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Introduction: P2P

Peer to peer networks — end systems creating a virtual overlay
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Introduction: Video distribution

File sharing Live streaming
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Problem definition

e Disseminate a stream of data

Single source

Multiple recipients

Recipients contribute to further disseminate
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Bandwidth efficient

o Lower bound for feasibility

o In real world clients have just
enough bandwidth

Simple construction algorithm
Easy to build reliability

o Without it single failure kills
half of overlay

o Still recovery very simple

Linear delay




Problem definition 2

e Disseminate a stream of data

Single source

Multiple recipients

Recipients contribute to further disseminate

Finite dissemination deadline
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Overlay with 2x bandwidth

Logarithmic delay

Still simple to construct
o O(1) time and O(n) memory
o O(logn) time and O(1)

memory in each node

Hard to ensure reliability

. . |
o Failure brings down only <&2"
peers on average

o Costly rebalance

Loses half of bandwidth
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Problem definition 3

e Disseminate a stream of data

Single source

Multiple recipients

¢ Recipients contribute to further disseminate

Finite dissemination deadline
High bandwidth utilization
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Video bit rates

Format name  Resolution  Approximate bit rate target

360p 480 x 360 768kbit/sec
480p 640 x 480 768kbit/sec
480p 854 x 480 1.25mbit/sec
720p 1280 x 720 2.25mbit/sec
1080p 1920 x 1080 3.75mbit/sec

Approximate bit rates in various resolutions, served by the most popular online
provider — YouTube
Source: Approximate youtube bitrates, McFarland, 2010
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Available bandwidth
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Average client bandwidth in February 2011 broken down by continent,
measured using Speedtest.net, with marked bit rates required for 480p and

720p video
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Overlay with 1x bandwidth

Both bandwidth efficient and O(log n) delay



Overlay with 1x bandwidth

Step by step:
node |1 2 3 4 5

o O |
Indicates chunk currently
@ ° replicated by each peer
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Overlay with 1x bandwidth
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Overlay with 1x bandwidth

Step by step:
° node |1 2 3 4 5
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Optimal algorithm feasibility

* Sustainable, 5 peers forwarding oldest piece, 7 next one, g next

oneandsoon; Y., 8 =n
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Optimal algorithm feasibility

Sustainable, g peers forwarding oldest piece, 7 hext one, ’g’ next

oneandsoon; Y., 8 =n

After modification sustainable also for n # 2% (in [log, n] + 1 time)
(e.g. for n =9 we need 1, 2, 3, 3 peers for each chunk, for n =11
— 1, 2,4, 4etc)

Centralized algorithm will not scale

Distributed implementation impossible?

o Needs knowledge of whole O in every peer
o Needs up to date knowledge of H[i] (buffer states) and F (free peers)
o Needs knowledge of other peers decisions
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Problem definition 4

e Disseminate a stream of data

e Single source

e Multiple recipients

¢ Recipients contribute to further disseminate
e Finite dissemination deadline

e High bandwidth utilization

e Participants are autonomous

e Local, delayed view
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Why harder than BT?

Similar to BitTorrent, but also very different:
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Why harder than BT?

Similar to BitTorrent, but also very different:
e Always in flash crowd state

e Each piece has a deadline

e Limited number of pieces alive

e “Computer working, but unattended” improbable
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Types of overlays
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Unstructured overlays

e Many names, similar idea:
o Gossiping
o Flood routing

o BitTorrent-like

17 /35



Unstructured overlays

e Many names, similar idea:
o Gossiping
o Flood routing

o BitTorrent-like

e Peers arrange a random graph

Simple algorithms

Robust

e Most popular
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Structured overlays

e Define explicit structure,
usually forest

e Much easier to understand
e Much harder to construct
e Employs DHT

e Prone to disruptions
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Structured vs. Unstructured

Comprehensive comparison: Mesh or Multiple-Tree: A Comparative
Study of Live P2P Streaming Approaches by Magharei et al.

100 yo—r" -
e State of the art overlays of o0 P Y
both types 80 L
e Comparison over a broad range g 7 3
of scenarios 5w
* Many observed characteristics 3,
. . 51}
e Packet-level simulations 30 ! Modianirree
edian-Tree —+—
e Explanations for observed 2 5th&ssth percentile Troe
h 10 5th&95th percentile-Mesh & )
p enomena 0 10 20 30 40 50 60
Percentage of departed peers
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Comprehensive comparison: Mesh or Multiple-Tree: A Comparative
Study of Live P2P Streaming Approaches by Magharei et al.

100 y—T— -
e State of the art overlays of o0 P Y
both types 80 L e
e Comparison over a broad range g 7 *
of scenarios £ :z
* Many observed characteristics 3 ,,
. . o
* Packet-level simulations % I 1
B 20 Median-Tree —+—
* Explanations for observed 5thgssth percentie Troe ~—-
h 10 5th&95th percentile-Mesh & .
p enomena 0 10 20 30 40 50 60
e Pretty conclusive: unstructured Percentage of departed peers

overlays are better
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Adaptive Queue-based Chunk Scheduling

@

Source pushes a single copy of each fragment to a single replicator.

That replicator pushes it to everyone else.
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Adaptive Queue-based Chunk Scheduling

Source pushes a single copy of each fragment to a single replicator.

That replicator pushes it to everyone else.
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AQCS Properties

* Very simple

e Very robust

For more details read Aqcs: Adaptive queue-based chunk scheduling for P2P
live streaming by Guo, Liang and Liu
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AQCS Properties

Very simple

Very robust
Achieves optimal performance — providing that:

o Chunk size is an common divisor of all bandwidths

. . bandwidth-dela
o Chunk size is smaller thén —Zpeers#
o Theoretical proof for infinitesimal chunk size and zero propagation

delay
e Practical limit, as found by authors, is about 40 peers

For more details read Aqcs: Adaptive queue-based chunk scheduling for P2P
live streaming by Guo, Liang and Liu
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Local view randomness

We can assume a few things about the local view of a node:

Approximates a random sample of overlay
Constantly changing
Resilient

CYCLON: Inexpensive Membership Management for Unstructured
P2P Overlays by Voulgaris et al. proposes a simple algorithm that's
good against massive failures, by neighbour exchange

Random walk algorithms may help against Byzantine adversaries, as
shown in Uniform and Ergodic Sampling in Unstructured
Peer-to-Peer Systems with Malicious Nodes by Anceaume et al.
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Unstructured overlay basic algorithms

* Random push (or random pull) based
o Each peer chooses each turn a peer to send to at random
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Unstructured overlay basic algorithms

* Random push (or random pull) based

o Each peer chooses each turn a peer to send to at random

o Proved to propagate information in ©(log n) steps
o Other simple peer selection schemes: tit-for-tat, deprived peer
Also possible to first select chunk and then peer for that
e Chunk selection algorithms can be divided into main groups:
o By order:
e Random
o Latest
o By awareness:
o Useful
e Blind

o
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Why simple push/pull schemes insufficient?
1.0 T ; : T T

— 2min churn
— no churn

0.9

0.8

0.7

Delivery ratio

0.6

0.5

0.4 ! ! ! ! ! ! !
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Bandwidth

Random push loses bandwidth on duplicate transfers
Random pull has higher chance of content bottleneck

e Both ways simple schemes utilize a fraction of bandwidth
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|ldea — push-pull scheme

Very simple basic idea:

e When a chunk is new, most peers don't have it — push it without
asking

e |f have only chunks with high expected popularity — respond to
pull requests

Connecting best of both approaches:
e Initial exponential growth of chunk owners
e Almost no duplicate transfers

Funny problem: many different approaches under this name
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Thank you for your attention

LLLLLJ_LLLL? ????????7
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Centralized optimal algorithm

e n — number of peers in overlay

e O - overlay

e F — free peers, initially equal to O \ source
e 0 — oldest chunk in transfer

e HJi] — set of peers who have chunk i

1. If [H[o]| = 5, then push from each peer p in H[o] chunk o to some
peer in O\ H[o], add pto F,leto=0+1

2. For i =o,..., for each peer p in H[i] push chunk i to some peer
g in F, remove g from F

3. Push newest chunk from source to some p in F, remove p from F
4. Return to step 1

27 /35
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Centralized optimal algorithm

e n — number of peers in overlay, n = 2¥ + 1 including source
e O - overlay

e F — free peers, initially equal to O \ source

e 0 — oldest chunk in transfer

e HJi] — set of peers who have chunk i

1. If [H[o]| = 5, then push from each peer p in H[o] chunk o to some
peer in O\ H[o], add pto F,leto=0+1

2. For i =o,..., for each peer p in H[i] push chunk i to some peer
g in F, remove g from F

3. Push newest chunk from source to some p in F, remove p from F
4. Return to step 1

27 /35
EEEEE————————————————————————



Churn

e Node dynamics shown to be
biggest problem of live systems
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-
Churn

e Node dynamics shown to be
biggest problem of live systems

e When n =~ 20000, almost 1000
peers join and leave per minute

* Biggest reason for unstructured
overlay popularity

e Almost no insight in literature

¢ No difference between new and
returning peers — buffers
probably outdated
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Effects of churn

e Chunks transferred to leaving peer are lost
e New peer has empty buffer
o Nothing to push
Can't do tit-for-tat
May attract duplicate transfers
First chunk we get will be the most popular one

o O O

e Interrupts both incoming and outgoing transfers
e Problems with interpreting the performance

o Allowing buffering time we allow a peer with unobserved performance
o Without buffering time statistics biased by initially empty buffer

o If peer with bad buffer leaves, the overlay performance goes up

o My solution: observer peer — a peer that does not experience churn
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Simulator

e Core: 2550 lines of Python
e Can do about 70000 individual transfers/second
e 50000 peers requires only 300MB of RAM
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Simulator

Core: 2550 lines of Python

Can do about 70000 individual transfers/second
50000 peers requires only 300MB of RAM

Well tested

Easily extensible

Scripts for preparing simulation series, distributed running, results
analysis; mostly Perl and shell
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Simulation results

e Expected number of peers is 500
e Lasts 10000 fragments
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Simulation results

e Expected number of peers is 500

e Lasts 10000 fragments

e Multiple runs per data point in plots

e Data from over 5000 simulations

e Peers join according to a Poisson process

e Peers have an exponentially distributed life time
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Algorithms comparison — observer

2
g
>
1]
2
©
© |
Random blind
Latest blind -
Random useful -
Latest useful -
0 | | |
100 1000 10000 100000
expected peer life time
32 /35



Algorithms comparison — global
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Transfer outcomes — random blind
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Transfer outcomes — latest useful

10000

\/*»4_04— FFF O e

9000 |

8000 -

7000

6000 - 1

5000 - 1

4000 - 1

number of occurences

3000 [ ‘.“llh‘ l.l.uu“m - l e
K

2000 - x g

1000 |- L 4

10 100 1000 10000 100000
expected peer life time

33 /35
L



Latest useful churn toleration
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Latest useful bandwidth/deadline performance
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