
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
90

53
--

FR
+E

N
G

RESEARCH
REPORT
N° 9053
April 2017

Project-Teams Zenith

Top-k Query Processing
Over Outsourced
Encrypted Data
Sakina Mahboubi, Reza Akbarinia, Patrick Valduriez

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Top-k Query Processing Over Outsourced
Encrypted Data

Sakina Mahboubi∗, Reza Akbarinia† , Patrick Valduriez‡

Project-Teams Zenith

Research Report n° 9053 — April 2017 — 24 pages

Abstract: Nowadays, cloud data outsourcing provides users and companies with powerful
capabilities to store and process their data in third-party data centers. However, the privacy of
the outsourced data is not guaranteed by the cloud providers. One solution for protecting the user
data against security attacks is to encrypt the data before being sent to the cloud servers. Then,
the main problem is to evaluate user queries over the encrypted data.
In this paper, we address the problem of top-k query processing over encrypted data, and propose
an efficient approach called BuckTop. Our approach uses the bucketization technique to manage
the encrypted data in the remote server. It includes a top-k query processing algorithm that works
on the encrypted data of the buckets, and returns a set that contains the encrypted top-k results.
It also has a filtering algorithm that efficiently eliminates the false positives in the server side.
We implemented BuckTop, and compared its response time for processing top-k queries over en-
crypted data with that of the TA algorithm over original (plaintext) data. Our results show
excellent performance gains. They show that the response time of BuckTop over encrypted data
is close to TA over plaintext data.

Key-words: top-k query, cloud, security, encrypted data

∗ Email: sakina.mahboubi@inria.fr
† Email: reza.akbarinia@inria.fr
‡ Email: patrick.valduriez@inria.f

Traitement de requêtes Top-k sur les donnés cryptées
Résumé : Aujourd’hui cloud computing fournit aux utilisateurs et aux entreprises des
capacites puissantes pour stocker et traiter leurs donnees. Cependant, la confidentialité des
données externalisées n’est pas garantie par les fournisseurs de cloud. Une solution pour protéger
les données utilisateur contre les attaques de sécurité consiste à chiffrer les données avant d’être
envoyée aux serveurs. Ensuite, le problème principal est d’évaluer les requêtes des utilisateurs
sur les données cryptées.

Dans ce travail, nous abordons le problème du traitement des requêtes top-k sur les données
chiffrées et proposons une approche efficace appelée BuckTop. Notre approche utilise la tech-
nique de bucketization pour gérer les données cryptées dans le serveur distant. Il comprend un
algorithme de traitement de requêtes top-k qui fonctionne sur les données cryptées des seaux et
renvoie un ensemble qui contient les résultats top-k cryptés. Il a également un algorithme de
filtrage qui élimine efficacement les faux positifs du côté du serveur.

Nous avons mis en place BuckTop et comparé son temps de réponse pour traiter les requêtes
top-k sur des données cryptées avec celles de l’algorithme TA sur des données originales (en
clair). Nos résultats affichent d’excellents gains de performance. Ils montrent que le temps de
réponse de BuckTop sur les données chiffrées est proche de TA sur les données en clair.

Mots-clés : top-l, cloud, sécurité

Top-k Query Processing Over Outsourced Encrypted Data 3

Contents
1 Introduction 4

2 Problem Definition 5
2.1 Adversary Model . 5
2.2 Top-k Queries . 5
2.3 Problem Statement . 6

3 Background 6
3.1 Bucketization Technique . 6
3.2 Encryption Schemes . 6

4 System Architecture and a Basic Top-k Approach 6
4.1 Architecture . 7
4.2 EncFA: A Basic Top-k Query Processing Approach 7

5 BuckTop: An Efficient Approach for Top-k Query Processing over Encrypted
Data 8
5.1 Bucket Creation and Data Encryption . 8
5.2 Top-k Query Processing . 9
5.3 Filtering . 10
5.4 Example . 11
5.5 Obfuscating Bucket Limits . 12
5.6 Update Management . 14
5.7 Security Analysis . 14

5.7.1 Partial Order Leakage in Buckets . 14
5.7.2 Leakage of the Number of Asked Results 16
5.7.3 Leakage of Database Size . 16

6 Performance Evaluation 16
6.1 Experimental Setup . 16
6.2 Effect of the Number of Data Items . 17
6.3 Effect of k . 19
6.4 Effect of Bucket Size . 19
6.5 Effect of Different Queries . 19
6.6 Performance over Different Datasets . 20
6.7 Effect of the Filtering Algorithm . 20

7 Related Work 20

8 Conclusion 21

RR n° 9053

4 Mahboubi & Akbarinia & Valduriez

1 Introduction
Nowadays, cloud data outsourcing provides users and companies with powerful capabilities to
store and process their data in third-party data centers. However, when a user stores her data
in a public cloud, she loses the physical access control to the data. Thus, potentially sensitive
data gets at risk of security attacks, e.g., from the employees of the cloud provider. According
to a recent report published by the Cloud Security Alliance [9], security attacks are one of the
main concerns for the cloud users.

One solution for protecting the user data against attacks is to encrypt the data before sending
them to the cloud servers. Then, the challenge is to answer user queries over encrypted data. A
naive solution for answering queries is to retrieve the encrypted database from the cloud to the
client, decrypt it, and then evaluate the query over plaintext (non encrypted) data. This solution
is not practical, in particular for large databases.

In this work, we are interested in processing top-k queries over encrypted data. These queries
have attracted much attention in several areas of information technology such as sensor networks
[42], information retrieval [37], data stream management systems [39, 31], spatial data analysis
[5, 32, 33], and graph databases [29, 21, 18]. A top-k query allows the user to specify a number k,
and the system returns the k tuples which are most relevant to the query. The relevance degree
of tuples to the query is determined by a scoring function.

There have been many different approaches proposed for processing top-k queries over plain-
text data. One of the best known approaches is TA [15] that works on sorted lists of attribute
values. TA can find efficiently the top-k results because of a smart strategy for deciding when
to stop reading the database. However, TA and all other efficient top-k approaches developed so
far assume the existence of local scores of the data items (i.e. their attribute values) in plaintext,
and there is no efficient solution capable of evaluating efficiently top-k queries over encrypted
data.

When we think about top-k query processing on encrypted data, the first idea that comes
to mind is the utilization of a fully homomorphic encryption cryptosystem, e.g. [16], which
allows one to do arithmetic operations over encrypted data. Using this type of encryption
allows to compute the overall score of data items over encrypted data. However, existing fully
homomorphic encryption methods are very expensive in terms of encryption and decryption time.
In addition, they do not allow to compare the encrypted data, and to find the top-k results.

In this research report, we propose a new approach, called BuckTop, that efficiently evaluates
top-k queries over encrypted data. BuckTop uses the bucketization technique to partition the
encrypted data into a set of buckets before sending them to the server. This work includes the
following contributions:

• A top-k query processing algorithm that works on the encrypted data of the buckets, and
returns a set, which is proved to contain the encrypted data corresponding to the top-k
results.

• An efficient filtering algorithm that filters in the server significantly the false positives
included in the set returned by the top-k query processing algorithm. We prove theoretically
the correctness of the filtering algorithm.

• A novel approach to obfuscate the boundaries of the buckets that contain the data scores,
thus increasing the security of the buckets.

We implemented our approach, and compared its response time over encrypted data with a
base algorithm and also with TA over original (plaintext) data. The experimental results show
excellent performance gains for BuckTop. For example, the results show that the response time

Inria

Top-k Query Processing Over Outsourced Encrypted Data 5

of BuckTop over encrypted data is close to TA over plaintext data. The results also illustrate
that more than 99.9 % of the false positives can be eliminated in the server by BuckTop’s filtering
algorithm.

The rest of this report is organized as follows. In Section 2, we give the problem definition.
In Section 3, we describe briefly the bucketization technique and some encryption schemes which
we use in the report. In Section 4, we describe the system architecture. Then, in Section 5, we
propose our BuckTop approach for top-k query processing over encrypted data. In Section 6,
we report the performance evaluation results. Section 7 discusses related work, and Section 8
concludes.

2 Problem Definition

In this section, we first describe the adversary model which we consider, and then define the
top-k queries. Finally, we state the problem which we address.

2.1 Adversary Model

In this work, we consider the honest-but-curious adversary model, where the adversary is inquis-
itive to learn the sensitive data without introducing any modification in the data or protocols.
This model is widely used as the adversary model for many solutions proposed for secure pro-
cessing of the different queries [25].

2.2 Top-k Queries

By a top-k query, the user specifies a number k, and the system should return the k most relevant
answers to the users. The relevance degree of the answers to the query is determined by a scoring
function. A common method for efficient top-k query processing is to run the algorithms over
sorted lists [15]. Let us define them formally.

Let D be a set of n data items, and L1, L2, ..., Lm be m lists such that each list Li contains
n pairs of the form (d, si(d)) where d ∈ D and si(d) is a non-negative real number that denotes
the local score of d in Li. Each list Li is sorted in descending order of its local scores.

The set of m lists is called a database. The overall score of each data item d is calculated as
ov(d) = f(s1(d), s2(d), ..., sm(d)) where f is a given scoring function. In other words, the overall
score is the output of f where the input is the local scores of d in all lists. We assume that
the function f is monotonic, thus if xi ≤ x′

i then f(x1, x2, ..., xm) ≤ f(x′
1, x

′
2, ..., x

′
m). Many

popular aggregation functions such as MIN, MAX, AVG are monotonic.
The result of a top-k query is the set of k elements that have the highest overall scores among

all elements of the database. Formally, the top-k query result is a set of elements D′ ⊆ D such
that |D′|= k, and ∀d′ ∈ D′ ∧ ∀d ∈ (D −D′)⇒ ov(d′) ≥ ov(d).

The sorted lists model for top-k query processing is simple and general. For example, suppose
we want to find the top-k tuples in a relational table according to some scoring function over its
attributes. To answer this query, it is sufficient to have a sorted (indexed) list of the values of
each attribute involved in the scoring function, and return the k tuples whose overall scores in
the lists are the highest.

For processing top-k queries over sorted lists, two modes of access are usually used [15]. The
first is the sorted (sequential) access that allows us to sequentially access the next data item in
the sorted list. This access begins with the first item in the list. The second is the random access
by which we look up a given data item in the list.

RR n° 9053

6 Mahboubi & Akbarinia & Valduriez

2.3 Problem Statement

The problem, which we address is top-k query processing over encrypted data. Let D be a
database, and e(D) be its encrypted version such that each data c ∈ e(D) is the ciphertext of a
data d ∈ D, i.e. c = Enc(d) where Enc() is an encryption function. The database e(D) is stored
in a remote server. Given a number k and a scoring function f , our goal is to develop an algorithm
A, such that when A is executed over the database e(D), its output contains the ciphertexts of
the top-k results, i.e. those that can be found by executing a correct top-k algorithm over the
database D.

A naive approach for top-k query processing over the encrypted database e(D) is to retrieve
it from the remote server, decrypt all of its data, run an existing top-k algorithm over the
plaintext data, and return the top-k results to the user. However, this approach is not practical,
particularly for very large databases.

3 Background

In this section, we first introduce the bucketization technique, and then describe different en-
cryption methods used in our work.

3.1 Bucketization Technique

In this work, we take advantage of the bucketization technique for managing the encrypted data
in the server. This technique consists of partitioning the data (e.g., attribute values) into buckets.
There are several methods for partitioning the values of an attribute, for example dividing the
attribute domain to almost equal intervals or creating partitions with equal sizes. We use one of
the existing approaches, e.g. one of those described in [19], for creating the buckets around the
scores of the sorted lists, and storing each data score in its corresponding bucket.

3.2 Encryption Schemes

In our approach, we use symmetric encryption schemes that use a single key, called private key,
for both encryption and decryption operations. The sender uses the private key to encrypt the
plaintext and sends the ciphertext to the receiver. The receiver applies the same key to decrypt
the message.

We distinguish two types of symmetric schemes: deterministic and probabilistic. Determinis-
tic encryption is an encryption scheme that, for two equal inputs, generates the same ciphertexts.
With a probabilistic encryption, for the same plaintexts different ciphertexts can be generated,
but the decryption function returns the same plaintext for them. A probabilistic encryption
scheme can be developed by simply adding some random bits to the plaintext, and then encrypt-
ing the result using a deterministic encryption scheme. The random bits are discarded after
decrypting the ciphertext.

4 System Architecture and a Basic Top-k Approach

In this section, we first present the architecture of our system. Then, we propose a basic top-k
query processing approach, called EncFA.

Inria

Top-k Query Processing Over Outsourced Encrypted Data 7

Figure 1: System architecture

4.1 Architecture

The architecture of our outsourcing system is composed of two parts (see Figure 1):

• Trusted client. It is responsible for encrypting the user data, decrypting the data and
controlling the user accesses. The security keys used for data encryption/decryption are
managed by this part of the system. When a query is issued by a user, the trusted client
checks the access rights of the user. If the user does not have the required rights to see the
query results, then his demand is rejected. Otherwise, the issued query is transformed to
a query that can be executed over the encrypted data. For example, suppose we have a
relation R with the following attributes: att1, att2,â¦, attm and the user issues the following
query:

SELECT * FROM R ORDERED BY f(att1, , attm) STOP AFTER k

This query is transformed to:

SELECT * FROM E(R) ORDERED BY F (E(att1) , ..., E(attm)) STOP AFTER k.

The transformed query is sent to the service provider, and the received results are post-
processed, e.g. decrypted, before being returned to the user.

• Service provider. It stores the encrypted data, executes on them the algorithms provided
by the trusted client, and returns the results to it.

4.2 EncFA: A Basic Top-k Query Processing Approach

Here, we propose a simple approach, called EncFA, that uses the FA algorithm [13] in the server
for processing top-k queries over encrypted data. Our main contribution, called BuckTop, is
presented in the next section.

Let us first describe how the local scores are encrypted. By EncFA, the trusted client uses a
probabilistic encryption scheme to encrypt the local scores (attribute values) of the data items
in the lists. It also uses a deterministic scheme for encrypting the ID of data items. Then, it

RR n° 9053

8 Mahboubi & Akbarinia & Valduriez

sends the encrypted data IDs and scores to the service provider in the same order as they were
before being encrypted. Notice that all we need is that the lists in the server be sorted in the
same order they were before encryption. We do not need to compare the encrypted scores, thus
no need for an order preserving encryption (OPE) scheme.

Given a top-k query Q with a scoring function f , EncFA uses the FA algorithm for processing
top-k queries as follows. It performs sorted access in parallel to each sorted list, and maintains
the encrypted data items and their encrypted local scores in a set Y . If there are at least k data
items in Y such that each of them has been seen in each of the m lists, then it stops doing sorted
access to the lists.

Then, for each data item d involved in Y , and each list Li, it performs random access to Li

to find the encrypted local scores of d in Li (if it has not been seen yet). EncFA sends Y to the
trusted client which decrypts the local scores of each item d ∈ Y , computes their overall scores,
and sends to the user the k items with the highest overall scores.

Theorem 1 Given a top-k query with a monotonic scoring function, EncFA returns a set that
includes the encrypted top-k elements.

The proof is given in Appendix A.
The main idea behind EncFA is that the FA algorithm is agnostic with respect to the scoring

function, thus it works correctly even on the encrypted data if they are sorted in the same order
as the plaintext data. Notice that many other algorithms do not have this characteristic, e.g.
the TA algorithm.

5 BuckTop: An Efficient Approach for Top-k Query Pro-
cessing over Encrypted Data

The EncFA approach, presented in the previous section, evaluates correctly the top-k queries
over encrypted data. But, as shown by our experiments reported in Section 6, there may be
a high number of false positives which are sent from the server to the client, and this renders
EncFA inefficient in practice. This is why, we propose the BuckTop approach which is much
more efficient than EncFA.

Our BuckTop approach manages the encrypted data in the server using the bucketization
technique. The data storage and query processing by BuckTop is done in four main steps: 1)
bucket creation and data encryption; 2) top-k query processing over encrypted data in the server;
3) result filtering in the server; 4) result post-processing in the trusted client.

5.1 Bucket Creation and Data Encryption

Before sending the data to the service provider, the trusted client partitions each sorted list into
buckets using a bucketization mechanism. Let b1, b2, ..., bt be the created buckets for a list
Lj . Each bucket bi has a lower bound, denoted by min(bi), and an upper bound, denoted by
max(bi). The lower bound of the bucket bi is equal to the upper bound of the next bucket, i.e.,
min(bi) = max(bi+1). A data item d is in the bucket bi, if and only if its local score in the list
Lj is between the lower and upper bounds of the bucket, i.e. min(bi) ≤ sj(d) < max(bi).

The trusted client chooses two symmetric encryption schemes. The first one is deterministic
used to encrypt the ID of the data items in each database list. The second encryption scheme is
probabilistic used to encrypt the local scores of data items.

Inria

Top-k Query Processing Over Outsourced Encrypted Data 9

After encrypting the data IDs and local scores, the trusted client creates the buckets in each
list, puts the encrypted local scores in their corresponding bucket, and sends the buckets and
their involved encrypted data to the service provider. The buckets are sent according to their
lower bound order. However, there is no order for the data items inside each bucket, i.e. the
place of the data items inside each bucket is chosen randomly.

For the ease of presentation, in the basic version of BuckTop, we assume that the lower and
upper bounds of the buckets are known by the service provider, i.e. they are sent to the service
provider when sending the buckets. In Section 5.5, this assumption is relaxed by obfuscating the
lower/upper bounds using secret numbers.

5.2 Top-k Query Processing
Given a top-k query Q including a number k and a scoring function f , the top-k query processing
algorithm of BuckTop performs the following steps in the service provider for processing Q:

1. Do sorted access in parallel to the lists, to read a bucket from each list. For each data item
d seen in a bucket in a list, do random access in the other lists to find the encrypted score
and the bucket of d in each list. Let b1, b2, ..., bm be the buckets involving d in the lists L1,
L2, ..., Lm. Compute a minimum overall score for d, denoted as min_ovl(d), by applying
the scoring function on the lower bound of the buckets that contain d in different lists.
Formally, min_ovl(d) = f(min(b1),min(b2), ...,min(bm)). Then, store d, its encrypted
local scores, and its min_ovl score in a set Y.

2. For each list Li, let b′i be the last bucket seen under sorted access in Li up to now. Let
threshold be defined as follows: TH = f(min(b′1),min(b′2), ...,min(b′m)). In other words,
the threshold is computed by applying the scoring function on the lower bounds of the last
seen buckets in the lists.

3. If the set Y contains k elements that have a min_ovl score higher than the threshold, then
stop doing sorted access in the lists. Otherwise, go to step one.

At the end of the algorithm, the set Y includes the encrypted top-k data items (see the proof
below). This set can be sent to the trusted client, which decrypts its involved elements, computes
the overall scores of the items, removes the false positives (i.e., the items that are in Y but not
among the top-k results), and returns the top-k items to the user.

Let us prove that the BuckTop top-k query processing works correctly. We first show that
the minimum overall score of any data item d, i.e. min_ovl(d), which is computed based on
the lower bound of its buckets, is less than or equal to its overall score. We also show that the
maximum overall score of d, i.e. max_ovl(d), is higher than or equal to its overall score.

Lemma 1 Given a monotonic scoring function f , the minimum overall score of any data item
d is less than or equal to its overall score.

Proof. The minimum overall score of a data item d is calculated by applying the scoring function
on the lower bound of the buckets in which d is involved. Let bi be the bucket that contains
d in the list Li. Let si be the local score of d in Li. Since d ∈ bi, its local score is higher
than or equal to the lower bound of bi, i.e. min(bi) ≤ si. Since f is monotonic, we have
f(min(b1), ...,min(bm)) ≤ f(s1, ..., sm). Therefore, the minimum overall score of d is less than
or equal to its overall score. 2

Lemma 2 Given a monotonic scoring function f , the maximum overall score of any data item
d is greater than or equal to its overall score.

RR n° 9053

10 Mahboubi & Akbarinia & Valduriez

Proof. The proof can be done in a similar way as Lemma 1. 2

The following theorem shows that the output of BuckTop contains the encrypted top-k data
items.

Theorem 2 Given a top-k query with a monotonic scoring function f , the output of BuckTop
contains the encrypted top-k results.

Proof. Let Y be output of the BuckTop top-k query processing algorithm, i.e. the set that
contains all the encrypted data items seen under sorted access when the algorithm ends. We
show that each data item d that is not in Y (d /∈ Y), has an overall score that is less than or
equal to the overall score of at least k data items in Y . For each list Li, let si be the local score
of d in the list Li. Let b′i be the last bucket seen under sorted access in the list Li, i.e. when the
algorithm ends. Since d is not in Y , it has not been seen under sorted access in the lists. Thus,
its involving buckets are after the buckets seen under sorted access by the algorithm. Therefore,
we have si < min(b′i) for 1 ≤ i ≤ m, i.e. the local score of d in each list Li is less than the lower
bound of the last bucket read under sorted access in Li. Since the scoring function is monotonic,
we have f(s1, ..., sm) < f(min(b′1),min(b′2), ...,min(b′m)) = TH. Thus, the overall score of d is
less than the threshold used in the BuckTop algorithm. When the algorithm stops, there are at
least k data items in Y whose minimum overall scores are greater than or equal to the threshold.
Thus, by using Lemma 1, their overall scores are at least the threshold. Therefore, their overall
score is greater than or equal to that of the data item d. 2

5.3 Filtering

In the set Y returned by BuckTop, the number of false positives may be high. Here, we propose
a server side algorithm to filter from Y the data items that have no chance to be among the
top-k items. As shown by our experimental results, this filtering algorithm can eliminate most
of the false positives (more than 99% in the different tested datasets).

In the filtering algorithm, we use the maximum overall score, denoted by max_ovl of each
data item. This score is computed by applying the scoring function over the upper bound of the
buckets involving the data item in the lists. The filtering algorithm proceeds as follows:

1. Let Y ′ ⊆ Y be the k data items in Y that have the highest min_ovl scores. Let d′ be the
data item that has the minimum min_ovl score in Y ′.

2. For each item d ∈ Y , compute its maximum overall score, i.e. max_ovl(d), by applying
the scoring function on the upper bound of the buckets involving d in the lists. Formally,
let max(bi) be the upper bound of the bucket involving d in the list Li. Then, max_ovl(d)
= f(max(b1),max(b2), ...,max(bm)). If the maximum overall score of d is less than or
equal to the minimum overall score of d′, then remove d from Y . In other words, if
max_ovl(d) ≤ min_ovl(d′)⇒ Y = Y − {d}

After running the filtering algorithm, the service provider sends Y to the trusted client which
decrypts its involved elements and filters the remaining false positives (if any).

The following theorem shows that the filtering algorithm works correctly, i.e., the removed
data are only false positives.

Theorem 3 Any data item removed by the filtering algorithm cannot belong to the top-k results.

Inria

Top-k Query Processing Over Outsourced Encrypted Data 11

Proof. The proof can be done by considering the fact that any removed data item d has a
maximum overall score that is lower than the minimum overall score of at least k data items.
Thus, by using Lemmas 1 and 2, the overall score of d is less than or equal to that of at least k
data items. Therefore, we can eliminate d. 2

5.4 Example

Consider the encrypted database shown in Figure 2, and a top-k query with k = 3 and a scoring
function that computes the sum of the local scores in the sorted lists.

List 1 List 2 List 3

bucket
ID

enc
data
item

enc
local
score

bucket
ID

enc
data
item

enc
local
score

bucket
ID

enc
data
item

enc
local
score

B11 E(d1) E(27) B21 E(d6) E(28) B31 E(d2) E(22)

B11 E(d3) E(30) B21 E(d3) E(29) B31 E(d3) E(25)

B11 E(d6) E(26) B21 E(d2) E(26) B31 E(d6) E(27)

B12 E(d2) E(15) B22 E(d1) E(24) B32 E(d5) E(21)

B12 E(d8) E(20) B22 E(d7) E(21) B32 E(d1) E(20)

B12 E(d5) E(24) B22 E(d4) E(19) B32 E(d9) E(18)

B13 E(d4) E(14) B23 E(d5) E(16) B33 E(d8) E(17)

B13 E(d7) E(12) B23 E(d9) E(13) B33 E(d7) E(14)

B13 E(d9) E(11) B23 E(d8) E(10) B33 E(d4) E(11)

...

List 1 List 2 List 3
bucket
ID min max

bucket
ID min max

bucket
ID min max

B11 24.6 32 B21 25.5 31 B31 21.9 28

B12 14.8 24.1 B22 18 24.1 B32 17.7 21.5

B13 10.7 14.2 B23 9 16.5 B33 10 17.3

Figure 2: Example of an encrypted database

RR n° 9053

12 Mahboubi & Akbarinia & Valduriez

Read
Buckets

data
items min_ovl TH continue?

1

E(d3) 72 / /
E(d1) 60.3 / /
E(d6) 72 / /
E(d2) 62.2 72 YES

2
E(d5) 41.5 / /
E(d8) 33.8 / /
E(d7) 38.7 / /
E(d4) 38.7 / /
E(d9) 37.4 50.5 NO

Table 1: Applying BuckTop top-k query processing algorithm over the database of Figure 2
Table 1 shows the result of applying the BuckTop top-k query processing algorithm over the
database of Figure 2. BuckTop stops sorted accesses after reading the 2nd bucket of each list.
In the 2nd bucket, the threshold is 50.5 and the minimum overall score of d3, d1, d6 and d2 is
greater than or equal to the threshold. The set Y contains all the data items that have been seen
under sorted access, i.e. Y = {E(d3), E(d1), E(d6), E(d2), E(d5), E(d8), E(d7), E(d4), E(d9)}.
The filtering algorithm is applied on the data items of Y. The k data items that have the highest
min_ovl scores in Y are Y ′ = {d3, d6, d2}. Among the data items in Y ′, the minimum min_ovl
belongs to d2, which is min_ovl(d2) = 62.2. For filtering, we need to compare max_ovl score
of each data item in Y - Y’ with min_ovl(d2). The result of filtering is shown in Table 2.

False
posi-
tives

max-
ovl

comparison with
min-ovl eliminated?

E(d1) 77.6 max_ovl ≥ 62.2 NO
E(d5) 62.1 max_ovl ≤ 62.2 YES
E(d8) 57.9 max_ovl ≤ 62.2 YES
E(d7) 55.6 max_ovl ≤ 62.2 YES
E(d4) 55.6 max_ovl ≤ 62.2 YES
E(d9) 52.2 max_ovl ≤ 62.2 YES

Table 2: Example of running the filtering algorithm
We find that we can eliminate d5, d8, d7, d4 and d9 from Y because they have a max_ovl score
less than min_ovl score of d2. As a result, after the filtering, Y will contain the data items
Y = {E(d1), E(d2), E(d3), E(d6)}. This set includes only one false positive, i.e. d2, which will
be eliminated in the client side.

5.5 Obfuscating Bucket Limits

A drawback of the basic version of BuckTop, presented until now, is that the limits of the buckets
are disclosed to the adversary (server). To strengthen the security of our approach, we change
the bucket limits as follows. We choose two random prime numbers a and c. These numbers
must be kept secret in the trusted client. Before sending the database to the service provider,

Inria

Top-k Query Processing Over Outsourced Encrypted Data 13

the lower and upper bounds of each bucket bi are obfuscated (modified) as follows:

min(bi) := min(bi)× a+ c (1)

max(bi) := max(bi)× a+ c (2)
Thus, the trusted client multiplies the lower (upper) bounds by the secret prime number a, and
then adds the secret prime number c to the result. These obfuscated bucket limits are sent to
the service provider together with the encrypted IDs and scores.
By the above strategy, we hide the limits of the buckets from the service provider. But, a question
remains to answer: does BuckTop work correctly if it uses the changed lower/upper bounds? The
answer to this question is positive.The intuition is that the stop strategy of BuckTop remains
valid, if we multiply and add all bucket limits to the same positive numbers.
The following theorem proves that the BuckTop top-k query processing algorithm works correctly
if it uses the perturbed lower bounds.

Theorem 4 Assume a top-k query with a monotonic scoring function f . If we change the lower
bound of the buckets by using Equation 1, then the output of BuckTop will involve the top-k
results.

Proof. Let Y be the output of the BuckTop top-k query processing algorithm. We show that
each data item d that is not in Y (d /∈ Y), has an overall score that is less than or equal to
the overall score of at least k data items involved in Y . Let Y ′ ⊆ Y be the k data items whose
minimum overall score is higher than the threshold when the algorithm ends. Let d′ ∈ Y ′ be the
data item that has the lowest overall score among the data items involved in Y ′. In each list
Li, let b′i be the bucket that contains d′ in Li, and thus min(b′i) ∗ a + c is the new (modified)
lower bound of b′i. Let b1, ..., bm be the last buckets seen by the algorithm before it ends. Then,
from the stop condition of BuckTop we have: TH = f(min(b1) ∗ a + c, ...,min(bm) ∗ a + c)
≤ f(min(b′1) ∗ a+ c, ...,min(b′m) ∗ a+ c)
Since f is monotonic and the numbers a and c are positive, we have:

f(min(b1), ...,min(bm)) ≤ f(min(b′1), ...,min(b′m)) (3)

Before changing the lower bounds, the local score of d′ in each list is higher than or equal to the
lower bound of its bucket, thus we have:

f(min(b′1), ...,min(b′m)) ≤ f(s′1, ..., s
′
m) (4)

By comparing Equations 3 and 4, we have:
f(min(b1), ...,min(bm)) ≤ f(s′1, ..., s

′
m) = ovl(d′)

In the right hand side of the above equation, we have the overall score of d′. Now, we show that
the left hand side of the above equation is higher than or equal to the overall score of a data d
that has not been seen by the algorithm. Let si be the (plaintext) local score of d in the list Li.
Since d has not been seen by the algorithm, its bucket in Li is after bi that is the last bucket seen
by the algorithm. Thus, we have si ≤ min(bi) for 1 ≤ i ≤ m. Therefore, since f is monotonic,
we have:

f(s′1, ..., s
′
m) ≤ f(min(b1), ...,min(bm)) (5)

In other words, ov(d) ≤ ov(d′). Thus, the overall score of any unseen data item d is less than
or equal to that of at least k data items involved in Y . Therefore, Y contains the top-k results,
and the proof is done. 2
Below, we prove that the filtering algorithm works correctly, if it uses the obfuscated bucket
limits.

RR n° 9053

14 Mahboubi & Akbarinia & Valduriez

Theorem 5 Assume a top-k query with a monotonic scoring function f . If we modify the lower
bound of the buckets by using Equations 1 and 2, then the filtering algorithm does not remove
any top-k result.

Proof. Let Y be the output of BuckTop algorithm, and Y ′ ⊆ Y be the k data items in Y that
have the highest min_ovl scores. Let d′ be the data item in Y ′. In each list Li, let b′i and s′i be
the bucket and local score of d′i in the list.
We do the proof by contradiction. We choose a data item d that is a top-k result and has been
removed by the filtering algorithm. We show that this assumption yields to a contradiction. In
each list Li, let bi and si be the bucket and local score of di in the list. Since, d has been removed
from the list, its maximum overall score using the modified limits is lower than or equal to that
of d′. Thus, we have:
f(max(b1)× a+ b, ...,max(bm)× a+ b) ≤ f(min(b′1)× a+ c, ...,min(b′1)× a+ c)
Since the coefficients a and c are positive, the monotonicity of f implies that:
f(max(b1), ...,max(bm)) ≤ f(min(b′1), ...,min(b′1)).
Therefore, we have: max_ovl(d) ≤ min_ovl(d′). Then by using Lemmas1 and 2, we have:
ovl(d) ≤ ovl(d′). In other words, the overall score of d is less than that of any data item involved
in Y ′. Thus, d is not a top-k result and can be removed. 2

5.6 Update Management

Let us explain how the encrypted data can be updated in the server. In our system, updating a
data is done by deleting the old data scores and then inserting its new scores. Let d be the data
to be updated and the new scores in the lists L1, ..., Lm are s1, ..., sm respectively.
To delete the old scores of d from the server, it is sufficient to encrypt the ID of d using the
key which has been used for encrypting the data IDs, and then asking the server to find the
encrypted ID in the lists and then remove the pairs (E(ID), E(score)) from the lists.
Inserting the new scores is done as follows. The trusted client uses the metadata of the buckets
(i.e., the lower bounds), and for each list Li, it calculates the bucket of the list to which the score
si should by stored. Let bi be the corresponding bucket of si . The trusted client encrypts the
ID and scores of d by using the encryption schemes which are used for encrypting the ID and
scores. Afterwards, for each list Li, it creates the pairs (E(ID), E(si)), and asks the server to
put the pair in the bucket bi.

5.7 Security Analysis

Let us now analyze the security of BuckTop by considering the information that can be leaked to
the adversary. For each case of leakage, we propose some advices to reduce the risk of disclosing
sensitive data to the adversary.

5.7.1 Partial Order Leakage in Buckets

In BuckTop, we use the bucketization technique for managing the data in the server. Inside of
the buckets no information is leaked, because the data items are not ordered and the local scores
are encrypted using a probabilistic scheme.
But, a partial order is leaked about the data items that are in different buckets (since the
buckets are ordered). This may help the adversary to obtain rough information about the
sensitive data of individuals if she has some background information about their data. For
example, if an adversary A knows the age of a person u, then A may estimate u’s salary with

Inria

Top-k Query Processing Over Outsourced Encrypted Data 15

some confidence probability. We show that the confidence probability depends inversely on the
size of buckets. Notice that we assume that the probabilistic encryption scheme is unbreak-
able, thus the adversary can not compute the exact value of the u’s salary, but just an estimation.

Let u be an individual (data item) in the database, and assume that the adversary A knows the
value of u in some attribute a. We want to compute the confidence probability that A finds the
bucket containing u’ value in a sensitive attribute s. Let us denote this confidence probability
by P (bs,u|a). We assume that if A finds the bucket of u in the list representing s, then she can
make a good estimation of u’s value, e.g. using some statistical knowledge about the values of
attribute s.
To find the bucket of u in the sensitive attribute s, the adversary A needs to perform the following
steps: 1) guessing the bucketized lists that represent a and s; 2) finding the bucket of u in the
list representing a; 3) guessing the ID of u in the found bucket; 4) searching u’s ID in the list
representing s, and finding its bucket.
Let P (L1 = a ∧ L2 = x) be the probability that A guesses correctly the lists representing the
attributes a and s. Let m be the number of bucketized lists in the database. In our system,
the metadata of sorted lists (e.g. their identification) is encrypted, and they have the same size
and format. Thus, the probability of finding the correct bucketized list of an attribute is 1

m .
Therefore, the probability of correctly guessing the lists representing both attributes a and s is:

P (L1 = a ∧ L2 = x) =
1

m× (m− 1)
(6)

If the adversary A finds correctly the list representing a, then we assume that A is able to find
the bucket containing u by using the background knowledge about the value of u in a (and some
statistical information). After finding the bucket, say b, the adversary needs to guess the ID of u.
Let size(b) be the number of encrypted values in the bucket b. Then, the probability of finding
u’ ID in the bucket b, denoted as P (ID = u), is:

P (ID = u) =
1

|size(b)|
(7)

If A guesses correctly the ID of u in the bucket b, then he can find the bucket containing the
ID in the list representing the attribute s (if she guesses correctly the list of s), and then he can
roughly estimate the u’s value in s.
Let P (bs,u|a) be the confidence probability that an adversary finds the bucket of an individual
u in the sensitive attribute s by knowing the value of u in an attribute a. Using the above
discussion and Equations 6 and 7, we have:

P (bs,u|a) ≤
1

size(b)×m× (m− 1)
(8)

where m is the number of bucketized lists in the server, and size(b) is the size of the bucket
containing u in the list representing a. Equation 8 shows that the bigger the size of the buckets,
the higher the security of buckets. Thus, to reduce the risk of disclosing the sensitive data to
the adversary, we must avoid using very small bucket sizes. The risk of privacy violation is the
highest, when the bucket size is one (which is equivalent to the EncFA approach).
However, notice that choosing very big buckets decreases the performance of query processing,
since it increases the number of false positives (see Section 6). Therefore, the size of the buckets
should be taken based on the user requirements in terms of privacy (e.g., required confidence
probabilities) and performance (e.g. required response time).

RR n° 9053

16 Mahboubi & Akbarinia & Valduriez

5.7.2 Leakage of the Number of Asked Results

In our approach, the information about the number of asked results, i.e. k, is leaked. We can
perturb this information as follows. The trusted client generates a random integer s between 0
and a predefined (small) value, and adds it to k. Then, it sends k′ = k + s to the server as the
number of required results. After receiving the encrypted results from the service provider, the
trusted client filters the result set and sends only k results to the user.

5.7.3 Leakage of Database Size

Another information which is leaked is the database size (i.e. the number of tuples). This leakage
can be avoided by adding dummy tuples to the database that is sent to the service provider.
But, we have to be careful not to add dummy tuples which could be returned to the user as a
result of top-k queries. For this, we can proceed as follows. Let n′ be the number of dummy data
items which we want to add to the lists. In each list Li, let si be the last local score in the list.
We generate n′ random data IDs. Then, for each list Li, we generate n′ random scores smaller
than si, and assign them randomly to the n′ data IDs. Afterwards, we add the generated data
IDs and their local scores to the sorted lists. Since the local scores of the dummy data items are
smaller than any real data item, they have no chance to be returned as a result of top-k queries.
The above strategy improves the security, without having any impact on the performance of
top-k queries.

6 Performance Evaluation
In this section, we evaluate the performance of BuckTop using synthetic and real datasets. We
study the effect of different parameters such as the number of data items in each lists, the number
of the database lists, the number of data items requested, etc.
In the rest of this section, we first describe the experimental setup, and then report the results
of our experiments.

6.1 Experimental Setup
We implemented our top-k query processing approach in Java. We have done our tests on
real and synthetic datasets. As in some previous work on encrypted data (e.g., [25]), we use
the Gowalla database, which is a location-based social networking dataset collected from users
locations. The database contains 6 million tuples where each tuple represents user number, time,
user geographic position, etc. In our experiments, we are interested in the attribute time, which
is the second value in each tuple. As in [25], we decompose this attribute into 6 attributes (year,
month, day, hour, minute, second), and then create a database with the following schema R(ID,
year, month, date, hour, minute, second), where ID is the tuple identifier. In addition to the real
dataset, we have also generated random datasets using uniform and Gaussian distributions.
To the best of our knowledge, in the literature there is no efficient algorithm for processing top-k
queries over encrypted data (see Related Work Section). We compare BuckTop with the two
following algorithms:

• TA over plaintext data. The objective is to show the overhead of running BuckTop over
encrypted data compared to an efficient top-k algorithm over plaintext data.

• OPE. This is an order preserving encryption approach in which the encrypted scores are
kept in the server in the same order as their initial order (i.e., before encryption). For top-k

Inria

Top-k Query Processing Over Outsourced Encrypted Data 17

query processing, the FA algorithm [13] is applied on the sorted encrpted data. Since, FA
is agnostic with respect to the scoring function, it returns a set that includes the encrypted
top-k items. The returned encrypted data items are decrypted in the trusted client, false
positives are removed, and the top-k items are returned to the user.

In our experiments, we have two versions of each database: 1) the plaintext database used for
running TA; 2) the encrypted database used for running BuckTop and OPE.
For data encryption in BuckTop, we use the two following algorithms: XOR [7] to encrypt the
identifiers of the database items, and Blowfish [30] to encrypt the local scores of the database
items. For the OPE approach, we simply sort the encrypted data items in each list based on
their initial order.
In our performance evaluation, we study the effect of several parameters: 1) n: the number of
data items in the database; 2) m: the number of lists; 3) k: the number of required top items; 4)
bsize: the number of data items in the buckets of BuckTop. The default value for n is 2M items.
Unless otherwise specified, m is 5, k is 50, and bsize is 20. In our tests,the default database is
the synthetic uniform database.
To evaluate the performance of our approach, we measured the following metrics:

• Server top-k time: the time required for the server to find the set that includes the top-k
results, i.e., the set Y .

• Total response time: the total time elapsed between the time when the query is sent to
the server and the time when the k decrypted results are returned to the user. This time
includes the server top-k time, the filtering, and the result post-processing in the client
(e.g., decryption).

• Filtering rate: the number of false positives eliminated by the filtering algorithm in the
server side.

Our experiments have been done using a server with 16 GB of main memory and Intel Core
i7-5500 @ 2.40Ghz as processor.

6.2 Effect of the Number of Data Items

In this section, we compare the performance of TA over plaintext data with BuckTop and OPE
over encrypted data, while varying the number of data items, i.e., n.
Figure 3 shows how server top-k time evolves, with increasing n, and the other parameters set
as default values described in Section 6.1. The server top-k time of all approaches increases with
n. But, OPE takes more time than the two other approaches, because it stops deeper in lists,
and thus reads more data.
Figure 4 shows the total response time of BuckTop, OPE and TA while varying n, and the
other parameters set as default values. Note that the figure are is in logarithmic scale. TA
does not need to decrypt any data, so its response time is almost the same as its server time.
The response time of BuckTop is slightly higher than its server top-k time, as in addition to
top-k query processing it performs the filtering in the server and also needs to decrypt at least
k data items. We see that the response time of OPE is much higher than its server top-k time.
The reason is that OPE returns to the trusted client a lot of false positives, which should be
decrypted, and removed from the final result set. But, this is not the case for BuckTop as its
filtering algorithm removes almost all the false positives in the server (see the results in Section
6.7), thus there is no need to decrypt them.

RR n° 9053

18 Mahboubi & Akbarinia & Valduriez

 2000

 4000

 6000

 8000

 10000

 12000

 0 1 2 3 4 5 6

S
er

v
er

 r
u

n
ti

m
e

(m
s)

n (million)

TA
BuckTop

OPE

Figure 3: Server top-k time
vs. number of database tu-
ples

 1000

 10000

 100000

 1x10
6

 0 1 2 3 4 5 6

R
es

p
o
n

se
 t

im
e

(m
s)

n (million)

TA
BuckTop

OPE

Figure 4: Response time vs.
number of database tuples

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100 110

R
es

p
o
n

se
 t

im
e

(m
s)

k

TA
BuckTop

Figure 5: Response time vs.
k

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

R
es

p
o

n
se

 t
im

e
(m

s)

Bucket size

BuckTop

Figure 6: Response time vs.
bucket size

 0

 200

 400

 600

 800

 1000

Q
uery1

Q
uery2

Q
uery3

R
es

p
o
n
se

 t
im

e
(m

s)

TA
BuckTop

Figure 7: Response time us-
ing different queries

 0

 200

 400

 600

 800

 1000

 1200

 1400

R
eal database

U
niform

 database

G
aussian

 database

R
es

p
o
n
se

 r
u
n
ti

m
e

(m
s)

TA
BuckTop

Figure 8: Response time us-
ing different datasets

Inria

Top-k Query Processing Over Outsourced Encrypted Data 19

Database size (M) 1 2 3 4 5 6
Number of false positives before filtering 540779 547289 557467 561637 537852 580299
Rate of eliminated false positives 100% 100% 100% 99.99% 99.99% 100%

A: over Uniform dataset

Database size (M) 1 2 3 4 5 6
Number of false positives before filtering 96267 192554 188928 384823 480176 575832
Rate of eliminated false positives 99.98% 99.99% 99.99% 99.99% 99.99% 99.99%

B: over Real dataset

Database size (M) 1 2 3 4 5 6
Number of false positives before filtering 187802 322931 486111 584378 679678 738482
Rate of eliminated false positives 99.94% 99.96% 99.97% 99.98% 99.98% 99.98%

C: over Gaussian dataset

Table 3: False positive elimination by our filtering algorithm in the server over different databases.
The filtering algorithm performs an excellent job, this is why we need to decrypt in the client
side only a small number of data (i.e., only the top-k data and a very small number of false
positives, if any).

6.3 Effect of k

Figure 5 shows the total response times of BuckTop with increasing k, and the other parameters
set as default values. We observe that with increasing k the response time increases. The reason
is that Bucktop needs to go deeper in the lists to find the top-k results. In addition, increasing
k augments the number of data items that the trusted client needs to decrypt (because at least
k data items are decrypted by the trusted client).

6.4 Effect of Bucket Size

Figure 6 reports the response time of BuckTop when varying the size of buckets, and the other pa-
rameters set as default values. We observe that the response time increases when the bucket size
increases. The reason is that the top-k query processing algorithm of Bucktop reads more data
in the lists, because the data are read bucket by bucket. In addition, increasing the bucket size
increases the number of false positives to be removed by the filtering algorithm, and eventually
decrpting the none eliminated false positives in the client side.

6.5 Effect of Different Queries

We evaluated the effect of the scoring function on the performance of our approach. For this,
we tested three different queries with different scoring functions. In the first query, noted as Q1,
the scoring function is sf1(s1+ s2+ ...+ sn) = s1+ s2+ ...+ sn. In this query, we have the same
coefficient (impact) for all scoring attributes. In the 2nd and 3rd queries, there is a higher skew

RR n° 9053

20 Mahboubi & Akbarinia & Valduriez

in the coefficients: in Q2, we set sf2(s1 + s2 + ...+ sn) = 1× s1 + 2× s2 + ...+ n× sn), and in
Q3 we set sf3(s1 + s2 + ...+ sn) = 21 × s1 + 22 × s2 + ...+ 2n × sn.
Figure 7 shows the response time of TA and BuckTop using the three queries. Note that in our
experiments the default query is Q1. We observe that for the query Q3, BuckTop performs better
than the other queries. The reason is that in Q3, only one or two attributes are the dominating
factors of the scoring function (i.e., those with very high coefficients). In this case, the top-k
processing algorithm takes less time to stop, and this is why the response time of BuckTop with
Q3 is lower than the other queries.

6.6 Performance over Different Datasets
We study the effect of the datasets on the performance of BuckTop and TA using different
datasets: synthetic datasets with uniform and Gaussian distributions, and real dataset (Gowalla).
Figure 8 shows the response time of TA and BuckTop over different datasets, while other pa-
rameters are set as default values. We see that over the uniform and real datasets, BuckTop and
TA have approximately the same response times. Over the Gaussian dataset, the response time
of BuckTop is a little higher than TA. The reason is that over this dataset the number of false
positives is higher than the other datasets, thus more encrypted data should be decrypted by
the trusted client.

6.7 Effect of the Filtering Algorithm
BuckTop’s filtering algorithm is used to eliminate/reduce the false positives in the server. We
study the filtering rate by increasing the size of the dataset. For the uniform synthetic dataset,
the results are shown in Table 3-A . For datasets with up to three million data items, the filtering
method eliminates 100% of the false positives, and the server returns to the trusted client only
the k data items that are the result of the query. For larger datasets, the server filters up to
99,99% of the false positives. By using the Gaussian dataset, we obtain the results shown in
Table 3-C. We see that around 99,94% of false positives are eliminated.
Over the real dataset, Table 3-B shows the filtering rate. We observe that the filtering algorithm
eliminates 99,99% of false positives. Thus, the filtering algorithm is very efficient over all the
tested datasets. However, there is a little difference in the filtering rate for different datasets
because of the local score distributions. For example, in the Gaussian distribution, the local
scores of many data items are very close to each other, thus the filtering rate decreases in this
dataset.

7 Related Work
Efficient processing of top-k queries is important for many applications such as information
retrieval [37], sensor networks [42], data stream management systems [31, 39], crowdsourcing
[8, 44], string matching [22, 38], spatial data analysis [5, 32, 33], temporal databases [28], graph
databases [18, 21, 29], uncertain data [11, 34, 35], etc.
A first important paper in top-k query processing is [13], which models the general problem of
answering topk queries using lists of data items sorted by their local scores and proposes a simple
and efficient algorithm, Faginâs algorithm (FA), which works on sorted lists. One of the most
efficient top-k algorithms is the TA algorithm, which was proposed by several groups [14, 17, 27].
Several threshold based algorithms have been proposed for processing top-k queries in different
environments, e.g. [2, 1, 10, 23, 26]. However, all these algorithms assume that the data scores
are available as plaintext, and not encrypted.

Inria

Top-k Query Processing Over Outsourced Encrypted Data 21

There have been some work to process keyword queries over encrypted data , e.g. [3, 4, 36]. For
example [4] and [36] propose matching techniques to search for any word in encrypted documents.
However, the proposed techniques cannot be used to answer top-k queries. There have been also
some solutions proposed for secure kNN query processing, e.g. [12, 6, 40, 43]. The problem is
to find k points in the space that are the nearest to a given point. This problem should not be
confused with the top-k problem in which the given scoring function plays an important role,
such that on the same database and with the same k, if the user changes the scoring function,
then the output may change. Thus, the proposed solutions proposed for kNN cannot deal with
the top-k problem.
The bucketization technique has been used in the literature for answering range queries over
encrypted data, e.g. [20, 19, 24]. For example, in [20], Hore et al. use this technique, and
propose optimal solutions for distributing the encrypted data of a database to the buckets in
order to guarantee a good performance by reducing the number of false positives while preserving
a high security level. The techniques developed in [20, 19, 24] can be used in our system for an
optimal distribution of the encrypted data in the buckets.
The only paper which we found about top-k query processing over encrypted data is [41] published
in arXiv.org. The proposed architecture assumes the existence of two non-colluding servers s1
and s2 in two different clouds. One of the servers, say s2, has the decryption keys, and the
other one, say s1, stores the data. Top-k query processing proceeds by using the TA algorithm
and accessing the encrypted data in s1, such that after reading each data in s1, its encrypted
local scores are sent to the server s2 (using a special protocol) where they are decrypted and
compared with the TA threshold. Our assumptions about the cloud are different. In our solution,
we do not need to trust on any remote server, and during the top-k query processing, we do not
decrypt the encrypted data in the cloud servers. In addition, the solution in [41] needs a lot
of communications between remote servers (i.e., at least two messages after each sorted access).
This solution is not efficient and incurs a high latency in the query processing time.
On the whole, to the best of our knowledge, in the literature there is no efficient solution for
processing top-k queries over encrypted data. In this work, we proposed such a solution.

8 Conclusion

In this work, we proposed an efficient approach, called BuckTop, for top-k query processing
over encrypted data. It uses the bucketization technique to manage the encrypted data in the
server. The top-k query processing of BuckTop works on the encrypted data of the buckets, and
returns a set involving the top-k results. Bucktop includes also a powerful filtering algorithm
that eliminates significantly the false positives from the result set, and reduces the response time
and the communication cost of query processing.
We validated our approach through experimentation over synthetic and real datasets. We com-
pared its response time over encrypted data with TA over original (plaintext) data. The experi-
mental results show excellent performance gains for BuckTop. They illustrate that the overhead
of using BuckTop for top-k processing over encrypted data is very low, because of efficient top-k
processing and filtering in the server. This shows that now the top-k queries can be efficiently
executed over encrypted data in untrusted remote severs.

References

[1] R. Akbarinia, E. Pacitti, and P. Valduriez. Best position algorithms for top-k queries. In
VLDB Conf., pages 495–506, 2007.

RR n° 9053

22 Mahboubi & Akbarinia & Valduriez

[2] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and G. Weikum. Io-top-k: Index-access
optimized top-k query processing. In VLDB Conf., pages 475–486, 2006.

[3] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with key-
word search. In International Conference on the Theory and Applications of Cryptographic
Techniques, pages 506–522, 2004.

[4] Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote encrypted
data. In Applied Cryptography and Network Security (ACNS), pages 442–455, 2005.

[5] L. Chen, G. Cong, X. Cao, and K. Tan. Temporal spatial-keyword top-k publish/subscribe.
In ICDE Conf., pages 255–266, 2015.

[6] S. Choi, G. Ghinita, H. Lim, and E. Bertino. Secure knn query processing in untrusted
cloud environments. IEEE Trans. Knowl. Data Eng. (TKDE), 26(11):2818–2831, 2014.

[7] R. Churchhouse. Codes and Ciphers. Cambridge University Press, 2002.

[8] E. Ciceri, P. Fraternali, D. Martinenghi, and M. Tagliasacchi. Crowdsourcing for top-k query
processing over uncertain data. IEEE Trans. Knowl. Data Eng. (TKDE), 28(1):41–53, 2016.

[9] C. Coles and J. Yeoh. Cloud adoption practices and priorities survey report. Technical
report, Cloud Security Alliance report, Jan. 2015.

[10] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis. Answering top-k queries using
views. In VLDB Conf., pages 451–462, 2006.

[11] M. Dylla, I. Miliaraki, and M. Theobald. Top-k query processing in probabilistic databases
with non-materialized views. In ICDE Conf., pages 122–133, 2013.

[12] Y. Elmehdwi, B. K. Samanthula, and W. Jiang. Secure k-nearest neighbor query over
encrypted data in outsourced environments. In ICDE Conf., pages 664–675, 2014.

[13] R. Fagin. Combining fuzzy information from multiple systems. J. Comput. Syst. Sci.,
58(1):83–99, 1999.

[14] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In
PODS Conf., 2001.

[15] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. J.
Comput. Syst. Sci., 66(4):614–656, 2003.

[16] C. Gentry. Fully homomorphic encryption using ideal lattices. In ACM Symposium on
Theory of Computing (STOC), pages 169–178, 2009.

[17] U. Güntzer, W. Balke, and W. Kießling. Towards efficient multi-feature queries in heteroge-
neous environments. In 2001 International Symposium on Information Technology (ITCC),
pages 622–628, 2001.

[18] M. Gupta, J. Gao, X. Yan, H. Cam, and J. Han. Top-k interesting subgraph discovery in
information networks. In ICDE Conf., pages 820–831, 2014.

[19] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu. Secure multidimensional range
queries over outsourced data. VLDB J., 21(3):333–358, 2012.

Inria

Top-k Query Processing Over Outsourced Encrypted Data 23

[20] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries. In
VLDB Conf., pages 720–731, 2004.

[21] S. Khemmarat and L. Gao. Fast top-k path-based relevance query on massive graphs. In
ICDE Conf., pages 316–327, 2014.

[22] Y. Kim and K. Shim. Efficient top-k algorithms for approximate substring matching. In
SIGMOD Conf., pages 385–396, 2013.

[23] B. Kimelfeld and Y. Sagiv. Finding and approximating top-k answers in keyword proximity
search. In PODS Conf., pages 173–182, 2006.

[24] C. Li, M. Hay, G. Miklau, and Y. Wang. A data- and workload-aware query answering
algorithm for range queries under differential privacy. PVLDB, 7(5):341–352, 2014.

[25] R. Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar. Fast range query processing with
strong privacy protection for cloud computing. PVLDB, 7(14):1953–1964, 2014.

[26] S. Michel, P. Triantafillou, and G. Weikum. KLEE: A framework for distributed top-k query
algorithms. In VLDB Conf., pages 637–648, 2005.

[27] S. Nepal and M. V. Ramakrishna. Query processing issues in image (multimedia) databases.
In ICDE Conf., pages 22–29, 1999.

[28] J. Pilourdault, V. Leroy, and S. Amer-Yahia. Distributed evaluation of top-k temporal joins.
In SIGMOD Conf., pages 1027–1039, 2016.

[29] S. Ranu, M. X. Hoang, and A. K. Singh. Answering top-k representative queries on graph
databases. In SIGMOD Conf., pages 1163–1174, 2014.

[30] B. Schneier. Description of a new variable-length key, 64-bit block cipher (blowfish). In Fast
Software Encryption workshop, Lecture Notes in Computer Science (809),, page 191.

[31] Z. Shen, M. A. Cheema, X. Lin, W. Zhang, and H. Wang. Efficiently monitoring top-k pairs
over sliding windows. In ICDE Conf., pages 798–809, 2012.

[32] J. Shi, D. Wu, and N. Mamoulis. Top-k relevant semantic place retrieval on spatial RDF
data. In SIGMOD Conf., pages 1977–1990, 2016.

[33] A. Skovsgaard and C. S. Jensen. Finding top-k relevant groups of spatial web objects. VLDB
J., 24(4):537–555, 2015.

[34] M. A. Soliman, I. F. Ilyas, and K. C. Chang. Top-k query processing in uncertain databases.
In ICDE Conf., pages 896–905, 2007.

[35] C. Song, Z. Li, and T. Ge. Top-k oracle: A new way to present top-k tuples for uncertain
data. In ICDE Conf., pages 146–157, 2013.

[36] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data.
In IEEE Symposium on Security and Privacy, pages 44–55, 2000.

[37] L. H. U, N. Mamoulis, K. Berberich, and S. J. Bedathur. Durable top-k search in document
archives. In SIGMOD Conf., pages 555–566, 2010.

RR n° 9053

24 Mahboubi & Akbarinia & Valduriez

[38] J. Wang, G. Li, D. Deng, Y. Zhang, and J. Feng. Two birds with one stone: An efficient
hierarchical framework for top-k and threshold-based string similarity search. In ICDE
Conf., pages 519–530, 2015.

[39] X. Wang, Y. Zhang, W. Zhang, X. Lin, and Z. Huang. SKYPE: top-k spatial-keyword
publish/subscribe over sliding window. PVLDB, 9(7):588–599, 2016.

[40] W. K. Wong, D. W. Cheung, B. Kao, and N. Mamoulis. Secure knn computation on
encrypted databases. In SIGMOD Conf., pages 139–152, 2009.

[41] H. Z. Xianrui Meng and G. Kollios. Declarative cleaning of inconsistencies in information
extraction. arXiv:1510.05175v2, 2016.

[42] H. Yang, C. Chung, and M. H. Kim. An efficient top-k query processing framework in mobile
sensor networks. Data Knowl. Eng., 102:78–95, 2016.

[43] B. Yao, F. Li, and X. Xiao. Secure nearest neighbor revisited. In ICDE Conf., pages 733–744,
2013.

[44] X. Zhang, G. Li, and J. Feng. Crowdsourced top-k algorithms: An experimental evaluation.
PVLDB, 9(8):612–623, 2016.

Appendix A: Correctness Proof of EncFA
Here, we prove that the set returned by EncFA contains the encrypted top-k results.
Proof. Let Y be the set of data items, which have been seen by EncFA in some lists before it
stops. Let Y ′ ⊆ Y be set of data items that have been seen in all lists. Let d′ ∈ Y ′ be the data
item whose overall score among the data items in Y ′ is the minimum. In each list Li, let s′i be
the real (plaintext) local score of d′ in Li.
We show that any data item d, which has not been seen by EncFA under sorted access,
has an overall score that is less than or equal to that of d′. In each list Li, let si be the
plaintext local score of d in Li. Since d has not been seen by the algorithm, and the en-
crypted data items in the lists are sorted according to their initial order, we have si ≤ s′i, for
1 ≤ i ≤ m. Since, the scoring function f is monotonic, then we have f(s1, ..., sm) ≤ f(s′1, ..., s

′
m).

Thus, the overall score of d is less than or equal to that of d′. Therefore, the set Y contains
at least k data items whose overall scores are greater than or equal to that of the unseen data d. 2

Inria

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Problem Definition
	Adversary Model
	Top-k Queries
	Problem Statement

	Background
	Bucketization Technique
	Encryption Schemes

	System Architecture and a Basic Top-k Approach
	Architecture
	EncFA: A Basic Top-k Query Processing Approach

	BuckTop: An Efficient Approach for Top-k Query Processing over Encrypted Data
	Bucket Creation and Data Encryption
	Top-k Query Processing
	Filtering
	Example
	Obfuscating Bucket Limits
	Update Management
	Security Analysis
	Partial Order Leakage in Buckets
	Leakage of the Number of Asked Results
	Leakage of Database Size

	Performance Evaluation
	Experimental Setup
	Effect of the Number of Data Items
	Effect of k
	Effect of Bucket Size
	Effect of Different Queries
	Performance over Different Datasets
	Effect of the Filtering Algorithm

	Related Work
	Conclusion

