

Dense Accurate Urban Mapping from Spherical RGB-D Images

R. Martins, E. Fernandez-Moral and P. Rives

Inria Sophia Antipolis http://team.inria.fr/lagadic

October 1st, 2015

Urban mapping from spherical stereo

Our goal: build compact maps for a posteriori localization

Urban mapping from spherical stereo

Our goal: build compact maps for a posteriori localization

Urban mapping from spherical stereo

Our goal: build compact maps for a posteriori localization

Spherical RGB-D sequence

Data acquisition

Garbejaire. Sophia-Antipolis. France

Keyframe-based solution

Keyframe-based solution

Dense registration:

Minimize the photometric error:

$$\mathfrak{F}_{S} = \frac{1}{2} \sum_{\mathbf{p}^{*}} W^{I}(\mathbf{p}^{*}) \left\| \mathcal{I}\left(w(\mathbf{p}^{*}, \widehat{\mathbf{T}}\mathbf{T}(\mathbf{x})) \right) - \mathcal{I}^{*}(\mathbf{p}^{*}) \right\|^{2}$$

Keyframe-based solution

Previous works:

- Meilland, M., Comport, A. I., Rives, P. A spherical robot-centered representation for urban navigation, (IROS) 2010.
- Meilland, M., Comport, A. I., Rives, P. Dense Omnidirectional RGB-D Mapping of Large-scale Outdoor Environments for Real-time Localization and Autonomous Navigation. Journal of Field Robotics 2015.

This paper

This paper

Improve keyframes by merging information of nearby frames

- More accurate depth images
- Reduce uncertainty
- Keyframe completeness (gap filling)

Our approach

Our approach

Regularization

"Superpatches" for photo-geometric regularization

- Region growing enforcing isotropic 3D planar patches (same area)
- Superpixel colour segmentation: are combined in $\mathcal{P}_f(d_f, \mathbf{n}_f)$.

Patches geometrically and photometrically consistent are merged:

$$\|d_i \mathbf{n}_i - d_s \mathbf{n}_s\|_2 < \epsilon_1$$
$$\|\mathbf{n}_i^T \mathbf{n}_s\|_1 - 1 < \epsilon_2$$

Fusion

Probabilistic depth averaging

• Sliding window:

$$\begin{cases} \mathcal{D}_F^*(\mathbf{p}) = \frac{W^*(\mathbf{p})\mathcal{D}^*(\mathbf{p}) + W_w(\mathbf{p})\mathcal{D}_w(\mathbf{p})}{W^*(\mathbf{p}) + W_w(\mathbf{p})}\\ W_F^*(\mathbf{p}) = W^*(\mathbf{p}) + W_w(\mathbf{p}) \end{cases}$$

Improved consistency

We obtain a full sequence with improved depth images

We obtain a full sequence with improved depth images

Localization methods

Photo-consistency

$$\mathfrak{F}_{S} = \frac{1}{2} \sum_{\mathbf{p}^{*}} W^{I}(\mathbf{p}^{*}) \left\| \mathcal{I}\left(w(\mathbf{p}^{*}, \widehat{\mathbf{T}}\mathbf{T}(\mathbf{x})) \right) - \mathcal{I}^{*}(\mathbf{p}^{*}) \right\|^{2}$$

Dense RGB-D

$$\begin{split} \mathfrak{F}_{S} = & \frac{1}{2} \sum_{\mathbf{p}^{*}} W^{I}(\mathbf{p}^{*}) \left\| \mathcal{I}\left(w(\mathbf{p}^{*}, \widehat{\mathbf{T}}\mathbf{T}(\mathbf{x}))\right) - \mathcal{I}^{*}\left(\mathbf{p}^{*}\right) \right\|^{2} + \\ & \frac{\lambda^{2}}{2} \sum_{\mathbf{p}^{*}} W^{D}(\mathbf{p}^{*}) \left\| \mathbf{n}^{T}\left(g(w(\mathbf{p}^{*}, \widehat{\mathbf{T}}\mathbf{T}(\mathbf{x}))) - \widehat{\mathbf{T}}\mathbf{T}(\mathbf{x})g^{*}(\mathbf{p}^{*})\right) \right\|^{2} \end{split}$$

We obtain a full sequence with improved depth images

Localization methods

Photo-consistency

$$\mathfrak{F}_{S} = \frac{1}{2} \sum_{\mathbf{p}^{*}} W^{I}(\mathbf{p}^{*}) \left\| \mathcal{I}\left(w(\mathbf{p}^{*}, \widehat{\mathbf{T}}\mathbf{T}(\mathbf{x})) \right) - \mathcal{I}^{*}(\mathbf{p}^{*}) \right\|^{2}$$

Dense RGB-D

$$\mathfrak{F}_{S} = \frac{1}{2} \sum_{\mathbf{p}^{*}} W^{I}(\mathbf{p}^{*}) \left\| \mathcal{I}\left(w(\mathbf{p}^{*}, \widehat{\mathbf{T}}\mathbf{T}(\mathbf{x}))\right) - \mathcal{I}^{*}\left(\mathbf{p}^{*}\right) \right\|^{2} + \frac{\lambda^{2}}{2} \sum_{\mathbf{p}^{*}} W^{D}(\mathbf{p}^{*}) \left\| \mathbf{n}^{T}\left(g(w(\mathbf{p}^{*}, \widehat{\mathbf{T}}\mathbf{T}(\mathbf{x}))) - \widehat{\mathbf{T}}\mathbf{T}(\mathbf{x})g^{*}(\mathbf{p}^{*})\right) \right\|^{2}$$

• Accuracy: average trajectory error (with/without motion model)

	Av. F	Rot. Er	ror (deg)	Av. Trans. Error (mm)		
	Raw	RF	Improv.	Raw	RF	Improv.
Dense RGB-D	0.51	0.12	86 %	3.4	1.1	67 %
Photo-consistency	0.47	0.12	74 %	2.9	1.3	55 %

• Accuracy: average deviations of half-sphere registration

• Accuracy: average deviations of half-sphere registration

	Av. Rot. Deviation (deg)			Av. Trans. Deviation (mm)			
	Raw	RF	Improv.	Raw	RF	Improv.	
Dense RGB-D	0.87	0.16	80 %	2.3	0.89	61 %	
Photo-consistency	0.55	0.18	67 %	1.8	0.88	51 %	

lagadic

• Dense registration convergence

Summary

Exploit the information of the sequence to improve depth images

Conclusions

- More robust and accurate a posteriori localization
- Applicable to any kind of Depth or RGB-D sequence (eg. 3D-LIDAR, ToF, Kinect, etc.)
- More consistent and compact maps (~20% less keyframes)

Dense Accurate Urban Mapping from Spherical RGB-D Images

R. Martins, E. Fernandez-Moral and P. Rives

Inria Sophia Antipolis http://team.inria.fr/lagadic

October 1st, 2015

