Peer-to-peer live streaming

Remigiusz Jan Andrzej Modrzejewski

MASCOTTE Project
I13S(CNRS/UNS)-INRIA

April 12, 2011

1/35

QOutline

Field
Introduction
Solution

1/35

Introduction: P2P

Peer to peer networks — end systems creating a virtual overlay

2/35

Introduction: Video distribution

File sharing Live streaming

3/35

Introduction: Video distribution

File sharing Live streaming

3/35

Introduction: Video distribution

File sharing Live streaming

3/35

Problem definition

e Disseminate a stream of data

Single source

Multiple recipients

Recipients contribute to further disseminate

4/35

Overlay with 1x bandwidth

e Bandwidth efficient

5/35

Overlay with 1x bandwidth

e Bandwidth efficient

o Lower bound for feasibility

5/35

Overlay with 1x bandwidth

e Bandwidth efficient

o Lower bound for feasibility

o In real world clients have just
enough bandwidth

5/35

Overlay with 1x bandwidth

e Bandwidth efficient

o Lower bound for feasibility

o In real world clients have just
enough bandwidth

e Simple construction algorithm

5/35

Overlay with 1x bandwidth

e Bandwidth efficient

o Lower bound for feasibility

o In real world clients have just
enough bandwidth

e Simple construction algorithm

e Easy to build reliability

5/35

Overlay with 1x bandwidth

e Bandwidth efficient

o Lower bound for feasibility

o In real world clients have just
enough bandwidth

e Simple construction algorithm
e Easy to build reliability

o Without it single failure kills
half of overlay

5/35

Overlay with 1x bandwidth

5/35

e Bandwidth efficient

o Lower bound for feasibility

o In real world clients have just
enough bandwidth

e Simple construction algorithm
e Easy to build reliability

o Without it single failure kills
half of overlay

o Still recovery very simple

Overlay with 1x bandwidth

5/35

Bandwidth efficient

o Lower bound for feasibility

o In real world clients have just
enough bandwidth

Simple construction algorithm
Easy to build reliability

o Without it single failure kills
half of overlay

o Still recovery very simple

Linear delay

Problem definition 2

e Disseminate a stream of data

Single source

Multiple recipients

Recipients contribute to further disseminate

Finite dissemination deadline

6/ 35

Overlay with 2x bandwidth

e Logarithmic delay

7/35

Overlay with 2x bandwidth

e Logarithmic delay

e Still simple to construct

7/35

Overlay with 2x bandwidth

e Logarithmic delay
e Still simple to construct

o O(1) time and O(n) memory

7/35

Overlay with 2x bandwidth

e Logarithmic delay

e Still simple to construct
o O(1) time and O(n) memory
o O(log n) time and O(1)

memory in each node

7/35

Overlay with 2x bandwidth

e Logarithmic delay

e Still simple to construct
o O(1) time and O(n) memory
o O(log n) time and O(1)

memory in each node

e Hard to ensure reliability

7/35

Overlay with 2x bandwidth

e Logarithmic delay
e Still simple to construct
o O(1) time and O(n) memory
o O(logn) time and O(1)
memory in each node

e Hard to ensure reliability

. . |
o Failure brings down only <&2"

peers on average

7/35

Overlay with 2x bandwidth

e Logarithmic delay
e Still simple to construct
o O(1) time and O(n) memory
o O(logn) time and O(1)
memory in each node

e Hard to ensure reliability

. . |
o Failure brings down only <&2"
peers on average

o Costly rebalance

7/35

Overlay with 2x bandwidth

Logarithmic delay

Still simple to construct
o O(1) time and O(n) memory
o O(logn) time and O(1)

memory in each node

Hard to ensure reliability

. . |
o Failure brings down only <&2"
peers on average

o Costly rebalance

Loses half of bandwidth

7/35

Problem definition 3

e Disseminate a stream of data

Single source

Multiple recipients

¢ Recipients contribute to further disseminate

Finite dissemination deadline
High bandwidth utilization

8/ 35

Video bit rates

Format name Resolution Approximate bit rate target

360p 480 x 360 768kbit/sec
480p 640 x 480 768kbit/sec
480p 854 x 480 1.25mbit/sec
720p 1280 x 720 2.25mbit/sec
1080p 1920 x 1080 3.75mbit/sec

Approximate bit rates in various resolutions, served by the most popular online
provider — YouTube
Source: Approximate youtube bitrates, McFarland, 2010

9/35

Available bandwidth

12 -

[Download
10 [Upload

— 480p
sk 720p

Bandwidth [mbit/s]
N o
I I

TL_

Europe N. America Asia

Australasia S. America

Africa

Global

Average client bandwidth in February 2011 broken down by continent,
measured using Speedtest.net, with marked bit rates required for 480p and

720p video

10 / 35

Overlay with 1x bandwidth

Both bandwidth efficient and O(log n) delay

Overlay with 1x bandwidth

Step by step:
node |1 2 3 4 5

o O |
Indicates chunk currently
@ ° replicated by each peer

oM «~® 0 T W

11 /35

Overlay with 1x bandwidth

Step by step:
node |1 2 3 4 5

('I’ all 1
O |
c
d
() e
© ;
g
h 2
Indicates chunk currently
(:::) replicated by each peer

11 /35

Overlay with 1x bandwidth
Step by step:
° node |1 2 3 4 5
° a|l 1 1
0 e b 11
c 1
d 1
e e
ol e
g 2
h 2 2
Indicates chunk currently
@ replicated by each peer

11 /35

Overlay with 1x bandwidth

0 Step by step:
node |1 2 3 4 5

° ‘ all 1 1 4
0 e b 11
o 1 2
d 1 2
Q |
oo R
g 2 2
h 2 2 2
Indicates chunk currently
e ° replicated by each peer

11 /35

Overlay with 1x bandwidth

e Step by step:
node |1 2 3 4

5
° al|l 1 1 4 4
0 e b 11 4
C 1 2 5

d 1 2
e _ e 3 3
owo IR
g 2 23
h 2 2 2 3

Indicates chunk currently
e ° replicated by each peer

11 /35

Overlay with 1x bandwidth

Step by step:
° node |1 2 3 4 5
A a1 1 1 4 4
VQ e b 11 4
‘ o 1 2 5
d 1 2
e e 3 3
O O IEEE
g 2 23
h 2 2 2 3

12/35

Indicates chunk currently
replicated by each peer

Optimal algorithm feasibility

* Sustainable, 5 peers forwarding oldest piece, 7 next one, g next

oneandsoon; Y., 8 =n

13/ 35

Optimal algorithm feasibility

* Sustainable, 5 peers forwarding oldest piece, 7 next one, g next

oneandsoon; Y., 8 =n

o After modification sustainable also for n # 2 (in [log, n] + 1 time)
(e.g. for n =9 we need 1, 2, 3, 3 peers for each chunk, for n =11
— 1, 2,4, 4etc)

13/ 35

Optimal algorithm feasibility

* Sustainable, 5 peers forwarding oldest piece, 7 next one, g next

oneandsoon; Y., 8 =n

o After modification sustainable also for n # 2 (in [log, n] + 1 time)
(e.g. for n =9 we need 1, 2, 3, 3 peers for each chunk, for n =11
— 1, 2,4, 4etc)

e Centralized algorithm will not scale

13/ 35

Optimal algorithm feasibility

Sustainable, 5 peers forwarding oldest piece, 7 next one, g next

4 8
oneandsoon; Y., 8 =n

After modification sustainable also for n # 2% (in [log, n] + 1 time)
(e.g. for n =9 we need 1, 2, 3, 3 peers for each chunk, for n =11
— 1, 2,4, 4etc)

Centralized algorithm will not scale

Distributed implementation impossible?

13/ 35

Optimal algorithm feasibility

Sustainable, 5 peers forwarding oldest piece, 7 next one, g next

oneandsoon; Y., 8 =n

After modification sustainable also for n # 2% (in [log, n] + 1 time)
(e.g. for n =9 we need 1, 2, 3, 3 peers for each chunk, for n =11
— 1, 2,4, 4etc)

Centralized algorithm will not scale

Distributed implementation impossible?
o Needs knowledge of whole O in every peer

13/ 35

Optimal algorithm feasibility

Sustainable, g peers forwarding oldest piece, 7 next one, & next

4 8
oneandsoon; Y., 8 =n

After modification sustainable also for n # 2% (in [log, n] + 1 time)
(e.g. for n =9 we need 1, 2, 3, 3 peers for each chunk, for n =11
— 1, 2,4, 4etc)

Centralized algorithm will not scale

Distributed implementation impossible?

o Needs knowledge of whole O in every peer
o Needs up to date knowledge of H[i] (buffer states) and F (free peers)

13/ 35

Optimal algorithm feasibility

Sustainable, g peers forwarding oldest piece, 7 hext one, ’g’ next

oneandsoon; Y., 8 =n

After modification sustainable also for n # 2% (in [log, n] + 1 time)
(e.g. for n =9 we need 1, 2, 3, 3 peers for each chunk, for n =11
— 1, 2,4, 4etc)

Centralized algorithm will not scale

Distributed implementation impossible?

o Needs knowledge of whole O in every peer
o Needs up to date knowledge of H[i] (buffer states) and F (free peers)
o Needs knowledge of other peers decisions

13/ 35

Problem definition 4

e Disseminate a stream of data

e Single source

e Multiple recipients

¢ Recipients contribute to further disseminate
e Finite dissemination deadline

e High bandwidth utilization

e Participants are autonomous

e Local, delayed view

14 / 35

Why harder than BT?

Similar to BitTorrent, but also very different:

15/ 35

Why harder than BT?

Similar to BitTorrent, but also very different:
e Always in flash crowd state

e Each piece has a deadline

15/ 35

Why harder than BT?

Similar to BitTorrent, but also very different:
e Always in flash crowd state
e Each piece has a deadline

e Limited number of pieces alive

15/ 35

Why harder than BT?

Similar to BitTorrent, but also very different:
e Always in flash crowd state

e Each piece has a deadline

e Limited number of pieces alive

e “Computer working, but unattended” improbable

15/ 35

QOutline

AQCS
Algorithms

Survey
Types of overlays

15/ 35

Types of overlays

16 / 35

Unstructured overlays

e Many names, similar idea:
o Gossiping
o Flood routing

o BitTorrent-like

17 /35

Unstructured overlays

e Many names, similar idea:
o Gossiping
o Flood routing

o BitTorrent-like

e Peers arrange a random graph

Simple algorithms

Robust

e Most popular

17 /35
EEEEE————————————————————————

Structured overlays

e Define explicit structure,
usually forest

e Much easier to understand
e Much harder to construct
e Employs DHT

e Prone to disruptions

18 / 35

Structured vs. Unstructured

Comprehensive comparison: Mesh or Multiple-Tree: A Comparative
Study of Live P2P Streaming Approaches by Magharei et al.

100 yo—r" -
e State of the art overlays of o0 P Y
both types 80 L
e Comparison over a broad range g 7 3
of scenarios 5w
* Many observed characteristics 3,
. . 51}
e Packet-level simulations 30 ! Modianirree
edian-Tree —+—
e Explanations for observed 2 5th&ssth percentile Troe
h 10 5th&95th percentile-Mesh &)
p enomena 0 10 20 30 40 50 60
Percentage of departed peers
19 / 35

Structured vs. Unstructured

Comprehensive comparison: Mesh or Multiple-Tree: A Comparative
Study of Live P2P Streaming Approaches by Magharei et al.

100 y—T— -
e State of the art overlays of o0 P Y
both types 80 L e
e Comparison over a broad range g 7 *
of scenarios £ :z
* Many observed characteristics 3 ,,
. . o
* Packet-level simulations % I 1
B 20 Median-Tree —+—
* Explanations for observed 5thgssth percentie Troe ~—-
h 10 5th&95th percentile-Mesh & .
p enomena 0 10 20 30 40 50 60
e Pretty conclusive: unstructured Percentage of departed peers

overlays are better

19 / 35

Adaptive Queue-based Chunk Scheduling

@

Source pushes a single copy of each fragment to a single replicator.

That replicator pushes it to everyone else.

20 / 35
EEEEE————————————————————————

Adaptive Queue-based Chunk Scheduling

Source pushes a single copy of each fragment to a single replicator.

That replicator pushes it to everyone else.

20 / 35
EEEEE————————————————————————

AQCS Properties

* Very simple

e Very robust

For more details read Aqcs: Adaptive queue-based chunk scheduling for P2P
live streaming by Guo, Liang and Liu

21/ 35

AQCS Properties

* Very simple
e Very robust
¢ Achieves optimal performance

For more details read Aqcs: Adaptive queue-based chunk scheduling for P2P
live streaming by Guo, Liang and Liu

21/ 35

AQCS Properties

* Very simple
e Very robust
e Achieves optimal performance — providing that:
o Chunk size is an common divisor of all bandwidths
o Chunk size is smaller than %
o Theoretical proof for infinitesimal chunk size and zero propagation

delay

For more details read Aqcs: Adaptive queue-based chunk scheduling for P2P
live streaming by Guo, Liang and Liu

21/ 35

AQCS Properties

Very simple

Very robust
Achieves optimal performance — providing that:

o Chunk size is an common divisor of all bandwidths

. . bandwidth-dela
o Chunk size is smaller thén —Zpeers#
o Theoretical proof for infinitesimal chunk size and zero propagation

delay
e Practical limit, as found by authors, is about 40 peers

For more details read Aqcs: Adaptive queue-based chunk scheduling for P2P
live streaming by Guo, Liang and Liu

21/ 35

Local view randomness

We can assume a few things about the local view of a node:

Approximates a random sample of overlay
Constantly changing
Resilient

CYCLON: Inexpensive Membership Management for Unstructured
P2P Overlays by Voulgaris et al. proposes a simple algorithm that's
good against massive failures, by neighbour exchange

Random walk algorithms may help against Byzantine adversaries, as
shown in Uniform and Ergodic Sampling in Unstructured
Peer-to-Peer Systems with Malicious Nodes by Anceaume et al.

22 /35

Unstructured overlay basic algorithms

* Random push (or random pull) based
o Each peer chooses each turn a peer to send to at random

23 /35

Unstructured overlay basic algorithms

* Random push (or random pull) based

o Each peer chooses each turn a peer to send to at random
o Proved to propagate information in ©(log n) steps

23 /35

Unstructured overlay basic algorithms

* Random push (or random pull) based

o Each peer chooses each turn a peer to send to at random
o Proved to propagate information in ©(log n) steps
o Other simple peer selection schemes: tit-for-tat, deprived peer

23 /35

Unstructured overlay basic algorithms

* Random push (or random pull) based

o Each peer chooses each turn a peer to send to at random
Proved to propagate information in ©(log n) steps

Other simple peer selection schemes: tit-for-tat, deprived peer
Also possible to first select chunk and then peer for that

o O O

23 /35

Unstructured overlay basic algorithms

* Random push (or random pull) based

o Each peer chooses each turn a peer to send to at random

Proved to propagate information in ©(log n) steps
Other simple peer selection schemes: tit-for-tat, deprived peer
Also possible to first select chunk and then peer for that

e Chunk selection algorithms can be divided into main groups:

O

(0]

o

23 /35

Unstructured overlay basic algorithms

* Random push (or random pull) based

o Each peer chooses each turn a peer to send to at random

Proved to propagate information in ©(log n) steps

Other simple peer selection schemes: tit-for-tat, deprived peer

Also possible to first select chunk and then peer for that

e Chunk selection algorithms can be divided into main groups:
o By order:

e Random

o Latest

O

(0]

o

23 /35

Unstructured overlay basic algorithms

* Random push (or random pull) based

o Each peer chooses each turn a peer to send to at random

o Proved to propagate information in ©(log n) steps
o Other simple peer selection schemes: tit-for-tat, deprived peer
Also possible to first select chunk and then peer for that
e Chunk selection algorithms can be divided into main groups:
o By order:
e Random
o Latest
o By awareness:
o Useful
e Blind

o

23 /35

Why simple push/pull schemes insufficient?
1.0 T ; : T T

— 2min churn
— no churn

0.9

0.8

0.7

Delivery ratio

0.6

0.5

0.4 ! ! ! ! ! ! !
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Bandwidth

Random push loses bandwidth on duplicate transfers
Random pull has higher chance of content bottleneck

e Both ways simple schemes utilize a fraction of bandwidth
24 /35

|ldea — push-pull scheme

Very simple basic idea:

e When a chunk is new, most peers don't have it — push it without
asking

e |f have only chunks with high expected popularity — respond to
pull requests

Connecting best of both approaches:
e Initial exponential growth of chunk owners
e Almost no duplicate transfers

Funny problem: many different approaches under this name

25 /35

Thank you for your attention

LLLLLJ_LLLL? ????????7

26 / 35

Centralized optimal algorithm

e n — number of peers in overlay

e O - overlay

e F — free peers, initially equal to O \ source
e 0 — oldest chunk in transfer

e HJi] — set of peers who have chunk i

1. If [H[o]| = 5, then push from each peer p in H[o] chunk o to some
peer in O\ H[o], add pto F,leto=0+1

2. For i =o,..., for each peer p in H[i] push chunk i to some peer
g in F, remove g from F

3. Push newest chunk from source to some p in F, remove p from F
4. Return to step 1

27 /35
EEEEE————————————————————————

Centralized optimal algorithm

e n — number of peers in overlay, n = 2¥ + 1 including source
e O - overlay

e F — free peers, initially equal to O \ source

e 0 — oldest chunk in transfer

e HJi] — set of peers who have chunk i

1. If [H[o]| = 5, then push from each peer p in H[o] chunk o to some
peer in O\ H[o], add pto F,leto=0+1

2. For i =o,..., for each peer p in H[i] push chunk i to some peer
g in F, remove g from F

3. Push newest chunk from source to some p in F, remove p from F
4. Return to step 1

27 /35
EEEEE————————————————————————

Churn

e Node dynamics shown to be
biggest problem of live systems

28 /35

-
Churn

e Node dynamics shown to be
biggest problem of live systems

e When n =~ 20000, almost 1000
peers join and leave per minute

28 / 35

-
Churn

e Node dynamics shown to be
biggest problem of live systems

e When n =~ 20000, almost 1000
peers join and leave per minute

* Biggest reason for unstructured
overlay popularity

28 /35

-
Churn

e Node dynamics shown to be
biggest problem of live systems

e When n =~ 20000, almost 1000
peers join and leave per minute

* Biggest reason for unstructured
overlay popularity

e Almost no insight in literature

28 / 35

-
Churn

e Node dynamics shown to be
biggest problem of live systems

e When n =~ 20000, almost 1000
peers join and leave per minute

* Biggest reason for unstructured
overlay popularity

e Almost no insight in literature

¢ No difference between new and
returning peers — buffers
probably outdated

28 /35

Effects of churn

e Chunks transferred to leaving peer are lost

20 /35

Effects of churn

e Chunks transferred to leaving peer are lost
e New peer has empty buffer

20 /35

Effects of churn

e Chunks transferred to leaving peer are lost
e New peer has empty buffer
o Nothing to push

20 /35

Effects of churn

e Chunks transferred to leaving peer are lost
e New peer has empty buffer

o Nothing to push
o Can't do tit-for-tat

20 /35

Effects of churn

e Chunks transferred to leaving peer are lost
e New peer has empty buffer

o Nothing to push

o Can't do tit-for-tat

o May attract duplicate transfers

20 /35

Effects of churn

e Chunks transferred to leaving peer are lost
e New peer has empty buffer
o Nothing to push
Can't do tit-for-tat
May attract duplicate transfers
First chunk we get will be the most popular one

o O O

20 /35

Effects of churn

e Chunks transferred to leaving peer are lost

e New peer has empty buffer
o Nothing to push
o Can't do tit-for-tat
o May attract duplicate transfers
o First chunk we get will be the most popular one

e Interrupts both incoming and outgoing transfers

20 /35

Effects of churn

Chunks transferred to leaving peer are lost
New peer has empty buffer

o Nothing to push

Can't do tit-for-tat

May attract duplicate transfers

First chunk we get will be the most popular one

[]
o O O

Interrupts both incoming and outgoing transfers
Problems with interpreting the performance

20 /35

Effects of churn

Chunks transferred to leaving peer are lost
New peer has empty buffer

o Nothing to push

Can't do tit-for-tat

May attract duplicate transfers

First chunk we get will be the most popular one

[]
o O O

Interrupts both incoming and outgoing transfers

Problems with interpreting the performance
o Allowing buffering time we allow a peer with unobserved performance

20 /35

Effects of churn

Chunks transferred to leaving peer are lost
New peer has empty buffer

o Nothing to push

Can't do tit-for-tat

May attract duplicate transfers

First chunk we get will be the most popular one

[]
o O O

Interrupts both incoming and outgoing transfers

Problems with interpreting the performance

o Allowing buffering time we allow a peer with unobserved performance
o Without buffering time statistics biased by initially empty buffer

20 /35

Effects of churn

e Chunks transferred to leaving peer are lost
e New peer has empty buffer
o Nothing to push
Can't do tit-for-tat
May attract duplicate transfers
First chunk we get will be the most popular one

o O O

e Interrupts both incoming and outgoing transfers
e Problems with interpreting the performance

o Allowing buffering time we allow a peer with unobserved performance
o Without buffering time statistics biased by initially empty buffer
o If peer with bad buffer leaves, the overlay performance goes up

20 /35

Effects of churn

e Chunks transferred to leaving peer are lost
e New peer has empty buffer
o Nothing to push
Can't do tit-for-tat
May attract duplicate transfers
First chunk we get will be the most popular one

o O O

e Interrupts both incoming and outgoing transfers
e Problems with interpreting the performance

o Allowing buffering time we allow a peer with unobserved performance
o Without buffering time statistics biased by initially empty buffer

o If peer with bad buffer leaves, the overlay performance goes up

o My solution: observer peer — a peer that does not experience churn

20 /35

Simulator

e Core: 2550 lines of Python
e Can do about 70000 individual transfers/second
e 50000 peers requires only 300MB of RAM

30 / 35

Simulator

Core: 2550 lines of Python

Can do about 70000 individual transfers/second
50000 peers requires only 300MB of RAM

Well tested

Easily extensible

30 / 35

Simulator

Core: 2550 lines of Python

Can do about 70000 individual transfers/second
50000 peers requires only 300MB of RAM

Well tested

Easily extensible

Scripts for preparing simulation series, distributed running, results
analysis; mostly Perl and shell

30 / 35

Simulation results

e Expected number of peers is 500
e Lasts 10000 fragments

31/35

Simulation results

Expected number of peers is 500
Lasts 10000 fragments
Multiple runs per data point in plots

Data from over 5000 simulations

31/35

Simulation results

e Expected number of peers is 500

e Lasts 10000 fragments

e Multiple runs per data point in plots

e Data from over 5000 simulations

e Peers join according to a Poisson process

e Peers have an exponentially distributed life time

31/35

Algorithms comparison — observer

2
g
>
1]
2
©
© |
Random blind
Latest blind -
Random useful -
Latest useful -
0 | | |
100 1000 10000 100000
expected peer life time
32 /35

Algorithms comparison — global

2
g
>
1]
2
©
°
Random blind
Latest blind -
Random useful -
Latest useful -
0 | | |
100 1000 10000 100000
expected peer life time
32 /35

Transfer outcomes — random blind

14000
OK -
Late -
Duplicate -
Us
12000 iﬁ ‘ ll! li‘!m _______ ef ‘‘‘‘‘‘
10000 X E
. 1
8
S gooo | -
5 ix ‘J__t‘*“ﬁ»-»»é—ﬂ-?@wﬁ# ----------- oooee i
8 _,*"—
s re
& 6000 [e b
1
4000 | \, R
N
\,
2000 [
L .
B
o) BoBm-pp o
10 100 1000 10000 100000
expected peer life time
33 /35

Transfer outcomes — latest useful

10000

\/*»4_04— FFF O e

9000 |

8000 -

7000

6000 - 1

5000 - 1

4000 - 1

number of occurences

3000 [‘.“llh‘ l.l.uu“m - l e
K

2000 - x g

1000 |- L 4

10 100 1000 10000 100000
expected peer life time

33 /35
L

Latest useful churn toleration

2000 T
95% ——
90% ———
1800 80% —— |
c 50% ——
S
3
£ 1600 R
°
£
5 1400 R
2
5
g
2 1200 R
o
£
H
5 1000 R
£
kd
= 800 R
Q
(7]
2
g 600 R
5
(7]
[=3
d 400]
£
€
200 R
o ! I i n i " "
1 15 2 25 3 35 4 45 5

peer bandwidth divided by stream bandwidth

34 / 35
L

Latest useful bandwidth/deadline performance

50, 2.00x
50, 1:42x
50 1.00x
20, 2.00x -
20, 1.42x -
20 1.00x

delivery ratio

100000

expected peer life time

	Field
	Introduction
	Solution

	Survey
	Types of overlays
	AQCS
	Algorithms

	Wake up, go home
	Algorithm
	Churn

