

A Compact Spherical RGBD Keyframe-based Representation Tawsif Gokhool¹, Renato Martins¹, Patrick Rives¹ and Noëla Despré²

Introduction

- metric maps in a pose graph representation
- Spherical RGBD Visual Odometry (VO)

Spherical System Framework

Figure: Indoor sensor

geometric information

► 360⁰ FOV RGBD

- Outdoor: set of stereo cameras (depth from disparity)

Overall Approach Pipeline

Incremental pose and structure est. within tree main stages:

- warping S and its resulting model error propagation
- data fusion dealing with occlusions and outlier rejection
- stable salient points ranking

Inria Sophia Antipolis, ² Airbus Defense and Space

relative pose

Conclusions

- Dense spherical RGB-D mapping approach
- **improvement** of 10% 30% in the depth map
- better overall consistency of the map

Main References

- from RGB-D data. In IEEE ICRA, 2013.
- visual SLAM at large scales. In IEEE IROS, 2013.

Frame Nos. Figure: Comparison between laser and vision maps Normal's improvement of 20% in segmented planar patches 270 initially recorded keyframes are reduced to 67

Figure: Normal surface consistency on raw sphere and filtered (top right) using 6 near spheres to the outdoor environment point-of-view showed (top left)

reduction of keyframes, resulting in a sparser representation

emergence of two new entities: uncertainty and stability maps

I. Dryanovski, R. Valenti, and J. Xiao. Fast visual odometry and mapping M. Meilland and A. Comport. On unifying keyframe and voxel based dense