b},b\right)=P_{A_{2}}\left(b\right)P_{\tilde{A}_{2}|A_{2}=b}\left(\tilde{b}\right)P_{A_{1}|\tilde{A}_{2}=\tilde{b}}\left(a\right).$$

Game Formulation

Consider the 2×2 ZSG in normal form $\mathscr{G}(\boldsymbol{u})$.

For all
$$\left(a, \tilde{b}, b\right) \in \mathcal{A}_1 \times \mathcal{A}_2 \times \mathcal{A}_2$$
,

$$P_{A_{1}\tilde{A}_{2}A_{2}}\left(a,\tilde{b},b\right) = P_{A_{2}}\left(b\right)P_{\tilde{A}_{2}|A_{2}=b}\left(\tilde{b}\right)P_{A_{1}|\tilde{A}_{2}=\tilde{b}}\left(a\right). \tag{16}$$

- Strategy of Player 1: $\forall b \in \mathcal{A}_2$: $P_{A_1 | \tilde{A}_2 = b} \in \triangle(\mathcal{A}_1)$
- Strategy of Player 2: $P_{A_2} \in \triangle(A_2)$
- Binary Channel: $\forall b \in \mathcal{A}_2$: $P_{\tilde{\mathcal{A}}_2 | \mathcal{A}_2 = b} \in \triangle(\mathcal{A}_2)$

Game Formulation

Consider the 2×2 ZSG in normal form $\mathscr{G}(\boldsymbol{u})$.

For all
$$\left(a, \tilde{b}, b\right) \in \mathcal{A}_1 \times \mathcal{A}_2 \times \mathcal{A}_2$$
,

$$P_{A_1\tilde{A}_2A_2}\left(a,\tilde{b},b\right) = P_{A_2}\left(b\right)P_{\tilde{A}_2|A_2=b}\left(\tilde{b}\right)P_{A_1|\tilde{A}_2=\tilde{b}}\left(a\right). \tag{16}$$

The **expected payoff** is determined by $v: \triangle(A_1) \times \triangle(A_1) \times \triangle(A_2) \to \mathbb{R}$,

$$v\left(P_{A_{1}|\tilde{A}_{2}=b_{1}}, P_{A_{1}|\tilde{A}_{2}=b_{2}}, P_{A_{2}}\right) = \sum_{(i,j)\in\{1,2\}^{2}} u_{i,j} P_{A_{1}A_{2}}\left(a_{i}, a_{j}\right).$$

$$(17)$$

Game Formulation

Consider the 2×2 ZSG in normal form $\mathscr{G}(\underline{\boldsymbol{u}})$.

Definition (Equilibrium)

The tuple $\left(P_{A_1|\tilde{A}_2=a_1}^\dagger,P_{A_1|\tilde{A}_2=a_2}^\dagger,P_{A_2}^\dagger\right)\in\triangle\left(\mathcal{A}_1\right)\times\triangle\left(\mathcal{A}_1\right)\times\triangle\left(\mathcal{A}_2\right)$ forms an equilibrium if

$$P_{A_2}^{\dagger} \in \arg\min_{P \in \triangle(\mathcal{A}_2)} \left(\max_{(Q_1,Q_2) \in \triangle(\mathcal{A}_1)^2} v\left(Q_1,Q_2,P\right) \right) \text{ and }$$

$$\left(P_{A_{1}|\tilde{A}_{2}=a_{1}}^{\dagger}, P_{A_{1}|\tilde{A}_{2}=a_{2}}^{\dagger}\right) \in \max_{(Q_{1}, Q_{2}) \in \triangle(\mathcal{A}_{1})^{2}} v\left(Q_{1}, Q_{2}, P\right). \tag{17}$$

(16)

Notation

- Alternative representation of the **channel**: $\underline{\boldsymbol{w}} \triangleq \begin{pmatrix} P_{\tilde{A}_2|A_2=a_1}(a_1) & P_{\tilde{A}_2|A_2=a_2}(a_1) \\ P_{\tilde{A}_2|A_2=a_1}(a_2) & P_{\tilde{A}_2|A_2=a_2}(a_2) \end{pmatrix}$.
- $\bullet \text{ For all } i \in \{1,2\} \text{, let } \underline{\boldsymbol{u}}^{(i)} \text{ be a } 2 \times 2 \text{ matrix } \underline{\boldsymbol{u}}^{(i)} \triangleq \underline{\boldsymbol{u}} \begin{pmatrix} P_{\tilde{A}_2|A_2=a_1}(a_i) & 0 \\ 0 & P_{\tilde{A}_2|A_2=a_2}(a_i) \end{pmatrix}.$
- Let the function $\hat{v}:\triangle\left(\mathcal{A}_{2}\right)\rightarrow\mathbb{R}$ be

$$\hat{v}(P) = \max_{(Q_1, Q_2) \in BR_1(P)} v(Q_1, Q_2, P).$$
(18)

• Let the function $\hat{u}:\triangle\left(\mathcal{A}_{2}\right)\rightarrow\mathbb{R}$ be

$$\hat{u}\left(P\right) = \max_{Q \in \triangle(A_1)} u\left(Q, P\right). \tag{19}$$

Best Response of the Follower

The set of best responses of Player 1 is determined by $BR_1: \triangle(\mathcal{A}_2) \to 2^{\triangle(\mathcal{A}_1) \times \triangle(\mathcal{A}_1)}$,

$$BR_1(P_{A_2}) = \arg \max_{(Q_1, Q_2) \in \triangle(A_1) \times \triangle(A_1)} v(Q_1, Q_2, P_{A_2}).$$
 (20)

Lemma

For all $(Q_1, Q_2) \in \triangle(A_1) \times \triangle(A_1)$ and for all $P \in \triangle(A_2)$,

$$v(Q_{1}, Q_{2}, P) = \begin{pmatrix} Q_{1}(a_{1}) \\ Q_{1}(a_{2}) \end{pmatrix}^{T} \underline{\boldsymbol{u}}^{(1)} \begin{pmatrix} P(a_{1}) \\ P(a_{2}) \end{pmatrix} + \begin{pmatrix} Q_{2}(a_{1}) \\ Q_{2}(a_{2}) \end{pmatrix}^{T} \underline{\boldsymbol{u}}^{(2)} \begin{pmatrix} P(a_{1}) \\ P(a_{2}) \end{pmatrix}. \tag{21}$$

Best Response of the Follower

The set of best responses of Player 1 is determined by $BR_1: \triangle(\mathcal{A}_2) \to 2^{\triangle(\mathcal{A}_1) \times \triangle(\mathcal{A}_1)}$,

$$BR_{1}(P_{A_{2}}) = \arg \max_{(Q_{1}, Q_{2}) \in \triangle(A_{1}) \times \triangle(A_{1})} v(Q_{1}, Q_{2}, P_{A_{2}}).$$
(20)

Corollary

For all $Q \in \triangle(A_1)$ and for all $P \in \triangle(A_2)$,

$$v\left(Q,Q,P\right)=u\left(Q,P\right)$$
.

Best Response of the Follower

The set of best responses of Player 1 is determined by $BR_1: \triangle(\mathcal{A}_2) \to 2^{\triangle(\mathcal{A}_1) \times \triangle(\mathcal{A}_1)}$,

$$BR_1(P_{A_2}) = \arg \max_{(Q_1, Q_2) \in \triangle(A_1) \times \triangle(A_1)} v(Q_1, Q_2, P_{A_2}).$$
 (20)

Corollary

For all $P \in \triangle(A_2)$,

$$BR_{1}(P)=BR_{1,1}(P)\times BR_{1,2}(P),$$

where for all $i \in \{1,2\}$, the correspondence $BR_{1,i}: \triangle(A_2) \to 2^{\triangle(A_1)}$ is such that

$$\operatorname{BR}_{1,i}(P) = \operatorname{arg} \max_{Q \in \triangle(A_1)} \begin{pmatrix} Q(a_1) \\ Q(a_2) \end{pmatrix}^{\mathsf{T}} \underline{\boldsymbol{u}}^{(i)} \begin{pmatrix} P(a_1) \\ P(a_2) \end{pmatrix}.$$

(21)

Best Response of the Follower

The set of best responses of Player 1 is determined by $BR_1: \triangle(\mathcal{A}_2) \to 2^{\triangle(\mathcal{A}_1) \times \triangle(\mathcal{A}_1)}$,

$$BR_1(P_{A_2}) = BR_{1,1}(P) \times BR_{1,2}(P).$$
 (20)

Lemma

For all $P \in \triangle(A_2)$ and for all $i \in \{1, 2\}$,

$$BR_{1,i}(P) = \begin{cases} \{Q \in \Delta(\mathcal{A}_1) : Q(a_1) = 1\}, & \text{if } s_i > 0, \\ \{Q \in \Delta(\mathcal{A}_1) : Q(a_1) = 0\}, & \text{if } s_i < 0, \\ \Delta(\mathcal{A}_1), & \text{if } s_i = 0, \end{cases}$$
(21)

where $s_i \in \mathbb{R}$ is given by

$$s_{i} \triangleq (u_{1,1} - u_{2,1}) P(a_{1}) P_{\tilde{A}_{2}|A_{2} = a_{1}}(a_{i}) + (u_{1,2} - u_{2,2}) P(a_{2}) P_{\tilde{A}_{2}|A_{2} = a_{2}}(a_{i}).$$
(22)

Best Response of the Follower

The set of best responses of Player 1 is determined by $BR_1: \triangle(\mathcal{A}_2) \to 2^{\triangle(\mathcal{A}_1) \times \triangle(\mathcal{A}_1)}$,

$$BR_1(P_{A_2})=BR_{1,1}(P)\times BR_{1,2}(P)$$
. (20)

Lemma

For all $P \in \triangle(A_2)$ and for all $i \in \{1, 2\}$,

$$BR_{1,i}(P) = \begin{cases} \{Q \in \Delta(\mathcal{A}_1) : Q(a_1) = 1\}, & \text{if } s_i > 0, \\ \{Q \in \Delta(\mathcal{A}_1) : Q(a_1) = 0\}, & \text{if } s_i < 0, \\ \triangle(\mathcal{A}_1), & \text{if } s_i = 0, \end{cases}$$
(21)

where $s_i \in \mathbb{R}$ is given by

$$s_{i} \triangleq (u_{1,1} - u_{2,1}) P(a_{1}) P_{\tilde{A}_{2}|A_{2} = a_{1}}(a_{i}) + (u_{1,2} - u_{2,2}) P(a_{2}) P_{\tilde{A}_{2}|A_{2} = a_{2}}(a_{i})$$
 (22)

Constituent Games

- Consider the ZSGs in normal form $\mathscr{G}\left(\underline{\boldsymbol{u}}^{(1)}\right)$ and $\mathscr{G}\left(\underline{\boldsymbol{u}}^{(2)}\right)$ (a.k.a **constituent games**).
- For all $i \in \{1,2\}$, let $P^{(i)} \in \mathbb{R}$ satisfy

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\mathsf{T}} \underline{\boldsymbol{u}}^{(i)} \begin{pmatrix} P^{(i)} \\ 1 - P^{(i)} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}^{\mathsf{T}} \underline{\boldsymbol{u}}^{(i)} \begin{pmatrix} P^{(i)} \\ 1 - P^{(i)} \end{pmatrix}. \tag{23}$$

Constituent Games

ullet For all $i\in\{1,2\}$, let $P^{(i)}\in\mathbb{R}$ satisfy

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\mathsf{T}} \underline{\boldsymbol{u}}^{(i)} \begin{pmatrix} P^{(i)} \\ 1 - P^{(i)} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}^{\mathsf{T}} \underline{\boldsymbol{u}}^{(i)} \begin{pmatrix} P^{(i)} \\ 1 - P^{(i)} \end{pmatrix}. \tag{23}$$

Lemma

If $P_{A_1}^\star(a_1)\in(0,1)$ and $P_{A_2}^\star(a_1)\in(0,1)$ form the unique NE of the game $\mathscr{G}\left(\underline{\boldsymbol{u}}\right)$, then (a) For all $i\in\{1,2\}$,

$$P^{(i)} = \frac{P_{A_2}^{\star}(a_1)P_{\tilde{A}_2|A_2=a_2}(a_i)}{P_{A_2}^{\star}(a_2)P_{\tilde{A}_2|A_2=a_1}(a_i) + P_{A_2}^{\star}(a_1)P_{\tilde{A}_2|A_2=a_2}(a_i)} \in [0, 1]; and$$
 (24)

(b) $P^{(i)} \in \{0,1\}$ if and only if $|\det \underline{\boldsymbol{w}}| = 1$

Constituent Games

• For all $i \in \{1, 2\}$, let $P^{(i)} \in \mathbb{R}$ satisfy

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\mathsf{T}} \underline{\boldsymbol{u}}^{(i)} \begin{pmatrix} P^{(i)} \\ 1 - P^{(i)} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}^{\mathsf{T}} \underline{\boldsymbol{u}}^{(i)} \begin{pmatrix} P^{(i)} \\ 1 - P^{(i)} \end{pmatrix}. \tag{23}$$

Lemma

If $P_{A_1}^{\star}(a_1)\in(0,1)$ and $P_{A_2}^{\star}(a_1)\in(0,1)$ form the unique NE of the game $\mathscr{G}\left(\underline{\boldsymbol{u}}\right)$, then

$$0 \leqslant \min \left\{ P^{(1)}, P^{(2)} \right\} \leqslant P_{A_2}^{\star}(a_1) \leqslant \max \left\{ P^{(1)}, P^{(2)} \right\} \leqslant 1.$$
 (24)

The equality $P^{(1)} = P_{A_0}^{\star}(a_1) = P^{(2)}$ holds if and only if $\det \underline{\boldsymbol{w}} = 0$.

Constituent Games

• For all $i \in \{1, 2\}$, let $P^{(i)} \in \mathbb{R}$ satisfy

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\mathsf{T}} \underline{\boldsymbol{u}}^{(i)} \begin{pmatrix} P^{(i)} \\ 1 - P^{(i)} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}^{\mathsf{T}} \underline{\boldsymbol{u}}^{(i)} \begin{pmatrix} P^{(i)} \\ 1 - P^{(i)} \end{pmatrix}. \tag{23}$$

Lemma

If $P_{A_1}^{\star}(a_1)\in(0,1)$ and $P_{A_2}^{\star}(a_1)\in(0,1)$ form the unique NE of the game $\mathscr{G}\left(\underline{\boldsymbol{u}}\right)$, then

$$\min \left\{ P^{(1)}, P^{(2)} \right\} = \begin{cases} P^{(1)} & \text{if } \det \underline{\boldsymbol{w}} > 0 \\ P^{(2)} & \text{if } \det \underline{\boldsymbol{w}} < 0 \\ P^{(1)} = P^{(2)} = P_{A_2}^{\star}(a_1) & \text{if } \det \underline{\boldsymbol{w}} = 0, \end{cases}$$
(24)

Constituent Games

ullet For all $i\in\{1,2\}$, let $P^{(i)}\in\mathbb{R}$ satisfy

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\mathsf{T}} \underline{\boldsymbol{u}}^{(i)} \begin{pmatrix} P^{(i)} \\ 1 - P^{(i)} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}^{\mathsf{T}} \underline{\boldsymbol{u}}^{(i)} \begin{pmatrix} P^{(i)} \\ 1 - P^{(i)} \end{pmatrix}. \tag{23}$$

Lemma

Assume that $P^\star_{A_1}(a_1) \in (0,1)$ and $P^\star_{A_2}(a_1) \in (0,1)$ form the unique NE of the game $\mathscr{G}(\underline{u})$. If $u_{1,1}-u_{1,2}-u_{2,1}+u_{2,2}>0$, then it holds that for all $i\in\{1,2\}$ and for all $P\in\triangle(\mathcal{A}_2)$,

$$BR_{1i}(P) = \begin{cases} \{Q \in \Delta(\mathcal{A}_1) : Q(a_1) = 1\}, & \text{if } P(a_1) > P^{(i)}, \\ \{Q \in \Delta(\mathcal{A}_1) : Q(a_1) = 0\}, & \text{if } P(a_1) < P^{(i)}, \\ \{Q \in \Delta(\mathcal{A}_1) : Q(a_1) = \beta, \beta \in [0, 1]\}, & \text{if } P(a_1) = P^{(i)}. \end{cases}$$
(24)

If $u_{1,1} - u_{1,2} - u_{2,1} + u_{2,2} \le 0$, then it holds that for all $i \in \{1,2\}$ and for all $P \in \triangle(A_2)$,

$$BR_{1i}(P) = \begin{cases} \{Q \in \Delta(\mathcal{A}_1) : Q(a_1) = 1\}, & \text{if } P(a_1) < P^{(i)}, \\ \{Q \in \Delta(\mathcal{A}_1) : Q(a_1) = 0\}, & \text{if } P(a_1) > P^{(i)}, \\ \{Q \in \Delta(\mathcal{A}_1) : Q(a_1) = \beta, \beta \in [0, 1]\}, & \text{if } P(a_1) = P^{(i)}. \end{cases}$$

$$(25)$$

Best Commitments

• Let the function $\hat{v}:\triangle(\mathcal{A}_2)\to\mathbb{R}$ be

$$\hat{v}(P) = \max_{(Q_1, Q_2) \in BR_1(P)} v(Q_1, Q_2, P).$$
(26)

• Let the function $\hat{u}:\triangle\left(\mathcal{A}_{2}\right)\rightarrow\mathbb{R}$ be

$$\hat{u}\left(P\right) = \max_{Q \in \triangle(A_1)} u\left(Q, P\right). \tag{27}$$

Best Commitments

ullet Let the function $\hat{v}: \triangle (\mathcal{A}_2)
ightarrow \mathbb{R}$ be

$$\hat{v}(P) = \max_{(Q_1, Q_2) \in BR_1(P)} v(Q_1, Q_2, P).$$
(26)

• Let the function $\hat{u}: \triangle (\mathcal{A}_2) \to \mathbb{R}$ be

$$\hat{u}\left(P\right) = \max_{Q \in \triangle(\mathcal{A}_1)} u\left(Q, P\right). \tag{27}$$

Lemma

Let $P_{A_1}^{\star}\in\triangle\left(\mathcal{A}_1\right)$ and $P_{A_2}^{\star}\in\triangle\left(\mathcal{A}_2\right)$ form an NE in the game $\mathscr{G}\left(\underline{\boldsymbol{u}}\right)$. For all $P\in\triangle\left(\mathcal{A}_2\right)$,

$$u(P_{A_1}^{\star}, P_{A_2}^{\star}) \leqslant \hat{u}(P) \leqslant \hat{v}(P) \leqslant \sum_{k \in \{1,2\}} P(a_k) \left(\max_{i \in \{1,2\}} u_{i,k} \right).$$
 (28)

Best Commitments

• Let the function $\hat{v}:\triangle\left(\mathcal{A}_{2}\right)\rightarrow\mathbb{R}$ be

$$\hat{v}(P) = \max_{(Q_1, Q_2) \in BR_1(P)} v(Q_1, Q_2, P).$$
(26)

Lemma

Assume that $P_{A_1}^\star(a_1)\in(0,1)$ and $P_{A_2}^\star(a_1)\in(0,1)$ form the unique NE of the game $\mathscr{G}\left(\underline{u}\right)$ and $u_{1,1}-u_{1,2}-u_{2,1}+u_{2,2}>0$.

- For all $P \in \triangle(A_2)$ such that $P(a_1) \geqslant \max\{P^{(1)}, P^{(2)}\}$, $\hat{v}(P) = u_{1,1}P(a_1) + u_{1,2}P(a_2)$.
- If $\det \underline{\boldsymbol{w}} > 0$, then for all $P \in \triangle \left(\mathcal{A}_2 \right)$ such that $P^{(1)} < P(a_1) < P^{(2)}$,

$$\hat{v}\left(P\right) = \left(u_{1,1}P_{\tilde{A}_{2}|A_{2}=a_{1}}(a_{1}) + u_{2,1}P_{\tilde{A}_{2}|A_{2}=a_{1}}(a_{2})\right)P(a_{1}) + \left(u_{1,2}P_{\tilde{A}_{2}|A_{2}=a_{2}}(a_{1}) + u_{2,2}P_{\tilde{A}_{2}|A_{2}=a_{2}}(a_{2})\right)P(a_{2}).$$

- $\begin{array}{l} \bullet \ \ \text{ If } \det \underline{w} \leqslant 0, \ \text{ then for all } P \in \triangle \left(\mathcal{A}_2 \right) \ \text{ such that } P^{(2)} < P(a_1) < P^{(1)}, \\ \hat{v} \left(P \right) = \left(u_{1,1} P_{\tilde{A}_2 \mid A_2 = a_1}(a_2) + u_{2,1} P_{\tilde{A}_2 \mid A_2 = a_1}(a_1) \right) P(a_1) + \left(u_{1,2} P_{\tilde{A}_2 \mid A_2 = a_2}(a_2) + u_{2,2} P_{\tilde{A}_2 \mid A_2 = a_2}(a_1) \right) P(a_2). \end{array}$
- For all $P \in \Delta(A_2)$ such that $P(a_1) \leq \min\{P^{(1)}, P^{(2)}\}, \ \hat{v}(P) = u_{2,1}P(a_1) + u_{2,2}P(a_2).$

Best Commitments

• Let the function $\hat{v}: \triangle(\mathcal{A}_2) \to \mathbb{R}$ be

$$\hat{v}(P) = \max_{(Q_1, Q_2) \in BR_1(P)} v(Q_1, Q_2, P).$$
(26)

Corollary

The function $f:[0,1] \to \mathbb{R}$ such that $f(x) = \hat{v}(P)$, with $P(a_1) = x$, is piece-wise linear.

Best Commitments

(a) Payoff matrix $\underline{u}=(-8,6;2,-2)$ and channel matrix $\underline{w}=(0.9,0.1;0.1,0.9)$.

(b) Payoff matrix $\underline{u} = (-5, 1; -6, 3)$ and channel matrix $\underline{w} = (0.9, 0.1; 0.1, 0.9)$.

Best Commitments

(a) Payoff matrix $\underline{\boldsymbol{u}}=(2,9;-9,5)$ and channel matrix $\boldsymbol{w}=(0.9,0.1;0.1,0.9)$.

(b) Payoff matrix $\underline{u} = (5, 5; -6, 10)$ and channel matrix $\underline{w} = (0.9, 0.1; 0.1, 0.9)$.

Equilibrium with Noisy Observations

Definition (Equilibrium)

The tuple $\left(P_{A_1|\tilde{A}_2=a_1}^\dagger,P_{A_1|\tilde{A}_2=a_2}^\dagger,P_{A_2}^\dagger\right)\in\triangle\left(\mathcal{A}_1\right)\times\triangle\left(\mathcal{A}_1\right)\times\triangle\left(\mathcal{A}_2\right)$ forms an equilibrium if

$$P_{A_2}^{\dagger} \in \arg\min_{P \in \triangle(A_2)} \left(\max_{(Q_1, Q_2) \in \triangle(A_1)^2} v\left(Q_1, Q_2, P\right) \right) \text{ and} \tag{27}$$

$$\left(P_{A_{1}|\tilde{A}_{2}=a_{1}}^{\dagger}, P_{A_{1}|\tilde{A}_{2}=a_{2}}^{\dagger}\right) \in \max_{(Q_{1}, Q_{2}) \in \triangle(A_{1})^{2}} v\left(Q_{1}, Q_{2}, P\right). \tag{28}$$

Equilibrium with Noisy Observations

Definition (Equilibrium)

The tuple $\left(P_{A_1|\tilde{A}_2=a_1}^\dagger, P_{A_1|\tilde{A}_2=a_2}^\dagger, P_{A_2}^\dagger\right) \in \triangle\left(\mathcal{A}_1\right) \times \triangle\left(\mathcal{A}_1\right) \times \triangle\left(\mathcal{A}_2\right)$ forms an equilibrium if

$$P_{A_2}^{\dagger} \in \arg\min_{P \in \triangle(A_2)} \left(\max_{(Q_1, Q_2) \in \triangle(A_1)^2} v\left(Q_1, Q_2, P\right) \right) \text{ and}$$
 (27)

$$\left(P_{A_1|\tilde{A}_2=a_1}^{\dagger}, P_{A_1|\tilde{A}_2=a_2}^{\dagger}\right) \in \max_{(Q_1, Q_2) \in \Delta(A_1)^2} v\left(Q_1, Q_2, P\right). \tag{28}$$

Theorem (Existence)

The game $\mathscr{G}(\underline{u},\underline{w})$ always possesses an equilibrium.

Equilibrium with Noisy Observations

Theorem (Equilibrium Payoff)

Let the tuple $\left(P_{A_1|\tilde{A}_2=a_1}^\dagger,P_{A_1|\tilde{A}_2=a_2}^\dagger,P_{A_2}^\dagger\right)\in\triangle\left(\mathcal{A}_1\right)\times\triangle\left(\mathcal{A}_1\right)\times\triangle\left(\mathcal{A}_2\right)$ be an equilibrium of the game $\mathscr{G}\left(\underline{\boldsymbol{u}},\underline{\boldsymbol{w}}\right)$. Let $P_{A_1}^\star(a_1)$ and $P_{A_2}^\star(a_1)$ be an NE of the game $\mathscr{G}\left(\underline{\boldsymbol{u}}\right)$.

• If $P_{A_1}^{\star}(a_1) \in (0,1)$, $P_{A_2}^{\star}(a_1) \in (0,1)$, and $(P_{A_1}^{\star}, P_{A_2}^{\star})$ forms the unique NE, then $\hat{v}\left(P_{A_2}^{\dagger}\right) = \min\{\hat{v}\left(P_1\right), \hat{v}\left(P_2\right)\},$ (27)

where, for all $i \in \{1, 2\}$, $P_i(a_1) = P^{(i)}$.

Otherwise,

$$\hat{v}\left(P_{A_2}^{\dagger}\right) = \min\left\{\max\left\{u_{1,1}, u_{2,1}\right\}, \max\left\{u_{1,2}, u_{2,2}\right\}\right\}.$$
 (28)

Equilibrium with Noisy Observations

Lemma

Let $\mathcal{S} \subseteq \triangle\left(\mathcal{A}_1\right) \times \triangle\left(\mathcal{A}_1\right) \times \triangle\left(\mathcal{A}_2\right)$ be the set of equilibria of the game $\mathscr{G}\left(\underline{\boldsymbol{u}},\underline{\boldsymbol{w}}\right)$ and let $P_{A_1}^{\star} \in \triangle\left(\mathcal{A}_1\right)$ and $P_{A_2}^{\star} \in \triangle\left(\mathcal{A}_2\right)$ be an NE of the game $\mathscr{G}(\underline{\boldsymbol{u}})$. If $P_{A_1}^{\star}\left(a_1\right) \in (0,1)$, $P_{A_2}^{\star}\left(a_1\right) \in (0,1)$, and $(P_{A_1}^{\star},P_{A_2}^{\star})$ forms the unique NE, then, there exists a tuple $(Q_1,Q_2,P) \in \mathcal{S}$ such that $P(a_1) \in \left\{P^{(1)},P^{(2)}\right\}$. Furthermore, if $P(a_1) = P^{(i)}$, with $i \in \{1,2\}$, then,

$$P_{A_2|\tilde{A}_2=a_i}(a_1)=P_{A_2}^{\star}(a_1). \tag{27}$$

Relevance of Noisy Observations

Lemma

Let $\left(P_{A_1|\tilde{A}_2=a_1}^\dagger,P_{A_1|\tilde{A}_2=a_2}^\dagger,P_{A_2}^\dagger\right)\in\triangle\left(\mathcal{A}_1\right)\times\triangle\left(\mathcal{A}_1\right)\times\triangle\left(\mathcal{A}_2\right)$ be an equilibrium of the game $\mathscr{G}\left(\underline{\boldsymbol{u}},\underline{\boldsymbol{w}}\right)$. Let also the tuple $\left(P_{A_1}^\star,P_{A_2}^\star\right)\in\triangle\left(\mathcal{A}_1\right)\times\triangle\left(\mathcal{A}_2\right)$ be an NE of the game $\mathscr{G}\left(\underline{\boldsymbol{u}}\right)$. Then,

$$v\left(P_{A_1|\tilde{A}_2}^{\dagger}, P_{A_2}^{\dagger}\right) = u(P_{A_1}^{\star}, P_{A_2}^{\star}),$$
 (28)

if and only if,

(a)
$$(u_{1,1}-u_{1,2})(u_{2,2}-u_{2,1}) \leqslant 0$$
 or $(u_{1,1}-u_{2,1})(u_{2,2}-u_{1,2}) \leqslant 0$; or

(b)
$$(u_{1,1}-u_{1,2})(u_{2,2}-u_{21,1})>0$$
 and $(u_{1,1}-u_{2,1})(u_{2,2}-u_{1,2})>0$ and $\det \underline{\boldsymbol{w}}=0$.

Relevance of Noisy Observations

Lemma

Let
$$\left(P_{A_1|\tilde{A}_2=a_1}^{\dagger},P_{A_1|\tilde{A}_2=a_2}^{\dagger},P_{A_2}^{\dagger}\right)\in\triangle\left(\mathcal{A}_1\right)\times\triangle\left(\mathcal{A}_1\right)\times\triangle\left(\mathcal{A}_2\right)$$
 form an equilibrium of the game $\mathscr{G}\left(\underline{u},\underline{w}\right)$. If $|\det\underline{w}|=1$, then

$$\hat{v}\left(P_{A_2}^{\dagger}\right) = \min\{\max\{u_{1,1}, u_{2,1}\}, \max\{u_{1,2}, u_{2,2}\}\}. \tag{28}$$

Table of Contents

- Empirical Risk and Zero-Sum Games
- Zero-Sum Games with Noisy Observations
 - Noisy Observations of the Actions
 - Noisy Observations of the Commitment and Actions
- 3 Connections with Existing Results
 - Aumann's Games with Incomplete Information
 - Equilibrium Refinements and Relative Entropy Regularizations
- 4 Final Remarks

Commitment Mismatch and Noisy Observation of the Actions

Consider the 2×2 ZSG in normal form $\mathscr{G}(\underline{\boldsymbol{u}})$.

• Assumptions:

• Player 2 **publicly and irrevocably** commits to use a strategy and chooses an action;

Commitment Mismatch and Noisy Observation of the Actions

Consider the 2×2 ZSG in normal form $\mathscr{G}(\underline{\boldsymbol{u}})$.

Assumptions:

- Player 2 publicly and irrevocably commits to use a strategy and chooses an action;
- Player 1 observes the commitment subject to a **distorsion**;

Commitment Mismatch and Noisy Observation of the Actions

Consider the 2×2 ZSG in normal form $\mathscr{G}(\underline{\boldsymbol{u}})$.

Assumptions:

- Player 2 publicly and irrevocably commits to use a strategy and chooses an action;
- Player 1 observes the commitment subject to a **distorsion**;
- Player 1 observes the action through a binary channel; and

Commitment Mismatch and Noisy Observation of the Actions

Consider the 2×2 ZSG in normal form $\mathscr{G}(\underline{\boldsymbol{u}})$.

Assumptions:

- Player 2 publicly and irrevocably commits to use a strategy and chooses an action;
- Player 1 observes the commitment subject to a **distorsion**;
- Player 1 observes the action through a binary channel; and
- Player 1 chooses its strategy.

Game Formulation

Consider the 2×2 ZSG in normal form $\mathscr{G}(\underline{\boldsymbol{u}})$.

Distorsion of the Commitment

- Let \underline{t} be a given 2×2 nonsingular stochastic matrix.
- Let $P_{A_2} \in \triangle(A_2)$ be the commitment announced by Player 2.
- The commitment **observed** by Player 1 is

$$\begin{pmatrix} \tilde{P}_{A_2}(a_1) \\ \tilde{P}_{A_2}(a_2) \end{pmatrix} = \underline{\boldsymbol{t}} \begin{pmatrix} P_{A_2}(a_1) \\ P_{A_2}(a_2) \end{pmatrix}.$$

Ínría_

Game Formulation

Consider the 2×2 ZSG in normal form $\mathscr{G}(\underline{\boldsymbol{u}})$.

- ullet The follower assumes that $ilde{P}_{A_2}$ is the actual commitment of leader; and
- The leader is aware of assumption of the follower.

Game Formulation

Consider the 2×2 ZSG in normal form $\mathscr{G}(\underline{\boldsymbol{u}})$.

Let the correspondence $\tilde{v}:\triangle\left(\mathcal{A}_{2}\right)\rightarrow\mathbb{R}$ be such that

$$\tilde{v}(P_{A_2}) = \max_{(Q_1, Q_2) \in BR_1(\tilde{P}_{A_2})} v(Q_1, Q_2, P_{A_2}).$$
(29)

Game Formulation

Consider the 2×2 ZSG in normal form $\mathscr{G}(\underline{\boldsymbol{u}})$.

Definition (Equilibrium)

The tuple $\left(P_{A_1|\tilde{A}_2=a_1},P_{A_1|\tilde{A}_2=a_2},P_{A_2}\right)\in\triangle\left(\mathcal{A}_1\right)\times\triangle\left(\mathcal{A}_1\right)\times\triangle\left(\mathcal{A}_2\right)$ is an equilibrium of the game $\mathscr{G}\left(\underline{\boldsymbol{u}},\underline{\boldsymbol{w}},\underline{\boldsymbol{t}}\right)$ if

$$P_{A_2} \in \arg\min_{P \in \triangle(A_2)} \tilde{v}(P) \text{ and}$$
 (29)

$$\left(P_{A_1|\tilde{A}_2=a_1}, P_{A_1|\tilde{A}_2=a_2}\right) \in BR_1\left(\tilde{P}_{A_2}\right).$$
 (30)

A Fundamental Observation

Observation:

- Assume that $(u_{1,1}-u_{1,2})\,(u_{2,2}-u_{2,1})>0$ and $(u_{1,1}-u_{2,1})\,(u_{2,2}-u_{1,2})>0$
- If Player 2 commits to $P_{A_2} \in \triangle\left(\mathcal{A}_2\right)$ such that $P_{A_2}(a_1) = \tilde{P}^{(i)}$, with

$$\begin{pmatrix} \tilde{P}^{(i)} \\ 1 - \tilde{P}^{(i)} \end{pmatrix} = \underline{\boldsymbol{t}}^{-1} \begin{pmatrix} P^{(i)} \\ 1 - P^{(i)} \end{pmatrix}, \tag{31}$$

for some $i \in \{1, 2\}$.

- Then, Player 1 observes the commitment $\tilde{P}_{A_2} \in \triangle(A_2)$ such that $\tilde{P}_{A_2}(a_1) = P^{(i)}$
- And
 - BR_{1,i} $\left(\tilde{P}_{A_2}\right) = \triangle \left(\mathcal{A}_1\right)$
 - Given $(Q_1,Q_2)\in \mathrm{BR}_1\left(\tilde{P}_{A_2}\right)$ and $(P_1,P_2)\in \mathrm{BR}_1\left(\tilde{P}_{A_2}\right)$,

$$v(Q_1, Q_2, P_{A_2}) \neq v(P_1, P_2, P_{A_2})$$
.

The Best Commitment

Lemma

Assume that $(u_{1,1}-u_{1,2})$ $(u_{2,2}-u_{2,1})>0$, $(u_{1,1}-u_{2,1})$ $(u_{2,2}-u_{1,2})>0$, and $u_{1,1}-u_{1,2}-u_{2,1}+u_{2,2}>0$. Assume also that $\det \underline{w}>0$ and $\det \underline{t}>0$. For all $P\in \triangle(\mathcal{A}_2)$,

- If $P(a_1) > \tilde{P}^{(2)}$, then $\tilde{v}(P) = u_{1,1}P(a_1) + u_{1,2}P(a_2)$.
- $\bullet \quad \textit{If $P(a_1) = \tilde{P}^{(2)}$, then $\tilde{v}\left(P\right) = \left\{ \left(u_{1,1}P(a_1) + u_{1,2}P(a_2)\right)\beta + \left(\begin{pmatrix}1\\1\end{pmatrix}^T(\underline{\boldsymbol{u}} \circ \underline{\boldsymbol{w}}) \begin{pmatrix}P(a_1)\\P(a_2)\end{pmatrix}\right)(1-\beta): \beta \in [0,1] \right\}.$
- $\bullet \ \ \textit{If} \ \tilde{P}^{(1)} < P(a_1) < \tilde{P}^{(2)} \text{, then it follows that} \ \tilde{v} \left(P \right) = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}^\mathsf{T} \left(\underline{\boldsymbol{u}} \circ \underline{\boldsymbol{w}} \right) \begin{pmatrix} P(a_1) \\ P(a_2) \end{pmatrix} \right).$
- $\bullet \ \ \textit{If} \ P(a_1) = \tilde{P}^{(1)} \textit{, then} \ \tilde{v} \left(P \right) = \left\{ \left. \left(u_{2,1} P(a_1) + u_{2,2} P(a_2) \right) (1 \beta) + \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}^T (\underline{\boldsymbol{u}} \circ \underline{\boldsymbol{w}}) \begin{pmatrix} P(a_1) \\ P(a_2) \end{pmatrix} \right) \beta : \beta \in [0,1] \right\}$
- If $P(a_1) < \tilde{P}^{(1)}$, then it follows that $\tilde{v}(P) = u_{2,1}P(a_1) + u_{2,2}P(a_2)$.

The Best Commitment

$$u = (-8, 6; 2, -2), w = (0.8, 0.2; 0.2, 0.8)$$
 and $t = (0.9, 0.1; 0.1, 0.9).$

Advantage for the Leader

Lemma

Consider the following assumptions:

- (a) $(u_{1,1}-u_{1,2})(u_{2,2}-u_{2,1})>0$, and $(u_{1,1}-u_{2,1})(u_{2,2}-u_{1,2})>0$;
- (b) For all $i \in \{1, 2\}$, the probability measures $Q_i \in \triangle(A_2)$ such that $Q_i(a_1) = P^{(i)}$, satisfy $\hat{u}(Q_1) \neq \hat{u}(Q_2)$; and
- (c) The tuple $\left(P_{A_1|\tilde{A}_2=a_1}^{\dagger}, P_{A_1|\tilde{A}_2=a_2}^{\dagger}, P_{A_2}^{\dagger}\right) \in \triangle\left(\mathcal{A}_1\right) \times \triangle\left(\mathcal{A}_1\right) \times \triangle\left(\mathcal{A}_2\right)$ is an equilibrium of the game $\mathscr{G}\left(\underline{\boldsymbol{u}},\underline{\boldsymbol{w}}\right)$.

If $\det \underline{t} \notin \{0,1\}$, then, there exists a strategy $P \in \triangle(A_2)$ such that

$$\tilde{v}(P) < \hat{v}(P_{A_2}^{\dagger}). \tag{33}$$

Existence of Equilibria

The game $\mathscr{G}(\underline{\pmb{u}},\underline{\pmb{w}},\underline{\pmb{t}})$, with $\underline{\pmb{u}}=(-8,6;2,-2)$, $\underline{\pmb{w}}=(0.8,0.2;0.2,0.8)$ and $\underline{\pmb{t}}=(0.9,0.1;0.1,0.9)$ does not possess an equilibrium.

Table of Contents

- Empirical Risk and Zero-Sum Games
- Zero-Sum Games with Noisy Observations
 - Noisy Observations of the Actions
 - Noisy Observations of the Commitment and Actions
- Connections with Existing Results
 - Aumann's Games with Incomplete Information
 - Equilibrium Refinements and Relative Entropy Regularizations
- 4 Final Remarks

Connections with Existing Results

Aumann's Games with Incomplete Information

Consider a ZSG with **incomplete information**:

- ullet Both players know the probability distribution P_S ;
- ullet Player 1 **observes** the realization of the state S; and
- Player 2 **ignores** the realization of the state S.

Connections with Existing Results

Aumann's Games with Incomplete Information

Expected Payoff:

$$v\left(P_{A_{1}\mid S=1}, P_{A_{1}\mid S=2}, P_{A_{2}}\right)$$

$$= \frac{1}{2} \begin{pmatrix} P_{A_{1}\mid S=1}\left(a_{1}\right) \\ P_{A_{1}\mid S=1}\left(a_{2}\right) \end{pmatrix}^{\mathsf{T}} \underline{\boldsymbol{u}}^{(1)} \begin{pmatrix} P_{A_{2}}\left(a_{1}\right) \\ P_{A_{2}}\left(a_{2}\right) \end{pmatrix} + \frac{1}{2} \begin{pmatrix} P_{A_{1}\mid S=2}\left(a_{1}\right) \\ P_{A_{1}\mid S=2}\left(a_{2}\right) \end{pmatrix}^{\mathsf{T}} \underline{\boldsymbol{u}}^{(2)} \begin{pmatrix} P_{A_{2}}\left(a_{1}\right) \\ P_{A_{2}}\left(a_{2}\right) \end{pmatrix}$$

Connections with Existing Results

Aumann's Games with Incomplete Information

A ZSG with noisy observation of the actions and **perfect observation** of the commitment can be modelled by an **Aumann's game with incomplete information**.

Table of Contents

- Empirical Risk and Zero-Sum Games
- Zero-Sum Games with Noisy Observations
 - Noisy Observations of the Actions
 - Noisy Observations of the Commitment and Actions
- Connections with Existing Results
 - Aumann's Games with Incomplete Information
 - Equilibrium Refinements and Relative Entropy Regularizations
- 4 Final Remarks

Strong Equilibria

The game $\mathscr{G}(\underline{\boldsymbol{u}},\underline{\boldsymbol{w}},\underline{\boldsymbol{t}})$, with $\underline{\boldsymbol{u}}=(-8,6;2,-2)$, $\underline{\boldsymbol{w}}=(0.8,0.2;0.2,0.8)$ and $\underline{\boldsymbol{t}}=(0.9,0.1;0.1,0.9)$ does not possess an equilibrium.

- An equilibrium exists if Player 1 plays the action that benefits the leader when it is indifferent to play any of its actions.
- Player 1 aims to maximize the expected payoff.
- How to make Player 1 play the action that minimizes the expected payoff ?

 ϵ -Equilibria

The game $\mathscr{G}(\underline{\boldsymbol{u}},\underline{\boldsymbol{w}},\underline{\boldsymbol{t}})$, with $\underline{\boldsymbol{u}}=(-8,6;2,-2)$, $\underline{\boldsymbol{w}}=(0.8,0.2;0.2,0.8)$ and $\underline{\boldsymbol{t}}=(0.9,0.1;0.1,0.9)$ does not possess an equilibrium.

• An equilibrium exists if Player 2 adopts a commitment that is δ -suboptimal.

ϵ -Equilibria

The game $\mathscr{G}(\underline{\boldsymbol{u}},\underline{\boldsymbol{w}},\underline{\boldsymbol{t}})$, with $\underline{\boldsymbol{u}}=(-8,6;2,-2)$, $\underline{\boldsymbol{w}}=(0.8,0.2;0.2,0.8)$ and $\underline{\boldsymbol{t}}=(0.9,0.1;0.1,0.9)$ does not possess an equilibrium.

- An equilibrium exists if Player 2 adopts a commitment that is δ -suboptimal.
- A suboptimal commitment forces a unique and predictable best response from Player 1.

 ϵ -Equilibria

The game $\mathscr{G}(\underline{\boldsymbol{u}},\underline{\boldsymbol{w}},\underline{\boldsymbol{t}})$, with $\underline{\boldsymbol{u}}=(-8,6;2,-2)$, $\underline{\boldsymbol{w}}=(0.8,0.2;0.2,0.8)$ and $\underline{\boldsymbol{t}}=(0.9,0.1;0.1,0.9)$ does not possess an equilibrium.

- An equilibrium exists if Player 2 adopts a commitment that is δ -suboptimal.
- A **suboptimal commitment** forces a **unique and predictable** best response from Player 1.
- Suboptimal commitment: Given $\epsilon > 0$, $P_{A_2} \in \triangle (\mathcal{A}_2)$:

$$P_{A_2}(a_1) = \tilde{P}^{(2)} - \epsilon.$$

 ϵ -Equilibria

The game $\mathscr{G}(\underline{\boldsymbol{u}},\underline{\boldsymbol{w}},\underline{\boldsymbol{t}})$, with $\underline{\boldsymbol{u}}=(-8,6;2,-2)$, $\underline{\boldsymbol{w}}=(0.8,0.2;0.2,0.8)$ and $\underline{\boldsymbol{t}}=(0.9,0.1;0.1,0.9)$ does not possess an equilibrium.

ullet How to determine a suboptimal commitment P?

$$\min_{P \in \triangle(\mathcal{A}_2)} \tilde{v}(P) + \lambda D(P||Q), \qquad (34)$$

with $Q \in \triangle(A_2)$, such that $Q(a_1) = \tilde{P}^{(2)}$.

 Type-I Empirical Risk Minimization with Relative Entropy Regularization

 ϵ -Equilibria

The game $\mathscr{G}(\underline{\boldsymbol{u}},\underline{\boldsymbol{w}},\underline{\boldsymbol{t}})$, with $\underline{\boldsymbol{u}}=(-8,6;2,-2)$, $\underline{\boldsymbol{w}}=(0.8,0.2;0.2,0.8)$ and $\underline{\boldsymbol{t}}=(0.9,0.1;0.1,0.9)$ does not possess an equilibrium.

• How to determine **another** suboptimal commitment *P*?

$$\min_{P \in \triangle(\mathcal{A}_2)} \tilde{v}(P) + \lambda D(Q||P), \qquad (34)$$

with $Q \in \triangle(A_2)$, such that $Q(a_1) = \tilde{P}^{(2)}$.

 Type-II Empirical Risk Minimization with Relative Entropy Regularization

Final Remarks

- Often Robust ERM is neither a Nash nor a Stackelberg equilibria of a ZSG.
 - Why? Because of observation of datasets and priors on the datasets.
- A new game formulation is proposed to incorporate:
 - noisy observations of the actions; and
 - Distorted Commitments
- Priors are associated to commitment mismatches in ZSG with Noise Observations
- Channel Model: Binary Channels. More elaborate Channel models:
 - Erasures on data points: Erasure Channel
 - Additive Noise due to data acquisition: AWGN Channel

Thank you for your attention.

Ke Sun, Samir M. Perlaza, and Alain Jean-Marie. "Zero-Sum Games with Noisy Observations". Preprint arXiv:2211.01703 [cs.GT].

