Semantic Map Augmentation for Robot Navigation: A Learning Approach based on Visual and Depth Data

<u>Dhiego Bersan</u>

Renato Martins

Mário Campos

Erickson Nascimento

Computer Vision and Robotics Laboratory Department of Computer Science Universidade Federal de Minas Gerais Belo Horizonte – MG – Brasil

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

UNIVERSIDADE FEDERAL DE MINAS GERAIS

SBR'2018 – 6th Brazilian Symposium on Robotics LARS'2018 – 15th Latin American Robotics Symposium

Introduction

"For the next level of robot intelligence and intuitive user interaction, maps need to extend beyond geometry and appearance they need to contain semantics."

Source: SemanticFusion: Dense 3D Semantic Mapping with Convolutional Neural Networks - ICRA 2017

Introduction - Motivation

Introduction - Our Goal

• Build **augmented maps** with semantic information

Introduction

Metric Map (SLAM)

Object Detection

Introduction

Augmented map with semantic classes

Methodology

VERab UFMG

VERab UF**M**G

VERab UF¹¹¹G

Pipeline

Pipeline - Metric Map (SLAM)

Pipeline - Metric Map (SLAM)

Grisettiyz, Giorgio, Cyrill Stachniss, and Wolfram Burgard. "Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling." *Proceedings of the 2005 IEEE international conference on robotics and automation. IEEE, 2005.*

Pipeline: Object Detection

Pipeline: Object Detection

YOLO: You Only Look Once

Redmon et al. You Only Look Once: Unified, Real-Time Object Detection, CVPR 2016

VER ab

30

Redmon, Joseph, and Ali Farhadi. "YOLO9000: better, faster, stronger." arXiv preprint (2017).

Pipeline: Object Localization

Object Localization

Point cloud representation of input camera has one-to-one correspondence with RGB image pixels.

Pipeline: Object Localization

The object localization is done using the point cloud of the detected class.

Pipeline: Object Tracking

Purple dots represent observations of the same class. Multiple observations of the same class might indicate a single instance (i.e. the object) or multiple instances of that class.

Pipeline: Object Tracking

- Each new instance of an object is modeled with a different Kalman filter object
- We start modelling "door" objects:

U F *M* G

FR ab

- Doors are important for navigation and scene representation.
- Simple geometric model (plane patch) and tracking:

$$\begin{cases} \mathbf{x}_{i}[k] = \mathbf{x}_{i}[k-1] + \tilde{\mathbf{w}}[k] \text{ and } \tilde{\mathbf{w}} \sim \mathcal{N}\left(\mathbf{0}_{3\times 1}, \mathbf{W}\right) \\ \mathbf{y}[k] = \mathbf{x}_{i}[k] + \tilde{\mathbf{z}}[k] \text{ and } \tilde{\mathbf{z}} \sim \mathcal{N}\left(\mathbf{0}_{3\times 1}, \mathbf{Z}\right) \end{cases}$$

Experiments and Results

Online Experiments: Test Platform

Kobuki Base, RGBD camera, 2D Lidar.

Online Datasets

- Recorded datasets: rosbag of several sequences
- Available for download at : https://www.verlab.dcc.ufmg.br/semantic-mapping-for-robotics/

Results

- 1. Augmented map with semantic classes
- 2. 3D rendering of robot view

Results

VERab

Top-view of constructed map. Doors are represented in green

Future Work

Future Work

Add classes and their 3D model

Future Work

Semantic SLAM

Project page and source code can be found at:

https://www.verlab.dcc.ufmg.br/semantic-mapping-for-robotics/

Thank you! Questions?

Dhiego Bersan dhiego.bersan@gmail.com

