
Maintaining Balanced Trees For Structured Distributed
Streaming Systems

F. Giroire, R. Modrzejewski ?, N. Nisse, and S. Perennes

{frederic.giroire, remigiusz.modrzejewski, stephane.perennes, nicolas.nisse} @inria.fr - COATI, joint project I3S
(CNRS & UNS) and INRIA,

Abstract. In this paper, we propose and analyze a simple localized algorithm to balance a tree.
The motivation comes from live distributed streaming systems in which a source diffuses a content
to peers via a tree, a node forwarding the data to its children. Such systems are subject to a high
churn, peers frequently joining and leaving the system. It is thus crucial to be able to repair the
diffusion tree to allow an efficient data distribution. In particular, due to bandwidth limitations,
an efficient diffusion tree must ensure that node degrees are bounded. Moreover, to minimize the
delay of the streaming, the depth of the diffusion tree must also be controlled. We propose here
a simple distributed repair algorithm in which each node carries out local operations based on its
degree and on the subtree sizes of its children. In a synchronous setting, we first prove that starting
from any n-node tree our process converges to a balanced tree in O(n2) turns. We then describe a
more restrictive model, adding a small extra information to each node, for which the convergence
is reached in O(n logn) turns and this bound is tight. We then exhibit by simulation that the
convergence is much faster (logarithmic number of turns in average) for a random tree.

1 Introduction

Trees are inherent structures for data dissemination in general and particularly in peer-to-peer
live streaming networks. Fundamentally, from the perspective of a peer, each atomic piece of
content has to be received from some source and forwarded towards some receivers. Moreover,
most of the actual streaming mechanisms ensure that a piece of information is not transmitted
again to a peer that already possesses it. Therefore, this implies that dissemination of a single
fragment defines a tree structure. Even in unstructured networks, whose main characteristic is
lack of defined structure, many systems look into perpetuating such underlying trees, e.g. the
second incarnation of Coolstreaming [6] or PRIME [7].

Unsurprisingly, early efforts into designing peer-to-peer video streaming concentrated on
defining tree-based structures for data dissemination. These have been quickly deemed inad-
equate, due to fragility and unused bandwidth at the leaves of the tree. One possible fix to
these weaknesses was introduced in SplitStream [3]. The proposed system maintains multiple
concurrent trees to tolerate failures, and internal nodes in a tree are leaf nodes in all other trees
to optimize bandwidth. The construction of intertwined trees can be simplified by a randomized
process, as proposed in Chunkyspread [8], leading to a streaming algorithm performing better
over a range of scenarios.

The analysis of these systems focus on the feasibility, construction time and properties of the
established overlay network, see for example [3, 8] and [4] for a theoretical analysis. But these
works usually abstract over the issue of tree maintenance. Generally, in these works, when some
elements (nodes or links) of the networks fail, the nodes disconnected from the root execute the
same procedure as for initial connection. To the best of our knowledge, there are no theoretical
analysis on the efficiency of tree maintenance in streaming systems, reliability is estimated by
simulations or experiments as in [3].

In this paper, we tackle this issue by designing an efficient maintenance scheme for trees.
Our distributed algorithm ensures that the tree recovers fast to a “good shape” after one or

? This work was partially supported by région PACA.

multiple failures occur. We give analytic upper bounds of the convergence time. To the best of
our knowledge, this is the first theoretical analysis of a repair process for live streaming systems.

The problem setting is as follows. A single source provides live media to some nodes in the
network. This source is the single reliable node of the network, all other peers may be subject
to failure. Each node may relay the content to further nodes. Due to limited bandwidth, both
source and any other node can provide media to a limited number k ≥ 2 of nodes. The network
is organized into a logical tree, rooted at the source of media. If node x forwards the stream
towards node y, then x is the parent of y in the logical tree. Note that the delay between
broadcasting a piece of media by the source and receiving by a peer is given by its distance
from the root in the logical tree. Hence our goal is to minimize the tree depth, while following
degree constraints.

As shown in [6], networks of this kind experience high rate of node joins and leaves. Leaves
can be both graceful, where a node informs about imminent departure and network rearranges
itself before it stops providing to the children, or abrupt (e.g. due to connection or hardware
failure). In this work, we assume a reconnection process: when a node leaves, its children reattach
to its parent. This can be done locally if each node stores the address of its grandfather in the
tree. Note that this process is performed independently of the bandwidth constraint, hence after
multiple failures, a node may become the parent of many nodes. The case of concurrent failures
of father and grandfather can be handled by reattaching to the root of the tree. Other more
sophisticated reconnection processes have been proposed, see for example [5].

This process can leave the tree in a state where either the bandwidth constraints are violated
(the degree of a node is larger than k) or the tree depth is not optimal. Thus, we propose a
distributed balancing process, where based on information about its degree and the subtree sizes
of its children, a node may perform a local operation at each turn. We show that this balancing
process, starting from any tree, converges to a balanced tree and we evaluate the convergence
time.

Related Work. Construction of spanning trees has been studied in the context of self-stabilizing
algorithms. Herault et al. propose in [5] a new analytic model for large scale systems. They as-
sume that any pair of processes can communicate directly, under condition of knowing receiver’s
identifier, what is the case in Internet Protocol. They additionally assume a discovery service
and a failure detection service. Under this model they propose and prove correctness of an
algorithm constructing a spanning tree over a set of processes. Similar assumptions have been
used by Caron et al. in [2] to construct a distributed prefix tree and by Bosilca et al. in [1] to
construct a binomial graph (Chord-like) overlay.

In this paper we assume the results of these earlier works: nodes can reliably communicate,
form connections and detect failures. We do not analyze these operations at message level.
Furthermore, we analyze the overlay assuming it is already a spanning tree. However, it may
have an arbitrary shape, e.g. be a path or a star (all nodes connected directly to the root). This
can be regarded as maintaining the tree after connection or failure of an arbitrary number of
nodes.

Our results. In Section 2, we provide a formal definition of the problem and propose a dis-
tributed algorithm for the balancing process. The process works in a synchronous setting. At
each turn, all noes are sequentially scheduled by an adversary and must execute the process.
In Section 3, we show that the balancing process always succeeds in O(n2) turns. Then, in
Section 4, we study a restricted version of the algorithm in which a node performs an operation
only when the subtrees of its children are balanced. In this case, we succeeded in obtaining a
tight bound of Θ(n log n) on the number of turns for the worst tree. Finally, we show that the
convergence is in fact a lot faster in average for a random tree and takes a logarithmic number
of turns.

2

2 Problem and Balancing Process

In this section, we present the main definitions and settings used throughout the paper, then
we present our algorithm and prove some simple properties of it.

2.1 Notations

This section is devoted to some basic notations.

Let n ∈ N∗. Let T = (V,E) be a n-node tree rooted in r ∈ V . Let v ∈ V be any node. The
subtree Tv rooted at v is the subtree consisting of v and all its descendants. In other words, if
v = r, then Tv = T and, otherwise, let e be the edge between v and its parent, Tv is the subtree
of T \ e = (V,E \ {e}) containing v. Let nv = |V (Tv)|.

Let k ≥ 2 be an integer. A node v ∈ V (T) is underloaded if it has at most k−1 children and
at least one of these children is not a leaf. v is said overloaded if it has at least k + 1 children.
Finally, a node v with k children is imbalanced if there are two children x and y of v such that
|nx − ny| > 1. A node is balanced if it is neither underloaded, nor overloaded nor imbalanced.
Note that a leaf is always balanced.

A tree is a k-ary tree if it has no nodes that are underloaded or overloaded, i.e., all nodes
have at most k children and a node with < k children has only leaf-children. A rooted k-ary
tree T is k-balanced if, for each node v ∈ V (T), the sizes of the subtrees rooted in the children
of v differ by at most one. In other words, a rooted tree is k-balanced if and only if all its nodes
are balanced.

As formalized by the next claim, k-balanced trees are good for our live streaming purpose
since such overlay networks (k being small compared with n) ensure a low dissemination delay
while preserving bandwidth constraints.

Claim. Let T be a n-node rooted tree. If T is k-balanced, then each node of T is at distance at
most blogk nc from r.

Proof. The proof of this claim can be found in Appendix A.

2.2 Distributed Model and Problem

Nodes are autonomous entities running the same algorithm. Each node v has a local memory
where it stores the size nv of its subtree, the size of the subtrees of its children and the size of
the subtrees of its grand-children, i.e., for any child x of v and for any child y of x, v knows nx
and ny.

Computations performed by the nodes are based only on the local knowledge, i.e., the
information presents in the local memory and that concerns only nodes at distance at most 2.
We consider a synchronous setting. That is, the time is slotted in turns. At each turn, any node
may run the algorithm based on its knowledge and, depending on the computation, may do
one of the following operations. In the algorithm we present, each operation done by a node v
consists of rewiring at most two edges at distance at most 2 from v. More precisely, let x and
y be two children of v, a be a child of x and b be a child of y (if any). The node v may

– replace the edge {x, a} by the edge {v, a}. A grand-child a of v then becomes a child of v.
This operation is denoted by pull(a) and illustrated in Figure 1a;

– replace the edge {v, x} by the edge {y, x}. A child x of v then becomes a child of another
child y of v. This operation is denoted by push(x,y), see Figure 1b;

3

v

v1

x

v

x v1

(a) pull(x)

v

v1 v2 v3

v

v1 v2

v3

(b) push(v3, v2)

v

v1

a

v2

b

v

v1

b

v2

a

(c) swap(a, b)

v

v1

a

v2

v

v1 v2

a

(d) swap(a, ∅)

Fig. 1: Operations performed by node v in the balancing process

– replace the edges {x, a} and {y, b} by the edges {x, b} and {y, a}. The children x and y of
v exchange two of their own children a and b. This operation is denoted by swap(a,b) and
an example is given in Figure 1c. Here, a or b may not exist, in which case, one of x and y
“wins” a new child while the other one “looses” a child. This case is illustrated in Figure 1d.

In all cases, the local memory of the at most k2 + 1, including the parent of v, nodes that
are concerned are updated. Note that each of these operations may be done using a constant
number of messages of size O(log n).

In this setting, at every turn, all nodes sequentially run the algorithm. In order to consider
the worst case scenario, the order in which all nodes are scheduled during one turn is given by
an adversary. The algorithm must ensure that after a finite number of turns, the resulting tree
is k-balanced. We are interested in time complexity of the worst case scenario of the repair.
That is, the performance of the algorithm is measured by the maximum number of turns after
which the tree becomes k-balanced, starting from any n-node tree.

2.3 The Balancing Process

In this section, we present our algorithm, called balancing process. We prove some basic proper-
ties of it. In particular, while the tree is not k-balanced, the balancing process ensures that at
least one node performs an operation. In the next sections, we prove that the balancing process
actually allows to reach a k-balanced tree after a finite number of steps.

At each turn, a node v executes the algorithm described on Figure 2. To summarize, an
underloaded node does a PULL, an overloaded node does a PUSH and an imbalanced node
(whose children are not overloaded) does a SWAP operation. Note that a SWAP operation
may exchange a subtree with an empty subtree, but cannot create an overloaded node. It is
important to emphasise that the balancing process requires no memory of the past operations.

Note that if the tree if k-balanced, no operation are performed, and that, if the tree is not,
at least one operation is performed.

4

Algorithm executed by a node v in a tree T . If v is not a leaf, let (v1, v2, · · · , vd) be
the d ≥ 1 children of v ordered by subtree-size, i.e., nv1 ≥ nv2 ≥ · · · ≥ nvd .

1. If v is underloaded (then d < k), let x be a child of v1 with biggest subtree size.
Then node v executes pull(x). // That is, x becomes a child of v.

2. Else if v is overloaded (then d > k ≥ 2), then node v executes push(v3, v2).
// That is, v3 becomes a child of v2.

3. Else if v is imbalanced (then d = k) and if v1 and vk are not overloaded, let a and
b be two children of v1 and vk respectively such that |nv1−na+nb−(nvk−nb+na)|
is minimum (a (resp. b) may be not defined, i.e., na = 0 (resp., nb = 0), if v1
(resp v2) is underloaded).
Then node v execute swap(a, b). // That is, a and b exchange their parent.

Fig. 2: Balancing Process

Claim. If T is not k-balanced, and all nodes execute the balancing process, then at least one
node will do an operation.

Proof. The proof of this claim can be found in Appendix A.

In the next section, we prove that, starting from any tree, the number of operations done
by the nodes executing the balancing process is bounded. Together with the previous claim, it
allows to prove

Theorem 1. Starting from any tree T where each node executes the balancing process, after a
finite number of steps, T eventually becomes k-balanced.

Before to prove the above result in next Section, we give a simple lower bound on the number
of turns required by the Balancing Process. A star is a rooted tree where any non root-node is
a leaf.

Lemma 1. If the initial tree is a n-node star, then at least Ω(n) turns are needed before the
resulting tree is k-balanced.

Proof. The proof of this lemma can be found in Appendix A.

3 Worst case analysis

In this Section we obtain an upper bound of O(n2) turns needed to balance the tree. For clarity
of presentation we assume we want to obtain a 2-balanced tree. The proofs extend to larger k.

Lemma 2. Starting from any n-node rooted tree T , after having executed the Balancing Process
during O(n) turns, no node will do a push operation anymore.

Proof. The proof can be found in Appendix A.

Let Q be the sum over all nodes u ∈ T of the distance between u and the root.

Lemma 3. Starting from any n-node rooted tree T , there are at most O(n2) distinct (not nec-
essarily consecutive) turns with a pull operation. More precisely, the sum of the sizes of the
subtrees that are pulled during the whole process does not exceed n2.

Proof. Note that a swap operation does not change Q. Moreover, a pull operation of a subtree
Tv makes Q decrease by nv. Since Q =

∑
u∈V (T) d(u, r) ≤ n2, the sum of the sizes of the subtrees

that are pulled during the whole process does not exceed n2. ut

5

Recall that we consider a n-node tree T rooted in r such that all nodes have at most
two children. Let E0 = n and, for any 0 ≤ i ≤ dlog(n + 1)e, let Ei = 2Ei+1 + 1. Note that
(Ei)i≤dlog(n+1)e is strictly decreasing, and 0 < Edlog(n+1)e ≤ 1. Intuitively, Ei is the mean-size of
a subtree rooted in a node at distance i from the root in a balanced tree with n nodes.

Let Ki be the set of nodes of T at distance exactly i ≥ 0 from the root and |Ki| = ki, and,
for any 0 ≤ i ≤ dlog(n+ 1)e, let mi = 2i− ki. Intuitively, mi represents the number of nodes at
distance i, missing compared to a balanced complete binary tree.

For any v ∈ V (T) at distance 0 ≤ i ≤ dlog(n+ 1)e from the root, the default of v, denoted
by µ(v), equals nv −dEie if nv > Ei and bEic−nv otherwise. Note that µ(v) ≥ 0 since nv is an
integer.

Let the potential at level i, 0 ≤ i ≤ dlog(n+ 1)e, be Pi = mi · bEic +
∑

u∈Ki
µ(u). Finally,

let us define the potential P =
∑

0≤i≤dlog(n+1)e Pi. Since µ(u) ≤ n for any u ∈ V (T), and∑
0≤i≤dlog(n+1)emi + ki ≤ 2n, then P(T) = O(n2).

Lemma 4. For any n-node rooted tree T , a pull operation of a subtree Tv may increase the
potential P by at most 2nv.

Proof. Let us consider a pull operation executed by node u. Let x be its unique child and let v
be the child of x such that Tv is pulled by u. Let i be the distance between x and the root. For
any j ≥ i, let Lj be the set of nodes of Tv at distance j from the root before the pull operation
and |Lj | = `j (note that Li = ∅ and `i = 0).

For any 0 ≤ j ≤ dlog(n+ 1)e, let Pj be the potential at level j before the pull operation
and P ′j be this potential after the operation. Note that for any j < i, P ′j = Pj . For any node
w ∈ V (T), let µ(w) the default of w before the pull operation and µ′(w) its default after the
operation. For any w /∈ V (Tv) ∪ {x}, µ(w) = µ′(w).

Moreover, either µ(x) = bEic − nx and then µ′(x) = bEic − (nx − nv), or µ(x) = nx − dEie
and either µ′(x) = nx − nv − dEie or µ′(x) = bEic − (nx − nv). In any case, µ′(x)− µ(x) ≤ nv.

For any w ∈ Lj , i < j ≤ dlog(n+ 1)e, there are several cases to be considered. Either
µ(w) = bEjc − nw and then µ′(w) = bEj−1c − nw. In that case, µ′(w)− µ(w) ≤ bEj−1c − bEjc.
Or µ(w) = nw−dEje and µ′(w) = nw−dEj−1e. In that case, since dEje ≤ dEj−1e, µ′(w)−µ(w) ≤
bEj−1c − bEjc. Otherwise, µ(w) = nw − dEje and µ′(w) = bEj−1c − nw. This case occurs if
Ej−1 > nw > Ej . In that case, µ′(w) − µ(w) ≤ bEj−1c + dEje − 2nw ≤ bEj−1c − bEjc. To
summarize, in any case, µ′(w)− µ(w) ≤ bEj−1c − bEjc.

Finally, for any w ∈ Ldlog(n+1)e+1, either µ′(w) = nw−bEdlog(n+1)ec, or µ′(w) = dEdlog(n+1)ee−
nw ≤ 1, i.e., in any case, µ′(w) ≤ nw.

For any j, i < j ≤ dlog(n+ 1)e, P ′j = Pj + (`j − `j+1)bEjc+
∑

w∈Lj+1
µ′(w)−

∑
w∈Lj

µ(w).

That is, P ′j = Pj +
∑

w∈Lj+1
(µ′(w)−bEjc)−

∑
w∈Lj

(µ(w)−bEjc). Moreover, P ′i = Pi−bEic+

µ′(v) +µ′(x)−µ(x). Finally, let P be the potential before the pull operation and let P ′ be the
potential after the pull operation. Summing the previous formulas, we obtain:
P ′ = P+µ′(x)−µ(x)+

∑
i<j≤dlog(n+1)e

∑
w∈Lj

(µ′(w)+bEjc−µ(w)−bEj−1c)+
∑

w∈Ldlog(n+1)e+1

(µ′(w)− bEdlog(n+1)ec). By previous inequations, P ′ ≤ P + nv +
∑

w∈Ldlog(n+1)e+1
nw ≤ P + 2nv.

ut

Let v be a node at distance dlog(n+ 1)e > i ≥ 0 from the root r of T . v is called i-median
if it has one or two children a and b and na > Ei+1 > nb (possibly v has only exactly child and
nb = 0).

Lemma 5. For any n-node rooted tree T , a swap operation executed by any node v does not
increase the potential P. Moreover, if v is (i − 1)-median then P strictly decreases by at least
one.

6

Proof. Let i − 1 be the distance from v to r. Let x and y be the children of v. Let a and b be
the children of x and let c and d be the children of y. Without loss of generality, na ≥ nb ≥ 0,
and nc ≥ nd ≥ 0 and na + nb ≥ nc + nd. Because the swap operation is executed, then
na + nd − nb − nc < na + nb − nc − nd = δu and δu > 1, nb > nd and na > nc. In particular, b
and d are exchanged.

For any w ∈ {x, y}, let µ(w) be the default of w before the swap operation and let µ′(w)
be its default after the operation. Let P be the potential before the swap operation and let P ′
be the potential after the swap operation. Clearly, P ′ = P − µ(x)− µ(y) + µ′(x) + µ′(y).

Clearly, if i−1 ≥ dlog(n+1)e, P ′ = P. Therefore, let us assume that 0 ≤ i−1 < dlog(n+1)e.
There are several cases to be considered.

– Case nx ≤ Ei. Then, µ(x) = bEic − (na + nb + 1), µ′(x) = bEic − (na + nd + 1) because
na + nd + 1 < nx ≤ Ei, µ(y) = bEic − (nc + nd + 1) because ny < nx ≤ Ei, and µ′(y) =
bEic − (nc + nb + 1) because nc + nb + 1 < nx ≤ Ei.
P ′ = P+bEic−(na+nd+1)−bEic+(na+nb+1)+bEic−(nc+nb+1)−bEic+(nc+nd+1) = P.

– Case ny ≥ Ei. Then, µ(x) = (na+nb+1)−dEie because nx > ny ≥ Ei, µ
′(x) = (na+nd+1)−

dEie because Ei ≤ ny < na+nd+1, µ(y) = (nc+nd+1)−dEie, and µ′(y) = (nc+nb+1)−dEie,
because Ei ≤ ny < nc + nb.
Again, P ′ = P.

– Case ny < nc + nb + 1 ≤ Ei ≤ na + nd + 1 < nx. Then, µ(x) = (na + nb + 1) − dEie,
µ′(x) = (na + nd + 1)− dEie, µ(y) = bEic − (nc + nd + 1) and µ′(y) = bEic − (nc + nb + 1).
Thus, P ′ = P + (na + nd + 1)− dEie − (na + nb + 1) + dEie+ bEic − (nc + nb + 1)− bEic+
(nc + nd + 1) = P + 2nd − 2nb ≤ P − 1.

– Case ny < na + nd + 1 ≤ Ei ≤ nc + nb + 1 < nx. Then, µ(x) = (na + nb + 1) − dEie,
µ′(x) = bEic−(na+nd+1), µ(y) = bEic−(nc+nd+1) and µ′(y) = (nc+nb+1)−dEie. Thus,
P ′ = P+bEic−(na+nd+1)−(na+nb+1)+dEie+(nc+nb+1)−dEie−bEic+(nc+nd+1) =
P − 2na + 2nc ≤ P − 1.

– Case ny < max{nc + nb + 1, na + nd + 1} ≤ Ei < nx. Then, µ(x) = (na + nb + 1) − dEie,
µ′(x) = bEic − (na + nd + 1), µ(y) = bEic − (nc + nd + 1) and µ′(y) = bEic − (nc + nb + 1).
P ′ = P+bEic−(na+nd+1)−(na+nb+1)+dEie+bEic−(nc+nb+1)−bEic+(nc+nd+1) =
P + bEic+ dEie − 2(na + nb + 1) = P + bEic+ dEie − 2nx.
Since nx > dEie ≥ bEic, P ′ ≤ P − 1.

– Case ny < Ei ≤ min{nc + nb + 1, na + nd + 1} < nx. Then, µ(x) = (na + nb + 1) − dEie,
µ′(x) = (na + nd + 1)− dEie, µ(y) = bEic − (nc + nd + 1) and µ′(y) = (nc + nb + 1)− dEie.
P ′ = P+(na+nd+1)−dEie−(na+nb+1)+dEie+(nc+nb+1)−dEie−bEic+(nc+nd+1) =
P + 2(nc + nd + 1)− dEie − bEic = P + 2ny − dEie − bEic ≤ P − 1

Since v is (i− 1)-median if and only if one of the last four cases is concerned, this concludes
the proof. ut

Let v be a node at distance 0 ≤ i < dlog(n + 1)e − 1 from the root r of T . v is called
i-switchable if it has one or two children a and b and na > Ei+1 > nb (possibly v has only
exactly child, and nb = 0), na−nb ≥ 2 and none of its ancestors can execute a swap operation.
Note that, if a node is i-switchable, then it is i-median.

Lemma 6. Let T be a tree where no push nor pull operation is possible. If a node v is i-
switchable, then either v can do a swap operation, or 0 ≤ i < dlog(n + 1)e − 2 and it has a
i+ 1-switchable child.

Proof. Let v be a i-switchable node (0 ≤ i < dlog(n + 1)e − 1) and let x be its greatest child
and y its other child if any (possibly ny = 0).

7

Because no push operation is possible, all nodes have at most two children.
First, let us assume that i = dlog(n+ 1)e − 2. By definition, ny < Ei+1 = Edlog(n+1)e−1 ≤ 3.

Hence, either ny = 0 and nx ≥ 2 and v must do a pull operation which is not possible, or
ny = 1 and nx ≥ 3, or ny = 2 and nx ≥ 4. For the last two cases, x cannot have only one child,
since otherwise he should execute a pull operation which is not possible. Therefore, it is easy
to check that, in the last two cases, v can execute a swap operation.

Now, assume that i < dlog(n + 1)e − 2. Because nv > nx > Ei ≥ 3 and no pull operation
is executed by v, then v has two children x and y. Let a and b be the two children of x (if any)
and let c and d be the two children of y (if any). Without loss of generality, nx ≥ ny, na ≥ nb
and nc ≥ nd. Because v is i-median, then nx > Ei+1 > ny.

Let us assume that v cannot do any swap operation. Then, either nx − ny ≤ 1, or nd ≥ nb
(and then nc ≤ na), or nc ≥ na (and then nb ≥ nd). The first case is not possible since v is
i-switchable and nx − ny ≥ 2. Therefore, there are only two cases to be considered.

– If na ≥ nc ≥ nd ≥ nb, then 2na+1 ≥ na+nb+1 = nx > Ei+1 = 2Ei+2+1 > ny = nc+nd+1 ≥
2nb + 1 and na > Ei+2 > nb. Moreover, 1 + na + nb = nx ≥ ny + 2 = 3 + nc + nd ≥ 2nb + 3
and na ≥ nb + 2. Hence, x is i+ 1-switchable.

– If nc ≥ na ≥ nb ≥ nd, then 2nc+1 ≥ na+nb+1 = nx > Ei+1 = 2Ei+2+1 > ny = nc+nd+1 ≥
2nd + 1 and nc > Ei+2 > nd. Moreover, 2nc + 1 ≥ na + nb + 1 = nx ≥ ny + 2 = nc + nd + 3
and nc ≥ nd + 2. Hence, y is i+ 1-switchable.

ut

Lemma 7. At each turn when no pull nor push operations are done, if the tree is not balanced,
then there is a i-switchable node, 0 ≤ i < dlog(n+ 1)e − 1.

Proof. Let a and b be the two children of the root (r has two children since otherwise a pull
operation may be done or the tree has two nodes and is balanced). Recall that E0 = n =
na + nb + 1 = 2E1 + 1.

– If na = nb, the root is balanced and cannot execute a swap operation. Moreover, E1 = na =
nb = (n− 1)/2.

– Otherwise, assume without loss of generality, na > nb, then na > E1 = (na + nb)/2 > nb.
• If na > E1 > nb and na − nb ≥ 2, then the root is 0-switchable.
• If na > E1 > nb and na − nb ≤ 1 then the root cannot execute a swap operation (since

no such operation can decrease the difference between its subtrees).

Therefore, either the root is 0-switchable, or we are in a S1-situation: the two children a
and b of the root are such that na = nb = E1 or na > E1 > nb and na − nb ≤ 1, and in both
cases, na, nb ∈ {dE1e, bE1c} and the root cannot perform a swap operation.

Let i ≥ 1. Assume that we are in a Si-situation: for any j < i, all nodes at distance j from
the root cannot do a swap operation, and for any j ≤ i, kj = 2j and, for any node v at distance
i of the root, nv ∈ {dEie, bEic}.

First, note that if the tree is in a Sdlog(n+1)e−1-situation, then it is balanced. Therefore, let
j ≤ dlog(n+ 1)e − 1 be the smallest integer such that T is not in a Sj-situation. For any node
u at distance j − 1 from the root, nu ≥ bEj−1c ≥ bEdlog(n+1)e−2c ≥ 3. Therefore, u has exactly
two children since if it has more children, a push operation would be possible, and if it has only
one child, a pull operation would be possible (note that, such a pull operation would actually
be done during the turn since all ancestors of u cannot do a swap operation).

Since the tree is not in a Sj-situation, there is a node u at distance j − 1 from the root and
with two children a and b such that, without loss of generality, na /∈ {dEje, bEjc}. However,
na + nb + 1 = nu ∈ {dEj−1e, bEj−1c} = {d2Ej + 1e, b2Ej + 1c}.

8

Assume first that na > dEje. Then, nb = nu−na−1 ≤ nu−2−dEje ≤ d2Ej+1e−2−dEje ≤
2dEje−1−dEje ≤ dEje−1 < Ej . Hence, na > Ej > nb and na−nb ≥ 2 and u is j−1-switchable.

Similarly, if na < bEjc, then nb = nu − na − 1 ≥ b2Ej + 1c − bEjc ≥ bEjc+ 1 > Ej . Again,
u is j − 1-switchable. ut

Theorem 2. Starting from any n-node rooted tree, the balancing process reaches a 2-balanced
tree in O(n2) turns.

Proof. By Lemma 2, after O(n) turns, no push operations are executed anymore and all nodes
have at most two children. From then, there may have only pull or swap operations. Moreover,
by Corollary A, there is at least one operation per turn while T is not balanced. From Lemma 3,
there are at most O(n2) turns with a pull operation. Once no push operations are executed
anymore, from Lemmata 3, 4 and 5, potential P can increase by at most O(n2) in total (over
all turns). Moreover, by Lemma 5, if a i-median node executes a swap operation, the potential
P strictly decreases by at least one.

By Lemma 7, at each turn when no pull nor push operations are done, there is an i-switchable
node, 0 ≤ i < dlog(n+1)e−1. Thus, by Lemma 6, at each such turn, there is an i-switchable that
can execute a swap operation. Since a i-switchable node is i-median (0 ≤ i < dlog(n+ 1)e− 1),
by Lemma 5, the potential P strictly decreases by at least one.

The result then follows from the fact that P ≤ n2. ut

4 Adding an extra global knowledge to the nodes

In this section, we assume an extra global knowledge: each node knows whether it has a descen-
dant that is not balanced. This extra information is updated after each operation. Then, our
algorithm is modified by adding the condition that any node v executing the balancing process
can do a pull or swap operation only if all its descendants are balanced. Adding this property
allows to prove better upper bounds on the number of steps, by avoiding conflict between an op-
eration performed by a node and an operation performed by one of its not balanced descendant.
We moreover prove that this upper bound is asymptotically tight.

Again, for ease of presentation, we assume in this section that k = 2, i.e., the objective of
the Balancing Process is to reach a 2-balanced tree.

Let f : N× N→ N be the function defined recursively as follows.

∀a ≥ 0, f(a, a) = 0
∀a ≥ 1, f(a, a− 1) = 0
∀a ≥ 2, f(a, 0) = 1 + f(

⌊
a−1
2

⌋
, 0)

∀a > 2, ∀1 ≤ b < a− 1, f(a, b) = 1 + max
(
f(
⌈
a−1
2

⌉
,
⌊
b−1
2

⌋
), f(

⌊
a−1
2

⌋
,
⌈
b−1
2

⌉
)
)

Lemma 8. For any a ≥ 0, a ≥ b ≥ 0, f(a, b) ≤ max{0, log2 a}.

Proof. The proof is by induction on a. If a ≤ 1, then f(a, b) = 0 and f(2, b) ≤ 1 for any
0 ≤ b ≤ a and the result holds. Let a > 2 and assume the result is true for any 0 ≤ a′ < a. Then,
f(a, 0) = 1+f(

⌊
a−1
2

⌋
, 0) ≤ 1+log2

⌊
a−1
2

⌋
≤ log2 a and the result holds. Finally, for any b < a−1,

f(a, b) = 1 + max
(
f(
⌈
a−1
2

⌉
,
⌊
b−1
2

⌋
), f(

⌊
a−1
2

⌋
,
⌈
b−1
2

⌉
)
)
. Because a > 2 and b < a − 1, then⌊

a−1
2

⌋
≥
⌈
b−1
2

⌉
. Therefore, the induction hypothesis applies and f(a, b) ≤ 1+log2

⌈
a−1
2

⌉
≤ log2 a.

ut

Let g : N→ N be the function defined recursively as follows.

∀n ∈ {0, 1}, g(n) = 0
∀n > 1, g(n) = maxa≥b≥0,a+b=n−1(max{g(a), g(b)}+ f(a, b))

9

Lemma 9. For any n ≥ 0, g(n) ≤ max{0, n log2 n}.

Proof. The proof is by induction on n. If n ≤ 1, then g(n) = 0 and g(2) = f(1, 0) = 0. Let
n > 2 and assume that g(n′) ≤ n′ log2 n

′ for any 2 ≤ n′ < n. Then, for any 0 ≤ b ≤ a with
a+ b = n− 1, the induction hypothesis implies that max{g(a), g(b)} ≤ (n− 1) log2(n− 1) and,
by Lemma 8, f(a, b) ≤ log2 a ≤ log2(n − 1), so g(n) ≤ n log2(n − 1) ≤ n log2 n and the result
holds. ut

Theorem 3. Starting from any n-node rooted tree, the balancing process with global knowledge
reaches a 2-balanced tree in O(n log n) turns.

Proof. Let B(n) be the maximum number of turns that is needed to reach a 2-balanced tree
starting from any tree with at most n nodes. Recall that we consider that all nodes execute the
Balancing Process with the extra constraint that a node can execute a pull or swap operation
only if all its descendants are balanced.

In this setting, the result of Lemma 2 still holds and starting from any tree with at most
O(n) nodes, there are no overloaded anymore and no push operation will never been execute
again. Actually, in this setting, the proof of Lemma 2 becomes easier since the parent of an
overloaded node cannot execute a swap or a pull operation.

Since we aim at proving that B(n) = O(n log n), the first O(n) turns are negligible and we
may consider only starting trees without overloaded nodes.

Let T be any n-node tree rooted in r. Let x be any not balanced node with two children y
and z such that ny − 1 > nz ≥ 0. Note that, because x is not balanced, ny ≥ 2. Note also that
possibly nz = 0 (i.e., Tz = ∅) in which case, x is underloaded.

Assume that all descendants of x are balanced, we first show that after at most f(ny, nz)
turns, all nodes in Tx are balanced. It is important that while there is at least one node that is
not balanced in Tx, no operation done by a node in V (T) \ V (Tx) will affect Tx. Hence, we can
consider only the operations executed by nodes in Tx.

The proof is by induction on ny. If ny = 2, then x executes a pull operation after which all
nodes in Tx become balanced. Since f(2, 0) = 1, the result holds. Hence, let ny > 2. There are
two cases to be considered.

– if x is underloaded, let u and v be the two children of y. Because ny > 2 and all nodes in
Ty are balanced, u and v actually exist and |nu − nv| ≤ 1 and nu + nv = ny − 1. W.l.o.g.

nu ≥ nv and therefore, nv ≤ bny−1
2 c. Then x executes pull(u). Then, u is now a child of x

and Tu are still balanced. x is balanced as well, as |nv + 1− nu| ≤ 1. On the other hand, y
has now a single child v and all its descendants are balanced. By induction, all nodes in Ty
become balanced after at most f(nv, 0) turns, i.e., by Lemma 8, after at most log2 nv turns.

In total, all nodes in Tx become balanced after at most 1+log2 nv ≤ 1+log2b
ny−1

2 c = f(ny, 0).

– if x is imbalanced, then ny − nz > 1. Let y1 and y2 be the two children of y and let z1 and
z2 be the two children of z. Because y and z are balanced, |y1 − y2| ≤ 1 and |z1 − z2| ≤ 1.
W.l.o.g., y1 ≥ y2 and z1 ≥ z2. Then, x executes swap(y2, z2). Now, y is the parent of y1 and
z2 and all its descendants are balanced. Similarly, z is the parent of y2 and z1 and all its
descendants are balanced.

Because |y1 − y2| ≤ 1 and |z1 − z2| ≤ 1, then x becomes balanced but y and z may now be
not balanced anymore.

Note that, while not all nodes in Ty and Tz are balanced, the operations executed in one
of these trees does not affect the other one. By induction, all nodes in Ty become balanced
after at most f(ny1 , nz2) turns and all nodes in TZ become balanced after at most f(ny2 , nz1)
turns.

10

In total, all nodes in Tx become balanced after one swap operation and the maximum
number of turns for all nodes in Ty and Tz to become balanced. Therefore, it takes at most
1 + max{f(ny2 , nz1), f(ny1 , nz2)} ≤ f(ny, nz) turns.

Now, we are ready to prove the theorem. We prove by induction on n that B(n) ≤ g(n) and
the theorem directly follows from Lemma 9. The result clearly holds for n ≤ 1.

Let T be a tree rooted in r with at most n nodes. Let a and b the children of the root.
While some descendant of r is not balanced, r does not execute any action. By definition
of B, as both Ta and Tb behave as independent trees, all descendants of r become balanced
after max{B(na), B(nb)} turns, i.e., by the induction hypothesis, after max{g(na), g(nb)} turns.
Finally, by the above paragraph, at most f(na, nb) additional turns are sufficient for all nodes
to become balanced. Hence, T becomes 2-balanced after at most max{g(na), g(nb)}+ f(na, nb)
turns.

Then, B(n) ≤ maxa≥b≥0,a+b=n−1(max{g(a), g(b)}+ f(a, b)) = g(n) turns. ut

Next lemma shows that there are trees starting from which the balancing process actually
uses a number of turns of the order of the above upper bound.

Theorem 4. Starting from an n-node path rooted in one of its ends, the balancing process with
global knowledge reaches a 2-balanced tree in Ω(n log n) turns.

Proof. The proof can be found in Appendix A.

5 Simulations

In the previous sections we obtained upper and lower bounds for the maximum number of
turns needed to balance a tree of a given size. A significant gap between those bounds raises
the question: which bound is closer to what happens for random instances? We investigate the
performance of the algorithm running an implementation under a discrete event simulation.
Scheduling of nodes within a turn is given by a simple adversary algorithm. First, it detects
which nodes can perform no operation. It schedules them to move first, to ensure that they do
not perform operations enabled by operations of other nodes. Then, it schedules the remaining
nodes in a random order.

The process starts in a random tree. It is obtained by assigning random weights to a complete
graph and building a minimum weight spanning tree over it. Figure 3 displays the number of
turns it took to balance trees of progressing sizes. For each size the numbers are aggregated
over 10000 different starting trees. The solid line marks the average, dotted lines the minimum
and maximum numbers of turns and error bars show the standard deviation.

What can be seen from this figure, is that the number of turns spent to balance a random
tree progresses logarithmically in regard to the tree size. This holds true both for average and
the worst cases encountered. This is significantly less even than the lower bound on maximum
time. This is because that comes from the particular case of star as the starting tree, which is
randomly obtained with probability 1

n! and did not occur in our experiments for bigger values
of n.

11

0 500 1000 1500 2000 2500

N

0

5

10

15

20

25

30

35

40

T
u

rn
s

Fig. 3: Balancing a random tree

6 Conclusions and future research

We have proposed a distributed tree balancing algorithm and shown following properties. The
algorithm does stop only when the tree is balanced. After at most Ω(n) turns there are no
overloaded nodes in the tree, what corresponds to a broadcast tree where every node receives
content. This bound is reached when the starting tree is a star. Balancing process after there are
no overloaded nodes lasts at most O(n2) turns. With the additional restriction that a node acts
only if all of its descendants are balanced, the number of turns to balance any tree is O(n log n).
This bound is reached when the starting tree is a path.

An obvious, but probably hard, open problem is closing the gap between the O(n2) upper
bound and the Ω(n) lower bound on balancing time. Another possibility is examination of the
algorithm’s average behaviour, which as hinted by simulations should yield O(log n) bound on
balancing time.

The algorithm itself can be extended to handle well the case of trees that are not regular.
Furthermore, in order to approach a practical system, moving to multiple trees would be highly
beneficial.

References

1. G. Bosilca, C. Coti, T. Herault, P. Lemarinier, and J. Dongarra. Constructing resiliant communication
infrastructure for runtime environments. In International Conference in Parallel Computing (ParCo2009),
2009.

2. E. Caron, A. Datta, F. Petit, and C. Tedeschi. Self-stabilization in tree-structured peer-to-peer service dis-
covery systems. In Reliable Distributed Systems, 2008. SRDS’08. IEEE Symposium on, pages 207–216. IEEE,
2008.

3. M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. SplitStream: high-bandwidth
multicast in cooperative environments. In Proceedings of the nineteenth ACM symposium on Operating systems
principles, page 313. ACM, 2003.

4. G. Dan, V. Fodor, and I. Chatzidrossos. On the performance of multiple-tree-based peer-to-peer live streaming.
In INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE, pages 2556–
2560. IEEE, 2007.

5. T. Herault, P. Lemarinier, O. Peres, L. Pilard, and J. Beauquier. A model for large scale self-stabilization. In
Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, pages 1–10. IEEE,
2007.

6. B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, and X. Zhang. Inside the new coolstreaming: Principles,
measurements and performance implications. In Proc. of IEEE Infocom, 2008.

7. N. Magharei and R. Rejaie. Prime: Peer-to-peer receiver-driven mesh-based streaming. IEEE/ACM Transac-
tions on Networking (TON), 17(4):1052–1065, 2009.

8. V. Venkataraman, K. Yoshida, and P. Francis. Chunkyspread: Heterogeneous unstructured tree-based peer-
to-peer multicast. In Network Protocols, 2006. ICNP’06. Proceedings of the 2006 14th IEEE International
Conference on, pages 2–11. IEEE, 2006.

12

A Appendix

We present here the proofs of Claims, Lemma 1, Lemma 2 and Theorem 4.

Claim. Let T be a n-node rooted tree. If T is k-balanced, then each node of T is at distance at
most blogk nc from r.

Proof. We prove the claim by induction. The hypothesis of induction Hd, d ≥ 1, is: if n <∑d
i=0 k

i + 1, a node is at distance at most d− 1 from the root. H1 is clearly true.

Consider now Hd+1. Let T be a tree of size n <
∑d+1

i=0 k
i + 1. Consider a child v of its root

r. The size of its subtree Tv is nv <
∑d

i=0 k
i + 1. Otherwise, the subtrees of the other children

of r would be of size larger or equal than
∑d

i=0 k
i as the root is k-balanced. The tree would be

of size larger or equal than k(
∑d

i=0 k
i) + 2 =

∑d+1
i=0 k

i + 1. Contradiction.

By hypothesis of induction, a node of Tv is at distance at most d− 1 from v, and thus, any
node of T is at distance at most d from the root. ut

Claim. If T is not k-balanced, and all nodes execute the balancing process, then at least one
node will do an operation.

Proof. If T is not k-balanced, there exists a not k-balanced node v. According to the balancing
process, v will perform an operation except if it has degree k and either its children v1 or vk
are overloaded. In this case, the overloaded node will perform an operation. ut

Lemma 1. If the initial tree is a n-node star, then at least Ω(n) turns are needed before the
resulting tree is k-balanced.

Proof. Initially, the degree of the root is n−1. While n > k, the only operation that may modify
the degree of the root is when the root itself does a push, in which case its degree decreases
by one. Hence the degree of the root decreases by at most one per turn. Since the tree cannot
become k-balanced while the degree of the root is at least k+ 1, at least n−1−k = Ω(n) turns
are required. ut

Lemma 2. Starting from any n-node rooted tree T , after having executed the Balancing Process
during O(n) turns, no node will do a push operation anymore.

Proof. Let v be any node with degree d ≥ 3 at the beginning of the turn and let us study how
its degree evolves during one turn. We show that its degree cannot have increased at the end
of the turn.

First, a simple case analysis proves that the degree of v may increase due to operations done
by other nodes only in two cases. Either the parent p of v does a push operation on v or p
does a swap operation (a child of a sibling of v becoming a new child of v). In both cases, the
degree of v increases by at most one. Moreover, at most one of these cases occurs in one given
turn since the parent p of x is scheduled only once and if the parent of v changes during a turn,
it means either that it has been pulled by a node who has already been scheduled or that it
has been swapped by its grandparent g. In the last case, it cannot be swapped or pulled by the
already scheduled g, and its new parent will not carry out a push as it is not overloaded by
definition of the balancing process.

Now, let us consider the contribution of the operation performed by v itself during this turn.
If its degree is still at least three when v is scheduled, then v has to execute a push operation,
reducing its degree by one. Otherwise, the degree of v must be at most 2 after its executes its

13

operation: either v had degree 1 and did a pull operation, or it had degree 0 or 2 and its degree
remains unchanged after its operation.

Let us define a potential function Φ, where Φ(T) =
∑

v∈V (T) max{0, dv − 3}, with dv being
the number of children of node v. The above paragraphs show that the potential function Φ
is not increasing during the Balancing Process, Note that Φ(T) ≤ n for any n-node tree T .
Therefore, there are at most O(n) turns where the function strictly decreases.

To conclude, we show that during a turn, either Φ strictly decreases, or at least one node
executes its last push operation.

Indeed, let v be an overloaded node that is closest to the root. First, we notice that no
ancestor of v can become overloaded (simple induction on the distance between v and the root).
We show that the degree of v strictly decreases during this turn.

The parent p of v cannot do any push operation since it cannot become overloaded anymore.
A swap operation can increase the degree of v to at most 2, which is a decrease from d ≥ 3 at
the beginning of the turn. When v is scheduled, if its degree is at least 3, then it will perform a
push operation and decrease its degree, otherwise no operation will increase its degree over 2.
In any case, the degree of v decreases.

Hence, either the degree of v was at least 4 and the contribution of v in Φ decreases during
this turn, i.e., Φ strictly decreases. Or, v had degree 3 before the turn and is not overloaded
anymore at the end of the turn. Since all its ancestors are not overloaded, v will never be
overloaded again and therefore will never do another push operation. ut

Theorem 4. Starting from an n-node path rooted in one of its ends, the balancing process
with global knowledge reaches a 2-balanced tree in Ω(n log n) turns.

Proof. Let h : N→ N be the function defined as:

h(d) = 2d + max(0,
d−2∑
i=1

2i).

Let d ≥ 1. Let Td be the set of trees defined as follows. For any T ∈ Td, T has n+ 1 nodes
where h(d − 1) ≤ n < h(d) and consists of a root r with a unique child u and u is the root of
an n-node balanced tree.

We first prove by induction on d ≥ 1 that, starting from any tree in Td, there is a schedule
for the adversary such that the balancing process with global knowledge reaches a 2-balanced
tree in exactly d − 1 turns. This is clearly true for d = 1. The balanced subtree rooted in u is
of size at most 1, hence the tree is already balanced. So no operations (d− 1 = 0) are needed.

Let d ≥ 1 and let us assume by induction that any tree in Td is balanced in d− 1 turns. Let
T ∈ Td+1. Note first that, all nodes of T but the root are balanced. Therefore, during the first
turn, the best schedule for the adversary is to schedule the root last. When the root is scheduled,
it must execute a pull. Therefore, at the end of the first turn, the tree consists of the root r
with two children, u and a new child v (that was a child of u before the pull). The subtree Tv is
balanced and u has a unique child w and Tw is balanced with at most nw = bn−12 c nodes. Since

h(d) ≤ n < h(d+1), we have 2d +
∑d−2

i=1 2i ≤ nw ≤ 2d +
∑d−2

i=1 2i. That is, h(d−1) ≤ nw < h(d).
Hence, Tu ∈ Td. Moreover, since the root does not execute any operation while the nodes of Tu
are not balanced, we can consider Tu as an independent subtree and the induction hypothesis
holds. Therefore, there is a schedule for the adversary such that Tu is balanced after exactly
d−1 turns. In total, there is an adversary that implies that T ∈ Td+1 requires d turns to become
balanced.

We now prove the Lemma. For any n ≥ 1, let dn be the integer such that h(dn) ≤ n <
h(dn + 1).

14

Consider an n-node path rooted in one of its ends and the following schedule of the nodes.
Let us define the beginning of Phase i, i = 1..n, as the turn when the tree is composed of a path
P i of length n− i with one end the root r and the other end is a node v attached to a balanced
subtree T i of size i. During the Phase i, the adversary schedules the nodes as follows: at each
turn, all nodes of P i \ {v} (they don’t do anything since they have unbalanced descendant),
then the nodes of T i ∪ {v} in the same ordering as defined above. Hence, Phase i boils down
to balancing a tree composed of a root node attached to a single balanced subtree. By above
paragraph, Phase i lasts at least di turns.

Hence, the tree will be balanced in N =
∑n

i=1 di turns. Hence,

N ≥
h(dn)−1∑

i=1

di ≥
dn−1∑
i=1

(i− 1)(h(i+ 1)− h(i)) ≥ (dn − 2)(h(dn)− h(dn − 1))

By definition of h, h(dn)− h(dn − 1) = 2dn + 2dn−2 − 2dn−1 > 2dn−2. Hence,

N ≥ (dn − 2)2dn−2.

Note now that by definition n < h(dn + 1) ≤ 2dn+2. It implies that dn > log2 n− 2. Finally, we
obtain N = Ω(n log n). ut

15

