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Propagating errors from structure and pose graph constraints:
Dy(p*) = Di(w(p*,T)) and D«(p \/Clw (P, T) "dw(p, T)
with qu (P, T) = ([I O]T 1 P) >

Dy : warped depth
w(.):  warping function g(.) : inverse spherical projection
dw: 3D warped point T: relative pose

» Registration using a photo + geo augmented cost function
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» Normal's improvement of 20% in segmented planar patches

» 270 initially recorded keyframes are reduced to 67

Spherical System Framework
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» Set of augmented spheres consist of both photometric and ?;ifj
geometric information t\y?’x
»360° FOV RGBD
» Indoor: image acquisition using Asus Xtion Pro live sensors
» Outdoor: set of stereo cameras (depth from disparity)

Figure: Normal surface consistency on raw sphere and filtered (top right) using 6 near spheres to the outdoor
environment point-of-view showed (top left)

Conclusions

» Dense spherical RGB-D mapping approach

Overall Approach Pipeline » improvement of 10% — 30% in the depth map

» reduction of keyframes, resulting in a sparser representation
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