
Peer-to-peer live streaming

Remigiusz Jan Andrzej Modrzejewski

MASCOTTE Project
I3S(CNRS/UNS)–INRIA

April 12, 2011

1 / 35

Outline

Field
Introduction
Solution

Survey
Types of overlays

AQCS
Algorithms

Wake up, go home

Algorithm
Churn

1 / 35

Introduction: P2P

Peer to peer networks — end systems creating a virtual overlay
2 / 35

Introduction: Video distribution

File sharing Live streaming

3 / 35

Introduction: Video distribution

File sharing Live streaming

3 / 35

Introduction: Video distribution

File sharing Live streaming

3 / 35

Problem definition

• Disseminate a stream of data
• Single source
• Multiple recipients
• Recipients contribute to further disseminate

4 / 35

Overlay with 1x bandwidth

S

• Bandwidth efficient

◦ Lower bound for feasibility

◦ In real world clients have just
enough bandwidth

• Simple construction algorithm

• Easy to build reliability

◦ Without it single failure kills
half of overlay

◦ Still recovery very simple

• Linear delay

5 / 35

Overlay with 1x bandwidth

S

• Bandwidth efficient

◦ Lower bound for feasibility

◦ In real world clients have just
enough bandwidth

• Simple construction algorithm

• Easy to build reliability

◦ Without it single failure kills
half of overlay

◦ Still recovery very simple

• Linear delay

5 / 35

Overlay with 1x bandwidth

S

• Bandwidth efficient

◦ Lower bound for feasibility

◦ In real world clients have just
enough bandwidth

• Simple construction algorithm

• Easy to build reliability

◦ Without it single failure kills
half of overlay

◦ Still recovery very simple

• Linear delay

5 / 35

Overlay with 1x bandwidth

S

• Bandwidth efficient

◦ Lower bound for feasibility

◦ In real world clients have just
enough bandwidth

• Simple construction algorithm

• Easy to build reliability

◦ Without it single failure kills
half of overlay

◦ Still recovery very simple

• Linear delay

5 / 35

Overlay with 1x bandwidth

S

• Bandwidth efficient

◦ Lower bound for feasibility

◦ In real world clients have just
enough bandwidth

• Simple construction algorithm

• Easy to build reliability

◦ Without it single failure kills
half of overlay

◦ Still recovery very simple

• Linear delay

5 / 35

Overlay with 1x bandwidth

S

• Bandwidth efficient

◦ Lower bound for feasibility

◦ In real world clients have just
enough bandwidth

• Simple construction algorithm

• Easy to build reliability

◦ Without it single failure kills
half of overlay

◦ Still recovery very simple

• Linear delay

5 / 35

Overlay with 1x bandwidth

S

• Bandwidth efficient

◦ Lower bound for feasibility

◦ In real world clients have just
enough bandwidth

• Simple construction algorithm

• Easy to build reliability

◦ Without it single failure kills
half of overlay

◦ Still recovery very simple

• Linear delay

5 / 35

Overlay with 1x bandwidth

S

• Bandwidth efficient

◦ Lower bound for feasibility

◦ In real world clients have just
enough bandwidth

• Simple construction algorithm

• Easy to build reliability

◦ Without it single failure kills
half of overlay

◦ Still recovery very simple

• Linear delay

5 / 35

Problem definition 2

• Disseminate a stream of data
• Single source
• Multiple recipients
• Recipients contribute to further disseminate
• Finite dissemination deadline

6 / 35

Overlay with 2x bandwidth

• Logarithmic delay

• Still simple to construct

◦ O(1) time and O(n) memory

◦ O(log n) time and O(1)
memory in each node

• Hard to ensure reliability

◦ Failure brings down only log2 n
2

peers on average

◦ Costly rebalance

• Loses half of bandwidth

S

7 / 35

Overlay with 2x bandwidth

• Logarithmic delay

• Still simple to construct

◦ O(1) time and O(n) memory

◦ O(log n) time and O(1)
memory in each node

• Hard to ensure reliability

◦ Failure brings down only log2 n
2

peers on average

◦ Costly rebalance

• Loses half of bandwidth

S

7 / 35

Overlay with 2x bandwidth

• Logarithmic delay

• Still simple to construct

◦ O(1) time and O(n) memory

◦ O(log n) time and O(1)
memory in each node

• Hard to ensure reliability

◦ Failure brings down only log2 n
2

peers on average

◦ Costly rebalance

• Loses half of bandwidth

S

7 / 35

Overlay with 2x bandwidth

• Logarithmic delay

• Still simple to construct

◦ O(1) time and O(n) memory

◦ O(log n) time and O(1)
memory in each node

• Hard to ensure reliability

◦ Failure brings down only log2 n
2

peers on average

◦ Costly rebalance

• Loses half of bandwidth

S

7 / 35

Overlay with 2x bandwidth

• Logarithmic delay

• Still simple to construct

◦ O(1) time and O(n) memory

◦ O(log n) time and O(1)
memory in each node

• Hard to ensure reliability

◦ Failure brings down only log2 n
2

peers on average

◦ Costly rebalance

• Loses half of bandwidth

S

7 / 35

Overlay with 2x bandwidth

• Logarithmic delay

• Still simple to construct

◦ O(1) time and O(n) memory

◦ O(log n) time and O(1)
memory in each node

• Hard to ensure reliability

◦ Failure brings down only log2 n
2

peers on average

◦ Costly rebalance

• Loses half of bandwidth

S

7 / 35

Overlay with 2x bandwidth

• Logarithmic delay

• Still simple to construct

◦ O(1) time and O(n) memory

◦ O(log n) time and O(1)
memory in each node

• Hard to ensure reliability

◦ Failure brings down only log2 n
2

peers on average

◦ Costly rebalance

• Loses half of bandwidth

S

7 / 35

Overlay with 2x bandwidth

• Logarithmic delay

• Still simple to construct

◦ O(1) time and O(n) memory

◦ O(log n) time and O(1)
memory in each node

• Hard to ensure reliability

◦ Failure brings down only log2 n
2

peers on average

◦ Costly rebalance

• Loses half of bandwidth

S

7 / 35

Problem definition 3

• Disseminate a stream of data
• Single source
• Multiple recipients
• Recipients contribute to further disseminate
• Finite dissemination deadline
• High bandwidth utilization

8 / 35

Video bit rates

Format name Resolution Approximate bit rate target

360p 480× 360 768kbit/sec
480p 640× 480 768kbit/sec
480p 854× 480 1.25mbit/sec
720p 1280× 720 2.25mbit/sec
1080p 1920× 1080 3.75mbit/sec

Approximate bit rates in various resolutions, served by the most popular online
provider — YouTube
Source: Approximate youtube bitrates, McFarland, 2010

9 / 35

Available bandwidth

0

2

4

6

8

10

12

B
an

dw
id

th
[m

bi
t/s

]

Europe N. America Asia Australasia S. America Africa Global

Download
Upload
480p
720p

Average client bandwidth in February 2011 broken down by continent,
measured using Speedtest.net, with marked bit rates required for 480p and
720p video
10 / 35

Overlay with 1x bandwidth

S

a
f h

b

d

e

c
g

Both bandwidth efficient and O(log n) delay
11 / 35

Overlay with 1x bandwidth

a

b

c

d

e

f

g

h

S

Step by step:
node 1 2 3 4 5

a 1
b
c
d
e
f
g
h

Indicates chunk currently
replicated by each peer

11 / 35

Overlay with 1x bandwidth

a

b

S

h

c

d

e

f

g

Step by step:
node 1 2 3 4 5

a 1 1
b 1
c
d
e
f
g
h 2

Indicates chunk currently
replicated by each peer

11 / 35

Overlay with 1x bandwidth

a

d

b

c

e

f

g

h

S

Step by step:
node 1 2 3 4 5

a 1 1 1
b 1 1
c 1
d 1
e
f 3
g 2
h 2 2

Indicates chunk currently
replicated by each peer

11 / 35

Overlay with 1x bandwidth

a

e

b

f

c
g

d

h

S

Step by step:
node 1 2 3 4 5

a 1 1 1 4
b 1 1
c 1 2
d 1 2
e 3
f 3 3
g 2 2
h 2 2 2

Indicates chunk currently
replicated by each peer

11 / 35

Overlay with 1x bandwidth

a

b

c

d

e

hf

g

S

Step by step:
node 1 2 3 4 5

a 1 1 1 4 4
b 1 1 4
c 1 2 5
d 1 2
e 3 3
f 3 3 3
g 2 2 3
h 2 2 2 3

Indicates chunk currently
replicated by each peer

11 / 35

Overlay with 1x bandwidth

S

a

b

d

e

c

f

g

h

Step by step:
node 1 2 3 4 5

a 1 1 1 4 4
b 1 1 4
c 1 2 5
d 1 2
e 3 3
f 3 3 3
g 2 2 3
h 2 2 2 3

Indicates chunk currently
replicated by each peer

12 / 35

Optimal algorithm feasibility

• Sustainable, n
2 peers forwarding oldest piece, n

4 next one, n
8 next

one and so on;
∑∞

i=1
n
2 = n

• After modification sustainable also for n 6= 2k (in dlog2 ne+ 1 time)
(e.g. for n = 9 we need 1, 2, 3, 3 peers for each chunk, for n = 11
— 1, 2, 4, 4 etc.)

• Centralized algorithm will not scale
• Distributed implementation impossible?
◦ Needs knowledge of whole O in every peer
◦ Needs up to date knowledge of H[i] (buffer states) and F (free peers)
◦ Needs knowledge of other peers decisions

13 / 35

Optimal algorithm feasibility

• Sustainable, n
2 peers forwarding oldest piece, n

4 next one, n
8 next

one and so on;
∑∞

i=1
n
2 = n

• After modification sustainable also for n 6= 2k (in dlog2 ne+ 1 time)
(e.g. for n = 9 we need 1, 2, 3, 3 peers for each chunk, for n = 11
— 1, 2, 4, 4 etc.)

• Centralized algorithm will not scale
• Distributed implementation impossible?
◦ Needs knowledge of whole O in every peer
◦ Needs up to date knowledge of H[i] (buffer states) and F (free peers)
◦ Needs knowledge of other peers decisions

13 / 35

Optimal algorithm feasibility

• Sustainable, n
2 peers forwarding oldest piece, n

4 next one, n
8 next

one and so on;
∑∞

i=1
n
2 = n

• After modification sustainable also for n 6= 2k (in dlog2 ne+ 1 time)
(e.g. for n = 9 we need 1, 2, 3, 3 peers for each chunk, for n = 11
— 1, 2, 4, 4 etc.)

• Centralized algorithm will not scale
• Distributed implementation impossible?
◦ Needs knowledge of whole O in every peer
◦ Needs up to date knowledge of H[i] (buffer states) and F (free peers)
◦ Needs knowledge of other peers decisions

13 / 35

Optimal algorithm feasibility

• Sustainable, n
2 peers forwarding oldest piece, n

4 next one, n
8 next

one and so on;
∑∞

i=1
n
2 = n

• After modification sustainable also for n 6= 2k (in dlog2 ne+ 1 time)
(e.g. for n = 9 we need 1, 2, 3, 3 peers for each chunk, for n = 11
— 1, 2, 4, 4 etc.)

• Centralized algorithm will not scale
• Distributed implementation impossible?
◦ Needs knowledge of whole O in every peer
◦ Needs up to date knowledge of H[i] (buffer states) and F (free peers)
◦ Needs knowledge of other peers decisions

13 / 35

Optimal algorithm feasibility

• Sustainable, n
2 peers forwarding oldest piece, n

4 next one, n
8 next

one and so on;
∑∞

i=1
n
2 = n

• After modification sustainable also for n 6= 2k (in dlog2 ne+ 1 time)
(e.g. for n = 9 we need 1, 2, 3, 3 peers for each chunk, for n = 11
— 1, 2, 4, 4 etc.)

• Centralized algorithm will not scale
• Distributed implementation impossible?
◦ Needs knowledge of whole O in every peer
◦ Needs up to date knowledge of H[i] (buffer states) and F (free peers)
◦ Needs knowledge of other peers decisions

13 / 35

Optimal algorithm feasibility

• Sustainable, n
2 peers forwarding oldest piece, n

4 next one, n
8 next

one and so on;
∑∞

i=1
n
2 = n

• After modification sustainable also for n 6= 2k (in dlog2 ne+ 1 time)
(e.g. for n = 9 we need 1, 2, 3, 3 peers for each chunk, for n = 11
— 1, 2, 4, 4 etc.)

• Centralized algorithm will not scale
• Distributed implementation impossible?
◦ Needs knowledge of whole O in every peer
◦ Needs up to date knowledge of H[i] (buffer states) and F (free peers)
◦ Needs knowledge of other peers decisions

13 / 35

Optimal algorithm feasibility

• Sustainable, n
2 peers forwarding oldest piece, n

4 next one, n
8 next

one and so on;
∑∞

i=1
n
2 = n

• After modification sustainable also for n 6= 2k (in dlog2 ne+ 1 time)
(e.g. for n = 9 we need 1, 2, 3, 3 peers for each chunk, for n = 11
— 1, 2, 4, 4 etc.)

• Centralized algorithm will not scale
• Distributed implementation impossible?
◦ Needs knowledge of whole O in every peer
◦ Needs up to date knowledge of H[i] (buffer states) and F (free peers)
◦ Needs knowledge of other peers decisions

13 / 35

Problem definition 4

• Disseminate a stream of data
• Single source
• Multiple recipients
• Recipients contribute to further disseminate
• Finite dissemination deadline
• High bandwidth utilization
• Participants are autonomous
• Local, delayed view

14 / 35

Why harder than BT?

Similar to BitTorrent, but also very different:
• Always in flash crowd state
• Each piece has a deadline
• Limited number of pieces alive
• “Computer working, but unattended” improbable

15 / 35

Why harder than BT?

Similar to BitTorrent, but also very different:
• Always in flash crowd state
• Each piece has a deadline
• Limited number of pieces alive
• “Computer working, but unattended” improbable

15 / 35

Why harder than BT?

Similar to BitTorrent, but also very different:
• Always in flash crowd state
• Each piece has a deadline
• Limited number of pieces alive
• “Computer working, but unattended” improbable

15 / 35

Why harder than BT?

Similar to BitTorrent, but also very different:
• Always in flash crowd state
• Each piece has a deadline
• Limited number of pieces alive
• “Computer working, but unattended” improbable

15 / 35

Outline

Field
Introduction
Solution

Survey
Types of overlays

AQCS
Algorithms

Wake up, go home

Algorithm
Churn

15 / 35

Types of overlays

S

S

16 / 35

Unstructured overlays

• Many names, similar idea:

◦ Gossiping

◦ Flood routing

◦ BitTorrent-like

• Peers arrange a random graph

• Simple algorithms

• Robust

• Most popular

S

17 / 35

Unstructured overlays

• Many names, similar idea:

◦ Gossiping

◦ Flood routing

◦ BitTorrent-like

• Peers arrange a random graph

• Simple algorithms

• Robust

• Most popular

S

17 / 35

Structured overlays

S

• Define explicit structure,
usually forest

• Much easier to understand
• Much harder to construct
• Employs DHT
• Prone to disruptions

18 / 35

Structured vs. Unstructured

Comprehensive comparison: Mesh or Multiple-Tree: A Comparative
Study of Live P2P Streaming Approaches by Magharei et al.

• State of the art overlays of
both types

• Comparison over a broad range
of scenarios

• Many observed characteristics
• Packet-level simulations
• Explanations for observed
phenomena

• Pretty conclusive: unstructured
overlays are better

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

B
W

 u
til

iz
at

io
n(

%
)

Percentage of departed peers

Median-Tree
5th&95th percentile-Tree

Median-Mesh
5th&95th percentile-Mesh

Fig. 7. Median, 5th and 95th percentile of bandwidth utilization among peers
after x% of randomly selected peers have departed
in bandwidth utilization and widens its distribution among
peers.
B. Cohesion of the Overlay Under Churn

We now turn our attention to the ability of each approach
to maintain a cohesive overlay in the presence of churn. For
this analysis, we use our session level P2P simulator, called
psim. psim abstracts out packet level dynamics and allows
us to examine significantly larger group sizes. Furthermore,
psim enables us to accurately model churn and simulates the
pairwise latency between peers using the King dataset [7].
psim also uses a central bootstrap mechanism with a random
selection algorithm for peer discovery and peer selection. To
incorporate a realistic model for churn in our simulations,
we select peer session times from a log-normal distribution
(with µ=4.29 and σ=1.28) and peer inter-arrival times from a
Pareto distribution (with a=2.52 and b=1.55) as reported by
recent empirical studies [8], [9]. The length of each simulation
is 6000 seconds to model a roughly 2-hour event. Presented
results are measured at the steady state and averaged over
multiple simulations with different random seeds.
Ancestor changing rate: Figures 8(a) and 8(b) depict the
mean interval between ancestor changes as a function of peer
population in the steady state for three different peer degrees
in both mesh- and tree-based approaches, respectively. In
the tree-based approach, the ancestor nodes consist of both
direct parents as well as any upstream nodes on the path
from source. In the mesh-based approach, the ancestor nodes
include direct parents as well as any upstream node on the
diffusion subtree. These figures demonstrate that the path

 10

 20

 30

 40

 50

 60

 70

 100 1000 10000

M
e
a
n
 i
n
te

rv
a
l
b
e
tw

e
e
n
 a

n
c
e
s
to

r
c
h
a
n
g
e

Population

Degree:4
Degree:8

Degree:16

(a) Mesh-based
 100 1000 10000

Population

Degree:4
Degree:8

Degree:16

(b) Tree-based
Fig. 8. Mean interval between ancestor change

from source to individual peers is more stable in the mesh-
based approach (20%-70%) than in the tree-based approach
(5%-40%). The ancestor changing rate increases with the
peer degree since the larger number of parents increases the
likelihood that one of them leaves the system. Furthermore, for
a specific peer degree, the ancestor changing rate increases
with peer population. This is mainly due to the fact that
the average distance of individual peers increases with peer
population in both approaches. Figures 8(a) and 8(b) also show
that the slope of change in stability is higher for smaller peer
degrees due to the stronger effect of population on overlay
depth in these scenarios.

An interesting question is “whether the observed ancestor
changing rate for individual peers is correlated with their ses-
sion times?”. To investigate this issue, we divide all peers into
three groups based on their session times (st) as follows: (i)
30min<st, (ii) 30min≤st≤5min, and (iii) st<5min. Figures
9(a) and 9(b) depict mean interval between ancestor change
within each one of these three groups for both approaches
with peer degree 8. In the mesh-based approach, peers with
higher session times on average experience a higher degree
of stability among their ancestor. This is primarily due to
the fact that once a connection is established between two
long-lived peers, it remains in place for a long period of
time. This enables long-lived peers to gradually move to
higher levels of the overlay and improves the stability of
higher levels. However, in the tree-based approach, there is
no visible correlation between the ancestor changing rate and
peer session time since all three groups exhibit roughly the
same ancestor changing rate across different degrees. This is
the direct result of maintaining diverse trees. By forcing each
peer to be an internal node in one tree and leaf node in all
other trees, the departure of each peer causes instability for
all the downstream nodes on the tree where it serves as an
internal node.
Frequency of Deadlock Event: As we explained in Section
II, a deadlock event occurs in the tree-based approach when a
tree becomes saturated and can not accept a newly arriving (or
partitioned) leaf peer. Figure 10 shows the average percentage
of leaf peers that experienced deadlock as a function of peer
population for three different number peer degrees. This figure
indicates that the percentage of deadlock events drops as
the peer degree decreases or the peer population increases.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 100 1000 10000

M
e
a
n
 i
n
te

rv
a
l
b
e
tw

e
e
n
 a

n
c
e
s
to

r
c
h
a
n
g
e

Population

Session time>30min
5min<Session time<30min

Session time<5min

(a) Mesh-based
 100 1000 10000

Population

Session time>30min
5min<Session time<30min

Session time<5min

(b) Tree-based
Fig. 9. Mean interval between ancestor change (degree=8)

19 / 35

Structured vs. Unstructured

Comprehensive comparison: Mesh or Multiple-Tree: A Comparative
Study of Live P2P Streaming Approaches by Magharei et al.

• State of the art overlays of
both types

• Comparison over a broad range
of scenarios

• Many observed characteristics
• Packet-level simulations
• Explanations for observed
phenomena

• Pretty conclusive: unstructured
overlays are better

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

B
W

 u
til

iz
at

io
n(

%
)

Percentage of departed peers

Median-Tree
5th&95th percentile-Tree

Median-Mesh
5th&95th percentile-Mesh

Fig. 7. Median, 5th and 95th percentile of bandwidth utilization among peers
after x% of randomly selected peers have departed
in bandwidth utilization and widens its distribution among
peers.
B. Cohesion of the Overlay Under Churn

We now turn our attention to the ability of each approach
to maintain a cohesive overlay in the presence of churn. For
this analysis, we use our session level P2P simulator, called
psim. psim abstracts out packet level dynamics and allows
us to examine significantly larger group sizes. Furthermore,
psim enables us to accurately model churn and simulates the
pairwise latency between peers using the King dataset [7].
psim also uses a central bootstrap mechanism with a random
selection algorithm for peer discovery and peer selection. To
incorporate a realistic model for churn in our simulations,
we select peer session times from a log-normal distribution
(with µ=4.29 and σ=1.28) and peer inter-arrival times from a
Pareto distribution (with a=2.52 and b=1.55) as reported by
recent empirical studies [8], [9]. The length of each simulation
is 6000 seconds to model a roughly 2-hour event. Presented
results are measured at the steady state and averaged over
multiple simulations with different random seeds.
Ancestor changing rate: Figures 8(a) and 8(b) depict the
mean interval between ancestor changes as a function of peer
population in the steady state for three different peer degrees
in both mesh- and tree-based approaches, respectively. In
the tree-based approach, the ancestor nodes consist of both
direct parents as well as any upstream nodes on the path
from source. In the mesh-based approach, the ancestor nodes
include direct parents as well as any upstream node on the
diffusion subtree. These figures demonstrate that the path

 10

 20

 30

 40

 50

 60

 70

 100 1000 10000

M
e
a
n
 i
n
te

rv
a
l
b
e
tw

e
e
n
 a

n
c
e
s
to

r
c
h
a
n
g
e

Population

Degree:4
Degree:8

Degree:16

(a) Mesh-based
 100 1000 10000

Population

Degree:4
Degree:8

Degree:16

(b) Tree-based
Fig. 8. Mean interval between ancestor change

from source to individual peers is more stable in the mesh-
based approach (20%-70%) than in the tree-based approach
(5%-40%). The ancestor changing rate increases with the
peer degree since the larger number of parents increases the
likelihood that one of them leaves the system. Furthermore, for
a specific peer degree, the ancestor changing rate increases
with peer population. This is mainly due to the fact that
the average distance of individual peers increases with peer
population in both approaches. Figures 8(a) and 8(b) also show
that the slope of change in stability is higher for smaller peer
degrees due to the stronger effect of population on overlay
depth in these scenarios.

An interesting question is “whether the observed ancestor
changing rate for individual peers is correlated with their ses-
sion times?”. To investigate this issue, we divide all peers into
three groups based on their session times (st) as follows: (i)
30min<st, (ii) 30min≤st≤5min, and (iii) st<5min. Figures
9(a) and 9(b) depict mean interval between ancestor change
within each one of these three groups for both approaches
with peer degree 8. In the mesh-based approach, peers with
higher session times on average experience a higher degree
of stability among their ancestor. This is primarily due to
the fact that once a connection is established between two
long-lived peers, it remains in place for a long period of
time. This enables long-lived peers to gradually move to
higher levels of the overlay and improves the stability of
higher levels. However, in the tree-based approach, there is
no visible correlation between the ancestor changing rate and
peer session time since all three groups exhibit roughly the
same ancestor changing rate across different degrees. This is
the direct result of maintaining diverse trees. By forcing each
peer to be an internal node in one tree and leaf node in all
other trees, the departure of each peer causes instability for
all the downstream nodes on the tree where it serves as an
internal node.
Frequency of Deadlock Event: As we explained in Section
II, a deadlock event occurs in the tree-based approach when a
tree becomes saturated and can not accept a newly arriving (or
partitioned) leaf peer. Figure 10 shows the average percentage
of leaf peers that experienced deadlock as a function of peer
population for three different number peer degrees. This figure
indicates that the percentage of deadlock events drops as
the peer degree decreases or the peer population increases.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 100 1000 10000

M
e
a
n
 i
n
te

rv
a
l
b
e
tw

e
e
n
 a

n
c
e
s
to

r
c
h
a
n
g
e

Population

Session time>30min
5min<Session time<30min

Session time<5min

(a) Mesh-based
 100 1000 10000

Population

Session time>30min
5min<Session time<30min

Session time<5min

(b) Tree-based
Fig. 9. Mean interval between ancestor change (degree=8)

19 / 35

Adaptive Queue-based Chunk Scheduling

Source pushes a single copy of each fragment to a single replicator.
That replicator pushes it to everyone else.
20 / 35

Adaptive Queue-based Chunk Scheduling

Source pushes a single copy of each fragment to a single replicator.
That replicator pushes it to everyone else.
20 / 35

AQCS Properties

• Very simple
• Very robust
• Achieves optimal performance — providing that:
◦ Chunk size is an common divisor of all bandwidths
◦ Chunk size is smaller than bandwidth·delay

peers#
◦ Theoretical proof for infinitesimal chunk size and zero propagation

delay

• Practical limit, as found by authors, is about 40 peers

For more details read Aqcs: Adaptive queue-based chunk scheduling for P2P
live streaming by Guo, Liang and Liu

21 / 35

AQCS Properties

• Very simple
• Very robust
• Achieves optimal performance — providing that:
◦ Chunk size is an common divisor of all bandwidths
◦ Chunk size is smaller than bandwidth·delay

peers#
◦ Theoretical proof for infinitesimal chunk size and zero propagation

delay

• Practical limit, as found by authors, is about 40 peers

For more details read Aqcs: Adaptive queue-based chunk scheduling for P2P
live streaming by Guo, Liang and Liu

21 / 35

AQCS Properties

• Very simple
• Very robust
• Achieves optimal performance — providing that:
◦ Chunk size is an common divisor of all bandwidths
◦ Chunk size is smaller than bandwidth·delay

peers#
◦ Theoretical proof for infinitesimal chunk size and zero propagation

delay

• Practical limit, as found by authors, is about 40 peers

For more details read Aqcs: Adaptive queue-based chunk scheduling for P2P
live streaming by Guo, Liang and Liu

21 / 35

AQCS Properties

• Very simple
• Very robust
• Achieves optimal performance — providing that:
◦ Chunk size is an common divisor of all bandwidths
◦ Chunk size is smaller than bandwidth·delay

peers#
◦ Theoretical proof for infinitesimal chunk size and zero propagation

delay

• Practical limit, as found by authors, is about 40 peers

For more details read Aqcs: Adaptive queue-based chunk scheduling for P2P
live streaming by Guo, Liang and Liu

21 / 35

Local view randomness

We can assume a few things about the local view of a node:
• Approximates a random sample of overlay
• Constantly changing
• Resilient
• CYCLON: Inexpensive Membership Management for Unstructured
P2P Overlays by Voulgaris et al. proposes a simple algorithm that’s
good against massive failures, by neighbour exchange

• Random walk algorithms may help against Byzantine adversaries, as
shown in Uniform and Ergodic Sampling in Unstructured
Peer-to-Peer Systems with Malicious Nodes by Anceaume et al.

22 / 35

Unstructured overlay basic algorithms

• Random push (or random pull) based
◦ Each peer chooses each turn a peer to send to at random
◦ Proved to propagate information in Θ(log n) steps
◦ Other simple peer selection schemes: tit-for-tat, deprived peer
◦ Also possible to first select chunk and then peer for that

• Chunk selection algorithms can be divided into main groups:
◦ By order:
• Random
• Latest

◦ By awareness:
• Useful
• Blind

23 / 35

Unstructured overlay basic algorithms

• Random push (or random pull) based
◦ Each peer chooses each turn a peer to send to at random
◦ Proved to propagate information in Θ(log n) steps
◦ Other simple peer selection schemes: tit-for-tat, deprived peer
◦ Also possible to first select chunk and then peer for that

• Chunk selection algorithms can be divided into main groups:
◦ By order:
• Random
• Latest

◦ By awareness:
• Useful
• Blind

23 / 35

Unstructured overlay basic algorithms

• Random push (or random pull) based
◦ Each peer chooses each turn a peer to send to at random
◦ Proved to propagate information in Θ(log n) steps
◦ Other simple peer selection schemes: tit-for-tat, deprived peer
◦ Also possible to first select chunk and then peer for that

• Chunk selection algorithms can be divided into main groups:
◦ By order:
• Random
• Latest

◦ By awareness:
• Useful
• Blind

23 / 35

Unstructured overlay basic algorithms

• Random push (or random pull) based
◦ Each peer chooses each turn a peer to send to at random
◦ Proved to propagate information in Θ(log n) steps
◦ Other simple peer selection schemes: tit-for-tat, deprived peer
◦ Also possible to first select chunk and then peer for that

• Chunk selection algorithms can be divided into main groups:
◦ By order:
• Random
• Latest

◦ By awareness:
• Useful
• Blind

23 / 35

Unstructured overlay basic algorithms

• Random push (or random pull) based
◦ Each peer chooses each turn a peer to send to at random
◦ Proved to propagate information in Θ(log n) steps
◦ Other simple peer selection schemes: tit-for-tat, deprived peer
◦ Also possible to first select chunk and then peer for that

• Chunk selection algorithms can be divided into main groups:
◦ By order:
• Random
• Latest

◦ By awareness:
• Useful
• Blind

23 / 35

Unstructured overlay basic algorithms

• Random push (or random pull) based
◦ Each peer chooses each turn a peer to send to at random
◦ Proved to propagate information in Θ(log n) steps
◦ Other simple peer selection schemes: tit-for-tat, deprived peer
◦ Also possible to first select chunk and then peer for that

• Chunk selection algorithms can be divided into main groups:
◦ By order:
• Random
• Latest

◦ By awareness:
• Useful
• Blind

23 / 35

Unstructured overlay basic algorithms

• Random push (or random pull) based
◦ Each peer chooses each turn a peer to send to at random
◦ Proved to propagate information in Θ(log n) steps
◦ Other simple peer selection schemes: tit-for-tat, deprived peer
◦ Also possible to first select chunk and then peer for that

• Chunk selection algorithms can be divided into main groups:
◦ By order:
• Random
• Latest

◦ By awareness:
• Useful
• Blind

23 / 35

Why simple push/pull schemes insufficient?

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Bandwidth

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
el

iv
er

y
ra

tio

2min churn
no churn

• Random push loses bandwidth on duplicate transfers
• Random pull has higher chance of content bottleneck
• Both ways simple schemes utilize a fraction of bandwidth
24 / 35

Idea — push-pull scheme

Very simple basic idea:
• When a chunk is new, most peers don’t have it — push it without
asking

• If have only chunks with high expected popularity — respond to
pull requests

Connecting best of both approaches:
• Initial exponential growth of chunk owners
• Almost no duplicate transfers
Funny problem: many different approaches under this name

25 / 35

Thank you for your attention

¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ? ? ? ? ? ? ? ? ? ?

26 / 35

Centralized optimal algorithm

• n – number of peers in overlay, n = 2k + 1 including source
• O – overlay
• F – free peers, initially equal to O \ source
• o – oldest chunk in transfer
• H[i] – set of peers who have chunk i

1. If |H[o]| = n
2 , then push from each peer p in H[o] chunk o to some

peer in O \ H[o], add p to F , let o = o + 1
2. For i = o, . . ., for each peer p in H[i] push chunk i to some peer

q in F , remove q from F
3. Push newest chunk from source to some p in F , remove p from F
4. Return to step 1

27 / 35

Centralized optimal algorithm

• n – number of peers in overlay, n = 2k + 1 including source
• O – overlay
• F – free peers, initially equal to O \ source
• o – oldest chunk in transfer
• H[i] – set of peers who have chunk i

1. If |H[o]| = n
2 , then push from each peer p in H[o] chunk o to some

peer in O \ H[o], add p to F , let o = o + 1
2. For i = o, . . ., for each peer p in H[i] push chunk i to some peer

q in F , remove q from F
3. Push newest chunk from source to some p in F , remove p from F
4. Return to step 1

27 / 35

Churn

• Node dynamics shown to be
biggest problem of live systems

• When n ≈ 20000, almost 1000
peers join and leave per minute

• Biggest reason for unstructured
overlay popularity

• Almost no insight in literature

• No difference between new and
returning peers — buffers
probably outdated

28 / 35

Churn

• Node dynamics shown to be
biggest problem of live systems

• When n ≈ 20000, almost 1000
peers join and leave per minute

• Biggest reason for unstructured
overlay popularity

• Almost no insight in literature

• No difference between new and
returning peers — buffers
probably outdated

28 / 35

Churn

• Node dynamics shown to be
biggest problem of live systems

• When n ≈ 20000, almost 1000
peers join and leave per minute

• Biggest reason for unstructured
overlay popularity

• Almost no insight in literature

• No difference between new and
returning peers — buffers
probably outdated

28 / 35

Churn

• Node dynamics shown to be
biggest problem of live systems

• When n ≈ 20000, almost 1000
peers join and leave per minute

• Biggest reason for unstructured
overlay popularity

• Almost no insight in literature

• No difference between new and
returning peers — buffers
probably outdated

28 / 35

Churn

• Node dynamics shown to be
biggest problem of live systems

• When n ≈ 20000, almost 1000
peers join and leave per minute

• Biggest reason for unstructured
overlay popularity

• Almost no insight in literature

• No difference between new and
returning peers — buffers
probably outdated

28 / 35

Effects of churn

• Chunks transferred to leaving peer are lost
• New peer has empty buffer
◦ Nothing to push
◦ Can’t do tit-for-tat
◦ May attract duplicate transfers
◦ First chunk we get will be the most popular one

• Interrupts both incoming and outgoing transfers
• Problems with interpreting the performance
◦ Allowing buffering time we allow a peer with unobserved performance
◦ Without buffering time statistics biased by initially empty buffer
◦ If peer with bad buffer leaves, the overlay performance goes up
◦ My solution: observer peer – a peer that does not experience churn

29 / 35

Effects of churn

• Chunks transferred to leaving peer are lost
• New peer has empty buffer
◦ Nothing to push
◦ Can’t do tit-for-tat
◦ May attract duplicate transfers
◦ First chunk we get will be the most popular one

• Interrupts both incoming and outgoing transfers
• Problems with interpreting the performance
◦ Allowing buffering time we allow a peer with unobserved performance
◦ Without buffering time statistics biased by initially empty buffer
◦ If peer with bad buffer leaves, the overlay performance goes up
◦ My solution: observer peer – a peer that does not experience churn

29 / 35

Effects of churn

• Chunks transferred to leaving peer are lost
• New peer has empty buffer
◦ Nothing to push
◦ Can’t do tit-for-tat
◦ May attract duplicate transfers
◦ First chunk we get will be the most popular one

• Interrupts both incoming and outgoing transfers
• Problems with interpreting the performance
◦ Allowing buffering time we allow a peer with unobserved performance
◦ Without buffering time statistics biased by initially empty buffer
◦ If peer with bad buffer leaves, the overlay performance goes up
◦ My solution: observer peer – a peer that does not experience churn

29 / 35

Effects of churn

• Chunks transferred to leaving peer are lost
• New peer has empty buffer
◦ Nothing to push
◦ Can’t do tit-for-tat
◦ May attract duplicate transfers
◦ First chunk we get will be the most popular one

• Interrupts both incoming and outgoing transfers
• Problems with interpreting the performance
◦ Allowing buffering time we allow a peer with unobserved performance
◦ Without buffering time statistics biased by initially empty buffer
◦ If peer with bad buffer leaves, the overlay performance goes up
◦ My solution: observer peer – a peer that does not experience churn

29 / 35

Effects of churn

• Chunks transferred to leaving peer are lost
• New peer has empty buffer
◦ Nothing to push
◦ Can’t do tit-for-tat
◦ May attract duplicate transfers
◦ First chunk we get will be the most popular one

• Interrupts both incoming and outgoing transfers
• Problems with interpreting the performance
◦ Allowing buffering time we allow a peer with unobserved performance
◦ Without buffering time statistics biased by initially empty buffer
◦ If peer with bad buffer leaves, the overlay performance goes up
◦ My solution: observer peer – a peer that does not experience churn

29 / 35

Effects of churn

• Chunks transferred to leaving peer are lost
• New peer has empty buffer
◦ Nothing to push
◦ Can’t do tit-for-tat
◦ May attract duplicate transfers
◦ First chunk we get will be the most popular one

• Interrupts both incoming and outgoing transfers
• Problems with interpreting the performance
◦ Allowing buffering time we allow a peer with unobserved performance
◦ Without buffering time statistics biased by initially empty buffer
◦ If peer with bad buffer leaves, the overlay performance goes up
◦ My solution: observer peer – a peer that does not experience churn

29 / 35

Effects of churn

• Chunks transferred to leaving peer are lost
• New peer has empty buffer
◦ Nothing to push
◦ Can’t do tit-for-tat
◦ May attract duplicate transfers
◦ First chunk we get will be the most popular one

• Interrupts both incoming and outgoing transfers
• Problems with interpreting the performance
◦ Allowing buffering time we allow a peer with unobserved performance
◦ Without buffering time statistics biased by initially empty buffer
◦ If peer with bad buffer leaves, the overlay performance goes up
◦ My solution: observer peer – a peer that does not experience churn

29 / 35

Effects of churn

• Chunks transferred to leaving peer are lost
• New peer has empty buffer
◦ Nothing to push
◦ Can’t do tit-for-tat
◦ May attract duplicate transfers
◦ First chunk we get will be the most popular one

• Interrupts both incoming and outgoing transfers
• Problems with interpreting the performance
◦ Allowing buffering time we allow a peer with unobserved performance
◦ Without buffering time statistics biased by initially empty buffer
◦ If peer with bad buffer leaves, the overlay performance goes up
◦ My solution: observer peer – a peer that does not experience churn

29 / 35

Effects of churn

• Chunks transferred to leaving peer are lost
• New peer has empty buffer
◦ Nothing to push
◦ Can’t do tit-for-tat
◦ May attract duplicate transfers
◦ First chunk we get will be the most popular one

• Interrupts both incoming and outgoing transfers
• Problems with interpreting the performance
◦ Allowing buffering time we allow a peer with unobserved performance
◦ Without buffering time statistics biased by initially empty buffer
◦ If peer with bad buffer leaves, the overlay performance goes up
◦ My solution: observer peer – a peer that does not experience churn

29 / 35

Effects of churn

• Chunks transferred to leaving peer are lost
• New peer has empty buffer
◦ Nothing to push
◦ Can’t do tit-for-tat
◦ May attract duplicate transfers
◦ First chunk we get will be the most popular one

• Interrupts both incoming and outgoing transfers
• Problems with interpreting the performance
◦ Allowing buffering time we allow a peer with unobserved performance
◦ Without buffering time statistics biased by initially empty buffer
◦ If peer with bad buffer leaves, the overlay performance goes up
◦ My solution: observer peer – a peer that does not experience churn

29 / 35

Effects of churn

• Chunks transferred to leaving peer are lost
• New peer has empty buffer
◦ Nothing to push
◦ Can’t do tit-for-tat
◦ May attract duplicate transfers
◦ First chunk we get will be the most popular one

• Interrupts both incoming and outgoing transfers
• Problems with interpreting the performance
◦ Allowing buffering time we allow a peer with unobserved performance
◦ Without buffering time statistics biased by initially empty buffer
◦ If peer with bad buffer leaves, the overlay performance goes up
◦ My solution: observer peer – a peer that does not experience churn

29 / 35

Effects of churn

• Chunks transferred to leaving peer are lost
• New peer has empty buffer
◦ Nothing to push
◦ Can’t do tit-for-tat
◦ May attract duplicate transfers
◦ First chunk we get will be the most popular one

• Interrupts both incoming and outgoing transfers
• Problems with interpreting the performance
◦ Allowing buffering time we allow a peer with unobserved performance
◦ Without buffering time statistics biased by initially empty buffer
◦ If peer with bad buffer leaves, the overlay performance goes up
◦ My solution: observer peer – a peer that does not experience churn

29 / 35

Simulator

• Core: 2550 lines of Python
• Can do about 70000 individual transfers/second
• 50000 peers requires only 300MB of RAM
• Well tested
• Easily extensible
• Scripts for preparing simulation series, distributed running, results
analysis; mostly Perl and shell

30 / 35

Simulator

• Core: 2550 lines of Python
• Can do about 70000 individual transfers/second
• 50000 peers requires only 300MB of RAM
• Well tested
• Easily extensible
• Scripts for preparing simulation series, distributed running, results
analysis; mostly Perl and shell

30 / 35

Simulator

• Core: 2550 lines of Python
• Can do about 70000 individual transfers/second
• 50000 peers requires only 300MB of RAM
• Well tested
• Easily extensible
• Scripts for preparing simulation series, distributed running, results
analysis; mostly Perl and shell

30 / 35

Simulation results

• Expected number of peers is 500
• Lasts 10000 fragments
• Multiple runs per data point in plots
• Data from over 5000 simulations
• Peers join according to a Poisson process
• Peers have an exponentially distributed life time

31 / 35

Simulation results

• Expected number of peers is 500
• Lasts 10000 fragments
• Multiple runs per data point in plots
• Data from over 5000 simulations
• Peers join according to a Poisson process
• Peers have an exponentially distributed life time

31 / 35

Simulation results

• Expected number of peers is 500
• Lasts 10000 fragments
• Multiple runs per data point in plots
• Data from over 5000 simulations
• Peers join according to a Poisson process
• Peers have an exponentially distributed life time

31 / 35

Algorithms comparison — observer

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000

de
liv

er
y

ra
tio

expected peer life time

Random blind
Latest blind

Random useful
Latest useful

32 / 35

Algorithms comparison — global

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000

de
liv

er
y

ra
tio

expected peer life time

Random blind
Latest blind

Random useful
Latest useful

32 / 35

Transfer outcomes — random blind

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 10 100 1000 10000 100000

nu
m

be
r

of
 o

cc
ur

en
ce

s

expected peer life time

OK
Late

Duplicate
Useless

33 / 35

Transfer outcomes — latest useful

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 10 100 1000 10000 100000

nu
m

be
r

of
 o

cc
ur

en
ce

s

expected peer life time

OK
Late

Duplicate
Useless

33 / 35

Latest useful churn toleration

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 1.5 2 2.5 3 3.5 4 4.5 5

m
in

 e
xp

ec
te

d
pe

er
 li

fe
tim

e
w

ith
 g

iv
en

 c
hu

rn
 to

le
ra

tio
n

peer bandwidth divided by stream bandwidth

95%
90%
80%
50%

34 / 35

Latest useful bandwidth/deadline performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000

de
liv

er
y

ra
tio

expected peer life time

50, 2.00x
50, 1.42x
50 1.00x
20, 2.00x
20, 1.42x
20 1.00x
15, 2.00x
15, 1.42x
15 1.00x
10, 2.00x
10, 1.42x
10 1.00x
9, 2.00x
9, 1.42x
9 1.00x

35 / 35

	Field
	Introduction
	Solution

	Survey
	Types of overlays
	AQCS
	Algorithms

	Wake up, go home
	Algorithm
	Churn

