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Abstract

In this paper, we study a colouring problem motivated by a practical frequency
assignment problem and, up to our best knowledge, new. In wireless networks,
a node interferes with other nodes, the level of interference depending on numer-
ous parameters: distance between the nodes, geographical topography, obsta-
cles, etc. We model this with a weighted graph (G, w) where the weight function
w on the edges of G represents the noise (interference) between the two end-
vertices. The total interference in a node is then the sum of all the noises of
the nodes emitting on the same frequency. A weighted t-improper k-colouring
of (G,w) is a k-colouring of the nodes of G (assignment of k frequencies) such
that the interference at each node does not exceed the threshold ¢t. We consider
here the Weighted Improper Colouring problem which consists in determining
the weighted t-improper chromatic number defined as the minimum integer k
such that (G,w) admits a weighted t-improper k-colouring. We also consider
the dual problem, denoted the Threshold Improper Colouring problem, where,
given a number k of colours, we want to determine the minimum real ¢ such that
(G, w) admits a weighted t-improper k-colouring. We first present general upper
bounds for both problems; in particular we show a generalisation of Lovész’s
Theorem for the weighted t-improper chromatic number. We then show how
to transform an instance of the Threshold Improper Colouring problem into
another equivalent one where the weights are either one or M, for a sufficiently
large M. Motivated by the original application, we then study a special in-
terference model on various grids (square, triangular, hexagonal) where a node
produces a noise of intensity 1 for its neighbours and a noise of intensity 1/2 for
the nodes at distance two. We derive the weighted t-improper chromatic number
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for all values of t. Finally, we model the problem using integer linear program-
ming, propose and test heuristic and exact Branch-and-Bound algorithms on
random cell-like graphs, namely the Poisson-Voronoi tessellations.

Keywords: graph colouring, improper colouring, interference, radio networks,
frequency assignment.

1. Introduction

Let G = (V,E) be a graph. A k-colouring of G is a function ¢ : V. —
{1,...,k}. The colouring c is proper if wv € E implies c(u) # c(v). The
chromatic number of G, denoted by x(G), is the minimum integer k such that
G admits a proper k-colouring. The goal of the VERTEX COLOURING problem is
to determine x(G) for a given graph G. It is a well-known NP-hard problem [16].

A k-colouring ¢ is l-improper if |[{v € N(u) | ¢(v) = c(u)}| < I, for all
u € V (as usual in the literature, N(u) stands for the set {v | wv € E(G)}).
Given a non-negative integer [, the l[-improper chromatic number of a graph G,
denoted by x;(G), is the minimum integer k& such that G admits an l-improper
k-colouring. Given a graph G and an integer [, the IMPROPER COLOURING
problem consists in determining x;(G) and is also NP-hard [19, 8]. Indeed, if
I = 0, observe that xo(G) = x(G). Consequently, VERTEX COLOURING is a
particular case of IMPROPER COLOURING.

In this work we define and study a new variation of the IMPROPER COLOUR-
ING problem for edge-weighted graphs. An edge-weighted graph is a pair (G, w)
where G = (V, E) is a graph and w : £ — R%. Given an edge-weighted graph
(G,w) and a colouring ¢ of G, the interference of a vertex w in this colouring is
defined by

I,(G,w,c) = Z w(u, v).

{veN(u)|e(v)=c(u)}

For any non-negative real number ¢, called threshold, we say that c is a weighted
t-improper k-colouring of (G,w) if ¢ is a k-colouring of G such that I,,(G, w, ¢) <
t, for all u € V.

Given a threshold ¢ € R’ , the minimum integer k such that the graph G
admits a weighted t-improper k-colouring is the weighted t-improper chromatic
number of (G,w), denoted by x:(G,w). Given an edge-weighted graph (G, w)
and a threshold ¢ € R, determining x;(G,w) is the goal of the WEIGHTED
IMPROPER COLOURING problem. Note that if ¢ = 0 then xo(G,w) = x(G),
and if w(e) =1 for all e € E, then x;(G,w) = x;(G) for any positive integer .
Therefore, the WEIGHTED IMPROPER COLOURING problem is clearly NP-hard
since it generalises VERTEX COLOURING and IMPROPER COLOURING.

On the other hand, given a positive integer k, we define the minimum k-
threshold of (G, w), denoted by Ty (G, w) as the minimum real ¢ such that (G, w)
admits a weighted t-improper k-colouring. Then, for a given edge-weighted



graph (G,w) and a positive integer k, the THRESHOLD IMPROPER COLOUR-
ING problem consists in determining Ty (G, w). The THRESHOLD IMPROPER
COLOURING problem is also NP-hard. This fact follows from the observation
that determining whether x;(G) < k is NP-complete, for every I > 2 and
kE > 2 [10, 9, 8]. Consequently, in particular, it is a NP-complete problem
to decide whether a graph G admits a weighted t-improper 2-colouring when all
the weights of the edges of G are equal to one, for every ¢t > 2.

1.1. Motivation

Our initial motivation to these problems was the design of satellite antennas
for multi-spot MFTDMA satellites [2]. In this technology, satellites transmit
signals to areas on the ground called spots. These spots form a grid-like struc-
ture which is modelled by an hexagonal cell graph. To each spot is assigned
a radio channel or colour. Spots are interfering with other spots having the
same channel and a spot can use a colour only if the interference level does not
exceed a given threshold ¢. The level of interference between two spots depends
on their distance. The authors of [2] introduced a factor of mitigation v and the
interference of remote spots are reduced by a factor 1 —~. When the interference
level is too low, the nodes are considered to not interfere anymore. Considering
such types of interference, where nodes at distance at most 7 interfere, leads to
the study of the i-th power of the graph modelling the network and a case of
special interest is the power of grid graphs (see Section 3).

1.2. Related Work

Our problems are particular cases of the FREQUENCY ASSIGNMENT problem
(FAP). FAP has several variations that were already studied in the literature
(see [1] for a survey). In most of these variations, the main constraint to be
satisfied is that if two vertices (mobile phones, antennas, spots, etc.) are close,
then the difference between the frequencies that are assigned to them must be
greater than some function which usually depends on their distance.

There is a strong relationship between most of these variations and the
L(p1,...,pq)-LABELLING problem [20]. In this problem, the goal is to find a
colouring of the vertices of a given graph G, in such a way that the difference
between the colours assigned to vertices at distance 7 is at least p;, for every
1=1,...,d.

In some other variants, for each non-satisfied interference constraint a penalty
must be paid. In particular, the goal of the MINIMUM INTERFERENCE FRE-
QUENCY ASSIGNMENT problem (MI-FAP) is to minimise the total penalties
that must be paid, when the number of frequencies to be assigned is given.
This problem can also be studied for only co-channel interference, in which the
penalties are applied only if the two vertices have the same frequency. However,
MI-FAP under these constraints does not correspond to WEIGHTED IMPROPER
COLOURING, because we consider the co-channel interference, i.e. penalties,
just between each vertex and its neighbourhood.



The two closest related works we found in the literature are [18] and [11].
However, they both apply penalties over co-channel interference, but also to the
adjacent channel interference, i.e. when the colours of adjacent vertices differ by
one unit. Moreover, their results are not similar to ours. In [18], they propose an
enumerative algorithm for the problem, while in [11] a Branch-and-Cut method
is proposed and applied over some instances.

1.8. Results

In this article, we study both parameters x;(G,w) and Ty (G,w). We first
present general bounds; in particular we show a generalisation of Lovasz’s The-
orem for x;(G,w). We after show how to transform an instance of THRESHOLD
IMPROPER COLOURING into an equivalent one where the weights are either one
or M, for a sufficiently large M.

Motivated by the original application, we then study a special interference
model on various grids (square, triangular, hexagonal) where a node produces a
noise of intensity 1 for its neighbours and a noise of intensity 1/2 for the nodes
that are at distance two. We derive the weighted ¢-improper chromatic number
for all possible values of ¢.

Finally, we propose a heuristic and a Branch-and-Bound algorithm to solve
THRESHOLD IMPROPER COLOURING for general graphs. We compare them to
an integer linear programming formulation on random cell-like graphs, namely
Voronoi diagrams of random points of the plan. These graphs are classically
used in the literature to model telecommunication networks [5, 13, 14].

2. General Results

In this section, we present some results for WEIGHTED IMPROPER COLOUR-
ING and THRESHOLD IMPROPER COLOURING for general graphs and general
interference models.

2.1. Upper bounds

Let (G,w) be an edge-weighted graph with positive real weights given by
w : E(G) — Qf. For any vertex v € V(G), its weighted degree is d,,(v) =
> ueN () W(u, v). The mazimum weighted degree of G is A(G, w) = maxyey du (v).

Given a k-colouring ¢ : V' — {1,...,k} of G, we define, for every vertex
v € V(G) and colour i = 1,... .k, di, .(v) = > {(weN (v)e(u)=i} (U, v). Note that
dfu(jf:) (v) = I,(G,w,c). We say that a k-colouring ¢ of G is w-balanced if ¢
satisfies the following property:

For any vertex v € V(G), I,(G,w,c) < dﬂ,,c(v), for every j =1,...,k.

We denote by ged(w) the greatest common divisor of the weights of w (ob-
serve that ged(w) > 0 because we just consider positive weights). We use here
the generalisation of the ged to non-integer numbers (e.g. in Q) where a number
x is said to divide a number y if the fraction y/x is an integer. The important



property of ged(w) is that the difference between two interferences is a multiple
of ged(w); in particular, if for two vertices v and wu, di, .(v) > dJ, .(u), then
dyy (v) = d, o(u) + ged(w).

If ¢ is not a multiple of the ged(w), that is, there exists an integer a € Z

such that a ged(w) <t < (a + 1)ged(w), then x*(G) = x¥ gCd(w)(G).

Proposition 1. Let (G,w) be an edge-weighted graph. For any k > 2, there
exists a w-balanced k-colouring of G.

Proof. Let us colour G = (V, E) arbitrarily with k colours and then repeat
the following procedure: if there exists a vertex v coloured i and a colour j
such that di, .(v) > dJ, .(v), then recolour v with colour j. Observe that this
procedure neither increases (we just move a vertex from one colour to another)
nor decreases (a vertex without neighbour on its colour is never moved) the
number of colours within this process. Let W be the sum of the weights of
the edges having the same colour in their end-vertices. In this transformation,
W has increased by dfﬂ,c(v) (edges incident to v that previously had colour j
in its endpoint opposite to v), but decreased by diu,c(v) (edges that previously
had colour ¢ in both of their end-vertices). So, W has decreased by di, .(v) —
di, (v) > ged(w). As W < |E|maxccp w(e) is finite, this procedure finishes
and produces a w-balanced k-colouring of G. O

The existence of a w-balanced colouring gives easily some upper bounds on
the weighted ¢-improper chromatic number and the minimum k-threshold of
an edge-weighted graph (G,w). It is a folklore result that x(G) < A(G) + 1,
for any graph G. Lovész [17] extended this result for IMPROPER COLOURING

A(G)+1

problem using w-balanced colouring. He proved that x;(G) < [=77—]. In

what follows, we extend this result to weighted improper colouring.

Theorem 2. Let (G,w) be an edge-weighted graph with w : E(G) — Q% , and
t a multiple of ged(w). Then

(G, w) < {A(G,w) +gcd(w)"

t + ged(w)

Proof. If t, w, and G are such that x;(G,w) = 1, then the inequality is trivially
satisfied. Thus, consider that x;(G,w) > 1.
Observe that, in any w-balanced k-colouring c of a graph G, the following

holds:
dy(v) = Y wlu,v) > kdi(v). (1)
u€eN (v)
Let k* = [ &(Gultmece)
We claim that ¢* is a weighted t-improper k*-colouring of (G, w).
By contradiction, suppose that there is a vertex v in G such that ¢*(v) =14
and that df, .(v) > t. Since ¢* is w-balanced, dJ, .(v) > ¢, for all j =1,... k*.
By the definition of ged(w) and as ¢ is a multiple of ged(w), it leads to df, .(v) >

1 > 2 and c¢* be a w-balanced k*-colouring of G.



t 4+ ged(w) for all j =1,...,k*. Combining this inequality with Inequality (1),
we obtain:
A(G,w) > dy(v) > k*(t + ged(w)),
giving
A(G,w) > A(G,w) + ged(w),

a contradiction. The result follows.
O

Note that when all weights are unit, we obtain the bound for the improper
colouring derived in [17]. Brooks [7] proved that for a connected graph G,
X(G) = A(G)+1if, and only if, G is complete or an odd cycle. One could wonder
for which edge-weighted graphs the bound we provided in Theorem 2 is tight.
However, Correa et al. [8] already showed that it is NP-complete to determine
if the improper chromatic number of a graph G attains the upper bound of
Lovasz, which is a particular case of WEIGHTED IMPROPER COLOURING, i.e. of
the bound of Theorem 2.

We now show that w-balanced colourings also yield upper bounds for the
minimum k-threshold of an edge-weighted graph (G,w). When k = 1, then all
the vertices must have the same colour, and T (G, w) = A(G,w). This may be
generalised as follows, using w-balanced colourings.

Theorem 3. Let (G,w) be an edge-weighted graph with w : E(G) — R, and
let k be a positive integer. Then

Proof. Let ¢ be a w-balanced k-colouring of G. Then, for every vertex v € V(G):

KTk (Gw) < kdS) (v) < dw(v) = Y w(u,v) < A(G,w)
u€eN (v)
O
Because T1(G,w) = A(G,w), Theorem 3 may be restated as kT (G,w) <
... < Ty (G,w). This inequality may be generalised as follows.

Theorem 4. Let (G,w) be an edge-weighted graph with w : E(G) — R4, and
let k and p be two positive integers. Then

TP(Ga ’LU)

Proof. Set t = T,(G,w). Let ¢ be a t-improper p-colouring of (G,w). For
1 =1,...,p, let G; be the subgraph of G induced by the vertices coloured 1
by c¢. By definition of improper colouring A(G;,w) < t for all 1 < i < p.
By Theorem 3, each (G;,w) admits a t/k-improper k-colouring ¢; with colours
{(i=1D)k+1,...,ik}. The union of the ¢;’s is then a t/k-improper kp-colouring
of (G,w). O

Tkp (Ga w) S



Theorem 4 and its proof suggest that to find a kp-colouring with small impro-
priety, it may be convenient to first find a p-colouring with small impropriety and
then to refine it. In addition, such a strategy allows to adapt dynamically the re-
finement. In the above proof, the vertex set of each part G; is again partitioned
into k parts. However, sometimes, we shall get a better kp-colouring by parti-
tioning each G; into a number of k; parts, with Y »_ k; = kp. Doing so, we ob-
tain a T-improper kp-colouring of (G, w), where T = max{A(GkiZ’w), 1 <i<p}

One can also find an upper bound on the minimum k-threshold by consider-
ing first the £ — 1 edges of largest weight around each vertex. Let (G, w) be an
edge-weighted graph, and let vy, ..., v, be an ordering of the vertices of G. The
edges of G may be ordered in increasing order of their weight. Furthermore, to
make sure that the edges incident to any particular vertex are totally ordered,
we break ties according to the label of the second vertex. Formally, we say that
viv; <y vy if either w(vvj) < w(vv,) or w(vvy) = w(vv;) and j < j'.
With such a partial order on the edge set, the set E¥ (v) of min{|N (v)|,k — 1}
greatest edges (according to this ordering) around a vertex is uniquely defined.
Observe that every edge incident to v and not in EX (v) is smaller than an edge
of Ei(v) for <,,.

Let G* be the graph with vertex set V(G) and edge set Uvev(a) EF (v).
Observe that every vertex of EF (v) has degree at least min{|N(v)|,k — 1}, but
a vertex may have an arbitrarily large degree. For if any edge incident to v has
a greater weight than any edge not incident to v, the degree of v in G¥ is equal
to its degree in G. However we now prove that at least one vertex has degree
k—1.

Proposition 5. If (G,w) is an edge-weighted graph, then GX has a vertex of
degree at most k — 1.

Proof. Suppose for a contradiction, that every vertex has degree at least k, then
for every vertex x there is an edge zy in E(G¥)\ EX (x), and so in EX (y)\ EX (z).

Therefore, there must be a cycle (x1,...,x,) such that, for all 1 < i < 7,
211 € EF (zi1) \ EF (2;) (with 2,1 = 21). Tt follows that 2125 <, z213 <,

- <w xpx1 <4 x122. Hence, by definition, w(zize) = w(xszs) = -+ =
w(xz,r1) = w(ziwe). Let m be the integer such that x,, has maximum index
in the ordering v1,...,v,. Then there exists j and j’ such that z,,, = v; and
Zm42 = vj. By definition of m, we have j > j’. But this contradicts the fact
that 2, Tm+1 <w Tm+1Tm+t2- O

Corollary 6. If (G,w) is an edge-weighted graph, then G% has a proper k-
colouring.

Proof. By induction on the number of vertices. By Proposition 5, G has a
vertex x of degree at most k — 1. Trivially, G¥ — x is a subgraph of (G — z)¥.
By the induction hypothesis, (G — x)¥ has a proper k-colouring, which is also
a proper k-colouring of G* — x. This colouring can be extended in a proper
k-colouring of GE . by assigning to = a colour not assigned to any of its k — 1

neighbours. O
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Figure 1: Construction of G’ from G using edge uv € E(G) and k = 4 colours. Dashed edges
represent edges of weight M.

Corollary 7. If (G,w) is an edge-weighted graph, then Ti(G,w) < A(G \
B(G},),w).

2.2. Transformation

In this section, we prove that the THRESHOLD IMPROPER COLOURING prob-
lem can be transformed into a problem mixing proper and improper colouring.
More precisely, we prove the following:

Theorem 8. Let (G,w) be an edge-weighted graph where w is an integer-
valued function, and let k be a positive integer. We can construct an edge-
weighted graph (G*,w*) such that w*(e) € {1, M} for any e € E(G*), satisfying
Ti(G,w) = T (G*, w*), where M =143 gy wle).

Proof. Consider the function f(G,w) = > ¢ cr(q)jw(e)zm (wle) —1).

If f(G,w) =0, all edges have weight either one or M and G has the desired
property. In this case, G* = G. Otherwise, we construct a graph G’ and a
function w’ such that T (G',w') = Ty (G, w), but f(G',w') = f(G,w) — 1. By
repeating this operation f(G,w) times we get the required edge-weighted graph
(G*,w*).

In case f(G,w) > 0, there exists an edge e = wv € E(G) such that 2 <
w(e) < M. G’ is obtained from G by adding two complete graphs on k — 1
vertices K% and KV and two new vertices v’ and v’. We join v and u’ to all
the vertices of K* and v and v’ to all the vertices of K¥. We assign weight M
to all these edges. Note that, u and ' (v and v’) always have the same colour,
namely the remaining colour not used in K" (resp. Kv).

We also add two edges uv’ and u'v both of weight 1. The edges of G keep
their weight in G’, except the edge e = uv whose weight is decreased by one
unit, i.e. w'(e) = w(e) — 1. Thus, f(G',w") = f(G,w) — 1 as we added only
edges of weights 1 and M and we decreased the weight of e by one unit.

Now consider a weighted t-improper k-colouring ¢ of (G, w). We produce a
weighted t-improper k-colouring ¢’ of (G',w’) as follows: we keep the colours of
all the vertices in G, we assign to u’ (v’) the same colour as w (resp. v), and
we assign to K“ (resp. KV) the k — 1 colours different from the one used in u
(resp. v).

Conversely, from any weighted improper k-colouring ¢ of (G',w'), we get
a weighted improper k-colouring ¢ of (G, w) by just keeping the colours of the
vertices that belong to G.



For such colourings ¢ and ¢ we have that I,(G,w,c) = L,(G',w', ), for
any vertex x of G different from w and v. For z € K* U K", I.(G',w',c) =
0. The neighbours of u with the same colour as u in G’ are the same as in
G, except possibly v’ which has the same colour of w if, and only if, v has
the same colour of u. Let ¢ = 1 if v has the same colour as u, otherwise
e = 0. As the weight of uv decreases by one and we add the edge uv’ of
weight 1 in G/, we get I,(G',w',c) = I,(G,w,c) — e + W' (u,v")e = L,(G,w, c).
Similarly, I,,(G',w', ) = I,(G,w,c). Finally, I,(G' v, ) = I, (G, w',¢) =
e. But I,(G',w', ) > (w(u,v) — 1)e and so L, (G',w',¢) < L,(G",w', ") and
I, (G w', ) < I,(G,w' ). In summary, we have

max I, (G',w', ¢') = max I,(G, w, c)

and therefore Ty (G, w) = Tp(G', w’). O

In the worst case, the number of vertices of G* is n+m(wmae — 1)2k and the
number of edges of G* is m + M (Wmax — 1)[(k +4)(k — 1) + 2] with n = |V(G)|,
m = |E(G)| and Wnae = MaX.cpq) w(e).

In conclusion, this construction allows to transform the THRESHOLD IM-
PROPER COLOURING problem into a problem mixing proper and improper
colouring. Therefore the problem consists in finding the minimum [ such that
a (non-weighted) [-improper k-colouring of G* exists with the constraint that
some subgraphs of G* must admit a proper colouring. The equivalence of the
two problems is proved here only for integers weights, but it is possible to adapt
the transformation to prove it for rational weights.

3. Squares of Particular Graphs

As mentioned in the introduction, WEIGHTED IMPROPER COLOURING is
motivated by networks of antennas similar to grids [2]. In these networks, the
noise generated by an antenna undergoes an attenuation with the distance it
travels. It is often modelled by a decreasing function of d, typically 1/d* or
1/(2971).

Here we consider a simplified model where the noise between two neigh-
bouring antennas is normalised to 1, between antennas at distance two is 1/2
and 0 when the distance is strictly greater than two. Studying this model of
interference corresponds to study the WEIGHTED IMPROPER COLOURING of the
square of the graph G, that is the graph G2 obtained from G by joining every
pair of vertices at distance two, and to assign weights wa(e) = 1, if e € E(G),
and wy(e) = 1/2, if e € E(G?) \ E(G). Observe that in this case the interesting
threshold values are the non-negative multiples of 1/2.

Figure 2 shows some examples of colouring for the square grid. In Fig-
ure 2(b), each vertex = has neither a neighbour nor a vertex at distance two
coloured with its own colour, so I,(G?,ws,c) = 0 and G? admits a weighted
O-improper 5-colouring. In Figure 2(c), each vertex = has no neighbour with its



colour and at most one vertex of the same colour at distance 2. So I,(G?,ws, ¢) =
1/2 and G? admits a weighted 0.5-improper 4-colouring.

For any t € Ry, we determine the weighted t-improper chromatic number
for the square of infinite paths, square grids, hexagonal grids and triangular
grids under the interference model wy. We also present lower and upper bounds
for x¢(T?,wy), for any tree T and any threshold t.

8.1. Infinite paths and trees

In this section, we characterise the weighted ¢t-improper chromatic number
of the square of an infinite path, for all positive real ¢. Moreover, we present
lower and upper bounds for x;(T?2,ws), for a given tree T.

Theorem 9. Let P = (V, E) be an infinite path. Then,

3, f0<t<1;
xe(P?wg) =<2, if1<t<3;
1, if3<t.

Proof. Let V.={v; |i € Z} and E = {(v;—1,v;) | i € Z}. Each vertex of P has
two neighbours and two vertices at distance two. Consequently, the equivalence
x¢(P?,w2) = 1if, and only if, ¢ > 3 holds trivially.

There is a 2-colouring ¢ of (P%,wy) with maximum interference 1 by just
colouring v; with colour (i mod 2) + 1. So x¢(P?,ws) < 2 if t > 1. We claim
that there is no weighted 0.5-improper 2-colouring of (P?,ws). By contradiction,
suppose that ¢ is such a colouring. If ¢(v;) = 1, for some i € Z, then ¢(v;—1) =
c(vir1) = 2 and ¢(v;—2) = ¢(v;12) = 1. This is a contradiction because v; would
have interference 1.

Finally, the colouring c(v;) = (i mod 3) + 1, for every i € Z, is a feasible
weighted O-improper 3-colouring. O

Theorem 10. Let T = (V, E) be a (non-empty) tree. Then, [M—‘ +1<

2t+1
(T, ws) < [ S50 4+ 2.

Proof. The lower bound is obtained by two simple observations. First, x;(H,w) <
Xt(G,w), for any H C G. Let T be a tree and v be a node of maximum degree
in T. Then, observe that the weighted t-improper chromatic number of the
subgraph of T2 induced by v and its neighbourhood is at least [%1 + 1.
Indeed, the colour of v can be assigned to at most |t] vertices on its neighbour-
hood. Any other colour used in the neighbourhood of v cannot appear in more
than 2¢ + 1 vertices because each pair of vertices in the neighbourhood of v is
at distance two.

Let us look now at the upper bound. Choose any node r € V' to be the root
of T. Colour r with colour 1. Then, by a breadth-first traversal in the tree,
for each visited node v colour all the children of v with the [Ag_z;l} colours
different from the ones assigned to v and to its parent in such a way that at
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most 2t + 1 nodes have the same colour. This is a feasible weighted ¢t-improper
k-colouring of T2, with k < [Az(ﬂl_l] + 2, since each vertex interferes with at
most 2t vertices at distance two which are children of its parent. O

For a tree T and the weighted function w?, Theorem 10 provides upper and
lower bounds on (T2, ws), but we do not know the computational complexity
of determining (72, ws).

3.2. Grids

In this section, we show the optimal values of y;(G?,ws), whenever G is an
infinite square, hexagonal or triangular grid, for all the possible values of ¢t.

8.2.1. Square Grid

The square grid is the graph & in which the vertices are all integer linear
combinations ae; + beg of the two vectors e; = (1,0) and eo = (0,1), for any
a,b € Z. Fach vertex (a,b) has four neighbours: its down neighbour (a,b — 1),
its up neighbour (a,b + 1), its right neighbour (a + 1,b) and its left neighbour
(a —1,b) (see Figure 2(a)).

Theorem 11.

if t =0

if t =0.5;
if 1<t <3;
, if3<t<s;
. if8<t.

Xt(627w2) =

=N W o Ot

Proof. If t = 0, then the colour of vertex (a,b) must be different from the
ones used on its four neighbours. Moreover, all the neighbours have different
colours, as each pair of neighbours is at distance two. Consequently, at least five
colours are needed. The following construction provides a weighted 0-improper
5-colouring of (&2, ws): for 0 < j <4, let A; = {(4,0) + a(5e1) + b(2e1 + lea) |
Va,b € Z}. For 0 < j < 4, assign the colour j + 1 to all the vertices in A; (see
Figure 2(b)).

When ¢t = 0.5, we claim that at least four colours are needed to colour
(&2, wy). The proof is by contradiction. Suppose that there exists a weighted
0.5-improper 3-colouring of it. Let (a,b) be a vertex coloured 1. None of its
neighbours is coloured 1, otherwise (a, b) has interference 1. If three neighbours
have the same colour, then each of them will have interference 1. So two of its
neighbours have to be coloured 2 and the two other ones 3 (see Figure 3(a)).
Now consider the four nodes (a — 1,b — 1), (a — 1,0+ 1), (a + 1,b — 1) and
(a+1,b+ 1). For all configurations, at least two of these four vertices have
to be coloured 1 (the ones indicated by a * in Figure 3(a)). But then (a,b)
will have interference at least 1, a contradiction. A weighted 0.5-improper 4-
colouring of (&2, ws) can be obtained as follows (see Figure 2(c)): for 0 < j < 3,
let B; = {(j,0)+a(4e1)+b(3e1+2e2) | Va,b € Z} and B; = {(j+1,2)+a(4de1)+

11



(a—1,b) (a+1,b)

Figure 2: Optimal colourings of (&2, ws): (b) weighted O-improper 5-colouring of (&2, ws),
(c) weighted 0.5-improper 4-colouring of (&2, ws), and (d) weighted 3-improper 2-colouring
of (62, ws).
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(c)

Figure 3: Lower bounds for the square grid: (a) if ¢ < 0.5 and k < 3, there is no weighted
t-improper k-colouring of (G2, ws); (b) the first case when ¢t < 2.5 and k < 2, and (c) the
second case.

b(3e1+2e2) | Va,b € Z}. For 0 < j < 3, assign the colour j+1 to all the vertices
in B; and in B’.

If t = 1, there exists a weighted 1-improper 3-colouring of (&2, w5) given by
the following construction: for 0 < j <2, let C; = {(j,0) + a(3e1) +b(e1 +e2) |
Va,b € Z}. For 0 < j < 2, assign the colour j 4 1 to all the vertices in C;.

Now we prove by contradiction that for ¢t = 2.5 we still need at least three
colours in a weighted 2.5-improper colouring of (&2, w,). Consider a weighted
2.5-improper 2-colouring of (&2, wy) and let (a, b) be a vertex coloured 1. Vertex
(a,b) has at most two neighbours of colour 1, otherwise it will have interference
3. We distinguish three cases:

1. Exactly one of its neighbours is coloured 1; let (a — 1,b) be this vertex. Then,
the three other neighbours are coloured 2 (see Figure 3(b)). Consider the two
sets of vertices {(a —1,b—1),(a+1,b—1),(a,b—2)} and {(a — 1,b+ 1), (a +
1,b4+1),(a,b+2)} (these sets are surrounded by dotted lines in Figure 3(b));
each of them has at least two vertices coloured 1, otherwise the vertex (a,b—1)
or (a,b+ 1) will have interference 3. But then (a,b) having four vertices at
distance two coloured 1 has interference 3, a contradiction.

2. Two neighbours of (a,b) are coloured 1.
(a) These two neighbours are opposite, say (a—1,b) and (a+1,b) (see Figure 3(c)

left). Consider again the two sets {(a — 1,b—1),(a+1,b—1),(a,b —2)} and
{(a—1,b+1),(a+ 1,6+ 1),(a,b+ 2)} (these sets are surrounded by dotted
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3.

lines in Figure 3(c) left); they both contain at least one vertex of colour 1 and
therefore (a,b) will have interference 3, a contradiction.

The two neighbours of colour 1 are of the form (a,b — 1) and (a — 1,b) (see
Figure 3(c) right). Consider the two sets of vertices {(a + 1,0 —1),(a + 1,0+
1), (a+2,b)} and {(a+1,b+1), (a—1,b+1), (a,b+2)} (these sets are surrounded
by dotted lines in Figure 3(c) right); these two sets contain at most one vertex
of colour 1, otherwise (a,b) will have interference 3. Moreover, each of these
sets cannot be completely coloured 2, otherwise (a + 1,b) or (a,b + 1) will
have interference at least 3. So vertices (a + 1,b — 1), (a + 2,b), (a,b + 2)
and (a — 1,b+ 1) are of colour 2 and the vertex (a + 1,b+ 1) is of colour 1.
But then (a —2,b) and (¢ — 1,b — 1) are of colour 2, otherwise (a,b) will have
interference 3. Thus, vertex (a — 1,b) has exactly one neighbour coloured 1
and we are again in Case 1.

All neighbours of (a,b) are coloured 2. If one of these neighbours has itself
a neighbour (distinct from (a,b)) of colour 2, we are in Case 1 or 2 for this
neighbour. Therefore, all vertices at distance two from (a, b) have colour 1 and
the interference in (a,b) is 4, a contradiction.

A weighted 3-improper 2-colouring of (&2, ws) can be obtained as follows:
a vertex of the grid (a,b) is coloured with colour (|%] + [2| mod 2) + 1, see
Figure 2(d).

Finally, since each vertex has four neighbours and eight vertices at distance
two, there is no weighted 7.5-improper 1-colouring of (&2, ws) and, whenever
t > 8, one colour suffices. O

8.2.2. Hexagonal Grid

There are many ways to define the system of coordinates of the hexagonal
grid. Here, we use grid coordinates as shown in Figure 4. The hexagonal grid
graph is then the graph $ whose vertex set consists of pairs of integers (a, b) € 72
and where each vertex (a,b) has three neighbours: (a — 1,b), (a 4+ 1,b), and
(a,b+1) if a+bis odd, or (a,b — 1) otherwise.

Theorem 12.

if0<t<1,
ifl1<t<2;
if 2 <t<6;
. if6 <t

X (92, w2) =

=N W e

Proof. Note first, that when ¢ = 0, at least four colours are needed to colour the
grid, because a vertex and its neighbourhood in $) form a clique of size four in
$2. The same number of colours are needed if we allow a threshold ¢ = 0.5. To
prove this fact, let A be a vertex (a,b) of  and B = (a—1,b), C = (a,b—1) and
D = (a+1,b) be its neighbours in $. Denote by G = (a—2,b), E = (a—1,b—1),
F=(a—2,b—-1),H=(a+1,b—1),I =(a+2,b—1)and J = (a+1,b—2) (see
Figure 6(a)). By contradiction, suppose there exists a weighted 0.5-improper
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Figure 4: Weighted 0-improper 4-colouring of (£2, w2). Left: Graph with coordinates. Right:
Corresponding hexagonal grid in the euclidean space.

(a)t=1,k=3

Figure 5: (a) weighted l-improper 3-colouring of ($2,w2) and (b) weighted 2-improper 2-
colouring of (5’)2,11}2).
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3-colouring of $2. Consider a node A coloured 1. Its neighbours B, C, D cannot
be coloured 1 and they cannot all have the same colour. W.l.o.g., suppose that
two of them B and C' have colour 2 and D has colour 3. Then F, F and G
cannot be coloured 2 because of the interference constraint in B and C. If F
is coloured 3, then G and FE are coloured 1, creating interference 1 in A. So F'
must be coloured 1 and G and E must be coloured 3. Then, H can be neither
coloured 2 (interference in C) nor 3 (interference in E). So H is coloured 1.
The vertex I is coloured 3, otherwise the interference constraint in H or in C'is
not satisfied. Then, J can receive neither colour 1, because of the interference
in H, nor colour 2, because of the interference in C', nor colour 3, because of
the interference in I.

There exists a construction attaining this bound and the number of colours,
i.e. a O-improper 4-colouring of ($2,ws) as depicted in Figure 4. We define for
0 < j < 3 the sets of vertices A; = {(4,0) + a(4e1) + b(2e1 + e2)|Va, b € Z}. We
then assign the colour j+1 to the vertices in A;. This way no vertex experiences
any interference as vertices of the same colours are at distance at least three.

For ¢t = 1.5 it is not possible to colour the grid with less than three colours.
By contradiction, suppose that there exists a weighted 1.5-improper 2-colouring.
Consider a vertex A coloured 1. If all of its neighbours are coloured 2, they
have already interference 1, so all the vertices at distance two from A need to
be coloured 1; this gives interference 3 in A. Therefore one of A’s neighbours,
say D, has to be coloured 1 and consider that the other two neighbours B and C'
are coloured 2. B and C have at most one neighbour of colour 2. It implies that
A has at least two vertices at distance two coloured 1. This is a contradiction,
because the interference in A would be at least 2 (see Figure 6(b)).

Figure 5(a) presents a weighted 1-improper 3-colouring of (£2,w,). To ob-
tain this colouring, let B; = {(j,0) + a(3e1) + b(e1 + e2) | Ya,b € Z}, for
0 < j < 2. Then, we colour all the vertices in the set B; with colour j + 1, for
every 0 < j < 2.

For ¢t < 6, it is not possible to colour the grid with one colour. As a matter
of fact, each vertex has three neighbours and six vertices at distance two in $).
Using one colour leads to an interference equal to 6. There exists a 2-improper
2-colouring of the hexagonal grid as depicted in Figure 5(b). We define for
0 < j <1 the sets of vertices C; = {(4,0) + a(2e1) + bea|Va,b € Z}. We then
assign the colour j 4 1 to the vertices in Cj.

O

3.2.8. Triangular Grid

The triangular grid is the graph T whose vertices are all the integer linear
combinations af; + bfs of the two vectors f; = (1,0) and fo = (%, @) Thus
we may identify the vertices with the ordered pairs (a,b) of integers. Each
vertex v = (a,b) has six neighbours: its right neighbour (a + 1,b), its right-up
neighbour (a,b4+1), its left-up neighbour (a—1,b41), its left neighbour (a—1,b),
its left-down neighbour (a,b— 1) and its right-down neighbour (a+1,b—1) (see
Figure 8(a)).
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(a) (b)

Figure 6: Lower bounds for the hexagonal grid. (a) when ¢t < 0.5 and k& < 3, there is no
weighted t-improper k-colouring of (£2,ws); (b) vertices coloured 2 force a vertex coloured 1
in each ellipse, leading to interference 2 in central node.

Theorem 13.

if t =0;

if t =0.5;
ift =1;

if 1.5 <t <3;
if 3<t<b;
if 5 <t<12;
, if 12 < t.

Xt (T2 we) =

D W o Sl O

Proof. If t = 0, there is no weighted 0-improper 6-colouring of (T2, wy), since in
T2 there is a clique of size seven induced by each vertex and its neighbourhood.
There is a weighted 0-improper 7-colouring of (T2, ws) as depicted in Figure 7(a).
This colouring can be obtained by the following construction: for 0 < j < 6, let
A; ={(,0)+a(7f1) +b(2f1+ f2) | Va,b € Z}. For 0 < j < 6, assign the colour
J + 1 to all the vertices in A;.

In what follows, we denote by Vj a vertex coloured 1; by Ng, Ny, Na, N3,
N4, Nj the six neighbours of V; in T be in a cyclic order. Let I'2 be the set of
twelve vertices at distance two of Vp in T; more precisely Nj(;;1) denotes the
vertex of I'2 adjacent to both N; and N;y; and by N;; the vertex of I'? joined
only to N;, for every 0 <4 < 5, i+ 1 is taken modulo 6 (see Figure 8(b)) and
we denote by N;ji, the vertex at distance three from Vj adjacent to both Nj;
and Nji .

We claim that there is no weighted 0.5-improper 5-colouring of (T2, wy). We
prove it by contradiction, thus let ¢ be such a colouring. No neighbour of V}
can be coloured 1, otherwise Iy, (T2, wg,c) > 1. As two consecutive neighbours
are adjacent, they cannot have the same colour. Furthermore, there cannot be
three neighbours with the same colour (each of them will have an interference
at least 1). As there are four colours different from 1, exactly two of them, say 2
and 3, are repeated twice among the six neighbours. So, there exists a sequence
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Figure 7: Optimal colourings of (T2, ws): (a) weighted O-improper 7-colouring, (b) weighted
0.5-improper 6-colouring, (c) weighted 1-improper 5-colouring, (d) weighted 1.5-improper 4-
colouring, (e) weighted 3-improper 3-colouring, and (f) weighted 5-improper 2-colouring.
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(a=1,b+1) (a,b+1)

Figure 8: Notations used in proofs: (a) of existence, and (b) of non-existence; of weighted
improper colourings of (T2, ws).

of three consecutive neighbours the first one with a colour different from 2 and
3 and the two others coloured 2 and 3. W.lo.g., let ¢(N5) = 4, ¢(No) = 2,
C(Nl) =3.

Note that the vertices coloured 2 and 3 have already an interference of 0.5,
and so none of their vertices at distance two can be coloured 2 or 3. In particular,
let A = {Ns0, Noo, No1, N11, N12}; the vertices of A cannot be coloured 2 or 3.
At most one vertex in I'? can be coloured 1, otherwise Iy, (T2 wg,c) > 1. If
there is no vertex coloured 1 in A, we have a contradiction as we cannot have
a sequence of five vertices uniquely coloured 4 and 5 (indeed colours should
alternate and the vertex in the middle Ny; will have interference at least 1).
Suppose N, is coloured 3, then Ny5 and Ns5; can only be coloured 1 and 5;
but, as they have different colours, one is coloured 1 and so there is no vertex
coloured 1 in A. So the second vertex coloured 3 in the neighbourhood of V; is
necessarily N3 (it cannot be Ny neighbour of Ny coloured 3). Then, Ny cannot
be also coloured 5, otherwise Ny5 is coloured 1 and again there is no vertex
coloured 1 in A. In summary ¢(Ny) = 2, ¢(N3) = 3 and the vertex of I'? coloured
1isin A. But then the five consecutive vertices A’ = { Nag, N33, N34, N4, Ny5}
can only be coloured 4 and 5. A contradiction as I, (T2, wa,c) > 1.

A weighted 0.5-improper 6-colouring of (T2,ws) can be obtained by the
following construction (see Figure 7(b)): for 0 < j < 11, let B; = {(4,0) +
a(12f1) + b(2f1 + f2) | Va,b € Z}. For 0 < j < 5, assign the colour j + 1 to
all the vertices in Bj, Bg with colour 2, B7 with colour 1, Bg with colour 4, By
with colour 3, Big with colour 6 and By; with colour 5.

Now we prove that (T2, ws) does not admit a weighted 1-improper 4-colouring.
Again, by contradiction, suppose that there exists a weighted 1-improper 4-
colouring ¢ of (T2, ws). We analyse some cases:

1. There exist two adjacent vertices in T with the same colour.
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(a)

Let V4 and one of its neighbours be both coloured 1. Note that no other neigh-
bour of Vp, nor the vertices at distance two from V} are coloured 1 (otherwise,
Iy, (%2, wq,¢) > 1). We use intensively the following facts:

Fact 1. There do not exist three consecutive vertices with the same colour
(otherwise the vertex in the middle would have interference at least 2).

Fact 2. In a path of five vertices there cannot be four of the same colour
(otherwise the second or the fourth vertex in this path would have interference
at least 1.5).

One colour other than 1 should appear at least twice in the neighbourhood of
Vo. Let this colour be denoted 2 (the other colours being denoted 3 and 4).

Two neighbours of V{ coloured 2 are consecutive, say Ny and N;. By Fact 1,
N2 is coloured 3 Wlog None of ]\/v057 ]\/vo()7 ]\/v017 Nlla ng, N22 and N23 can be
coloured 2, otherwise Iy, (32, wa, ¢) > 1. One of N2, Nag and Nag is coloured
3, otherwise we contradict Fact 1 with colour 4 and at most one of Nyi, Ni1,
N2, Nag and Nag is coloured 3, otherwise I, (%2, ws,c) > 1; but we have a
contradiction with Fact 2.

Two neighbours of Vj coloured 2 are at distance two, say Ny and No. Then N,
Noo and Ny; (respectively N1z, Nas and Na3) are not coloured 2, otherwise
In, (%2, wa,c) > 1 (respectively In, (T2, wa,c) > 1). One of N3 and Nj is not
coloured 1, say N3. It is not coloured 2, otherwise In, (T2, wa,c) > 1. Let
¢(N3) = 3. If Ny or Nyq is coloured 2, then N33 and N34 are not coloured 2,
otherwise I, (T2, ws,c) > 1 and we have a sequence of five vertices N2, Nag,
Na3, N33 and N34 contradicting Fact 2 as four are of colour 4 (indeed, at most
one is coloured 3 due to interference in colour 3 with N3 or Nas). So Nij is
coloured 3 or 4. If N7 also is coloured 3 or 4, we have a contradiction with
Fact 2 applied to the five vertices Ngg, No1, N11, N12 and Nao, by the same
previous argument. So ¢(N7) = 1; furthermore Ny is not coloured 1 (at most
one neighbour coloured 1), nor 2 as we have seen above, nor 3, otherwise we
are in the case (a). Therefore ¢(Ny) = 4 and ¢(N5) = 3, by the same reason.
But then ¢(Nag) = 4, otherwise the interference in Vo or Ny or Nj is greater
than 1. N33 and N34 can be only coloured 2, otherwise Vj, N3, Ny or Nog will
have interference strictly greater than 1, but N33 has interference greater than
1, a contradiction.

Two neighbours of Vj coloured 2 are at distance three say Ny and N3. Then
Nso, Nop and Ny (respectively Nag, N3z and N34) are not coloured 2, otherwise
In, (T2, wa,c) > 1 (respectively Iy, (T2, wa,c) > 1). W.Lo.g., let N7 be the
vertex coloured 1. Among the four vertices Nio, Noo, Nyy and Ny5 at most
one is coloured 2, otherwise In, (%2, we,c) > 1. So, w.l.o.g, we can suppose
Ny4 and Nys are coloured 3 or 4; but we have a set of five consecutive vertices
Na3, N33, Nag, N4, Nys, contradicting Fact 2 (indeed at most one can be of
the colour of Ny).
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2. No colour appears in two adjacent vertices of <.

Let Vi be coloured 1. No colour can appear four or more times among the
neighbours of Vj, otherwise there are two adjacent neighbours with the same
colour.

(a) One colour appears three times among the neighbours of Vp, say c¢(Ng) =
¢(N2) = ¢(Ng) = 2. Wlo.g., let ¢(N;) = 3. No vertex at distance two can
be coloured 2. Nyi, N1; and Nis being neighbours of N7 cannot be coloured
3 and they cannot be all coloured 4. So one of Nyi, N11, Nio is coloured 1.
Similarly one of Noz, N33, N34 is coloured 1 (same reasoning with N3 instead
of Ni) and one of Ny5, Nss5, Nsg is coloured 1, so Iy, (T2, wg,c) > 1.

(b) The three colours appear each exactly twice in the neighbourhood of V.

i. The same colour appears in some N; and N;;2, 0 < ¢ < 3. W.lo.g., let
¢(Np) = ¢(N2) = 2 and ¢(N7) = 3. Then, ¢(N3) = ¢(N5) = 4 and ¢(Ny) = 3.
Then, ¢(N5p) = 1 or 3, ¢(No1) = 1 or 4. If ¢(N59) = 3 and ¢(Np1) = 4, then
¢(Noo) = 1. Among Nsg, Nog, Noi, at least one has colour 1. Similarly one of
N127 N22, Ngg has colour 1. So IVO((I,Q,U)Q,C) Z 1 and C(N34) = C(N45) = 2.
Consequently, no matter the colour of Nyy some vertex will have interference
greater than 1.

ii. We have ¢(Ng) = ¢(N3) =2, ¢(N1) = ¢(Ny) = 3 and ¢(Nz2) = ¢(N5) = 4. Here
we find in each of the sets {N50, N()Q, NOl} ,{le, NQQ, Ngg} and \{]\7347 N44,
Nys} a vertex coloured 1. Therefore Iy, (T2, wa, c) > 1, a contradiction.

To obtain a weighted 1-improper 5-colouring of (T2, ws), for 0 < j < 4, let
C; ={(4,0)+a(5f1) +b(2f1 + f2) | Va,b € Z}. For 0 < j < 4, assign the colour
j + 1 to all the vertices in C;. See Figure 7(c).

(T2, w7) has a weighted 1.5-improper 4-colouring as depicted in Figure 7(d).
Formally, this colouring can be obtained by the following construction: for
0 <j <3, let Dj ={(4,0) +a(4f1) +b(f1 +2f2) | Va,b € Z}; then assign
colour 4 to all the vertices in Dy, 1 to all the vertices in Dq, 3 to all the
vertices in Do and 2 to all the vertices in D3. Now, for 0 < 5 < 3, let D;- =
{(4,1) + a(4f1) + b(f1 + 2f2) | Va,b € Z}. Then, for 0 < j < 3, assign colour
j +1 to all the vertices in D.

Let us prove that (T2, wy) does not admit a weighted 2.5-improper 3-colouring.
Suppose, by contradiction, that there exists a weighted 2.5-improper 3-colouring
c of (T2, wy). A vertex can have at most two neighbours of the same colour as
it. Suppose again, w.l.o.g., that ¢(Vy) = 1. We use the following facts:

Fact 3. No vertex has three neighbours of the same colour.

Fact 4. If a vertex has two neighbours of the same colour, then it has at most
one vertex at distance two with its colour.

Fact 5. There is no path of five vertices of the same colour.

We say that a vertex v is saturated, if we know that I,(T2,ws, c) > 2.5.
Let us analyse now each of these cases.
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CASE: Vj has exactly two neighbours coloured 1.

We assume, w.l.o.g., that Ny is coloured 1. We subdivide this case into
three subcases according to the position of the second neighbour of Vj coloured
1. Due to the symmetry, we analyse the three possible cases where respectively
Ny, Ny or Nj is coloured 1.

1. Subcase ¢(N7) = 1.

We now show that no colouring is feasible, for all possible different colourings
of the vertices No, N3, Ny and N5 (up to symmetries). We can have all these
vertices of the same colour (Case la) or three of the same colour, say 2, and
the other of colour 3 (Cases 1b and 1c) and two of colour 2 and two of colour
3 (Cases 1d, le and 1f).

(a) Suppose that ¢(N2) = ¢(N3) = ¢(N4) = ¢(N5) = 2. Observe that ¢(Ni2) =
¢(Nsg) = 3, thanks to Facts 3 and 5. Since N3 and N, are saturated, we get
that all the vertices Noo, Naos, N33, N34, Nasa, Ny5 and Ns5 cannot be coloured
2. At most one of these vertices is coloured 1, due to the interference in V.
W.lo.g, we can then consider that ¢(Na2) = ¢(Nag) = ¢(N33) = 3. But then,
since Nog and N3 are saturated, we conclude that Noog, Nasz, N33z, N334 and
N34 must be all coloured 1. This is a contradiction to Fact 5.

(b) Now consider the case in which ¢(N3) = ¢(N3) = ¢(N4) = 2 and ¢(N5) = 3.
Observe that Nio cannot be coloured 1. Let us study the two other cases:

i. Now consider the case in which Nj5 is coloured 2. We observe that Ny and
N3 are saturated.
In case Ny4 is coloured 1, we also have that Vj is saturated and thus all the
vertices Naa, Nog, N33 and N34 must be coloured 3. Consequently, as Nog
and N33 are saturated, we reach a contradiction to Fact 5 as all the vertices
Naos, Naooz, Nosz, N33z and N334 must be coloured 1. Thus, Ny4 is coloured
3 (it cannot be coloured 2 due to Fact 5).
In case N33 is coloured 1, we have that V|, is saturated and all the vertices
No3, N34 and Ny5 are coloured 3. As Nsy is saturated, the vertices Nass,
N333 and N334 must be coloured 1. This contradicts Fact 3. Consequently,
N33 is coloured 3. N34 cannot be coloured 3, because it would imply that
¢(Nyg5) = 1 and, consequently, Vj is saturated and the vertices Noy and Nog
should be coloured 3 and we would have a contradiction to Fact 5. Thus, N3y
is coloured 1. Consequently, Nao, Nog and Nys5 are coloured 3. The vertices
N334 and N34q must then be coloured 1 due to the interference constraints on
the vertices N3, N33 and Ny4. However, we reach a contradiction as no colour
is feasible to vertex Nass (and Nss3).

ii. So we conclude that ¢(Ni2) = 3.

e Consider first the case ¢(Naz) = 1 (and thus Vp is saturated). We have that
No3z, N33 and N34 must be coloured 3, thanks to the Facts 3 and 4 and 1
being saturated. Ny4 cannot be coloured 3 as we would have I, (T2, wo,c) >
3. Since Vj is also saturated, it implies that ¢(Nyy) = 2. Therefore, Ny is
saturated and so ¢(Nys5) = ¢(Ns5) = ¢(Nsg) = 3, but then Iy, (T2, ws,c) > 3.
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e Thus, consider the case ¢(Nag) = 2. Then, Ny and N3 are saturated. One of
the vertices N33, N34, Nag and Nys is coloured 1, thanks to Fact 5. So Vj is
saturated and ¢(Np1) = ¢(N11) = ¢(Naz) = 3. Then, Ny12 and Nigo cannot
be coloured 3, otherwise In,, (T2, wa,c) > 3; they cannot be coloured 2 as N
is saturated; so ¢(N112) = ¢(N122) = 1, but then we reach a contradiction as
INl (T2, wa, C) Z 3.

e We then conclude that ¢(Naz) = 3. Due to Facts 3 and 5, at least one of the
vertices Noz, N33 and N34 is coloured 1 and the two others are coloured 3.
Consequently, Vj is saturated. In case Ny is coloured 2, then Ny is saturated
and the vertices Ny5, N55 and N5q are coloured 3, contradicting Fact 3. Thus,
C(N44) = 3.

— If Ny5 is coloured 2, N3 and N4 are saturated and then, N55 and Nso are
coloured 3 and it implies that N5 is saturated. Consequently, N34 is coloured

1 and N»3 and N33 are coloured 3.
Thus, No3 is saturated and the vertices Nooz, Nosz, N33z and N33y are
coloured 1, contradicting Fact 5.

— Thus, Ny5 is also coloured 3 and we obtain ¢(Ns5) = 2. Na3 cannot be
coloured 1, otherwise N33 and N34 being coloured 3, we would contradict
Fact 5. If N34 is coloured 3, N4y is saturated and then Ngg must be coloured
2 and N, is saturated. In this case, we get a contradiction to Fact 5 because
all the vertices N334, N344, Nagq and Nygs5 must be coloured 1.

So C(Ngg) = C(N33) = 3, C(N34) =1 and C(Nll) =2.
If Np; is coloured 2, we have that N is saturated and, since Nos is saturated,
we have that the vertices Nyi2, Nisa, Naoso, Naog and Nozs must be all
coloured 1, contradicting Fact 5. Thus, Ny is coloured 3 and then N5y must
be coloured 2, due to the interference constraint in Njs.
Consequently, N, is saturated and all the vertices N3qq, Nagq, Nygs and Nyss
must be coloured 1, due to the interference constraints in N4, Nyy and Nys.
This contradicts Fact 5.

(c) Let us consider now the case ¢(N2) = ¢(N3) = ¢(N5) = 2 and ¢(Ny) = 3.

Recall that Nio, N1y, No1, Noo and N5g cannot be coloured 1.

i. Let us study the case ¢(N12) = 2. In this case, N is saturated and thus No;
and Np1; must be coloured 3.

e In case N34 is coloured 1, the vertices Nog, Nog and N33 must be coloured 3 as
Vo and Ns are saturated. Consequently, Nog is also saturated. It implies that
the vertices N2, Noos, Naog and Nogs must be all coloured 1. By Fact 5,
we conclude that Ns333 must be coloured 2 and then N3 is also saturated.
Consequently, ¢(Nyq) = ¢(Nyg5) = 3, but then N4 has interference at least 3,
a contradiction.

e Thus we conclude that N34 is coloured 3, as it cannot be coloured 2 thanks
to the interference constraint on Ns. Observe that none of the vertices Ny
and N45 can be coloured 1, as it would imply that 1 is saturated and that
the vertices Nao, Nog and N33 should be all coloured 3, leading to a contra-
diction to Fact 5. N4y and Ny5 can neither be both coloured 2 nor 3, due to
interference constraints in N3 and Ny, respectively.
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In case ¢(Ny) = 2 and ¢(Ny5) = 3, observe that among Na; and N33 we
have one vertex coloured 1 and the other is coloured 3. Consequently, V}
and N, are both saturated and Ngs and Ngg must be coloured 2. But then
In, (T2, w2, c) > 3, a contradiction.

In case ¢(Nyg) = 3 and ¢(Nys) = 2, we conclude that N33 is coloured 1,
thanks to Fact 3, and thus V} is saturated; consequently, ¢(Nag) = 3 and Ny
is saturated, but then ¢(Nss) = ¢(N50) = 2 and Iy, (T2, wg,c) > 3.

ii. Then consider that Ni is coloured 3. We claim that neither Noo nor No3 can
receive colour 2. For otherwise, suppose the case where at least one of these
vertices would be coloured 2. As Ny would be saturated, the vertices Ny; and
Ni1 should be both coloured 3. This would imply that Ny12 and Nig9 should
be coloured 1 and 3, respectively, due to Fact 3 and the interference constraint
in N; and Ny. Consequently, as N; and N1 would be both saturated, Nog
and N3 should be both coloured 2, a contradiction to Fact 3. Observe that
Nso and Ny3 cannot be both coloured 1 due to the interference in Vj. Let us
study the three remaining cases:

e ¢(Ny3) = 1 and ¢(Na3) = 3. At most one of the vertices N33 and N34 is
coloured 2, due to Fact 3. If exactly one of them is coloured 2 (and thus the
other is coloured 3 thanks to the interference in Vp), as N3 is saturated, Ny
and Ny5 must be coloured 3. This is a contradiction as Iy, (T2, wg,c) > 3.
Thus, N33 and N34 are both coloured 3 and it implies that Nyy and Ny5 are
both coloured 2, because of Facts 3 and 5. As Nu5 is saturated, Ns5 and Nsq
are both coloured 3 and we reach a contradiction as I, (%2, wa,c) > 3.

e ¢(Ny) = 3 and ¢(Na3) = 1. If Nsj is coloured 2, we observe that Nj is

saturated and N34, Ny and Ny5 must be all coloured 3. This contradicts
Fact 3.
We conclude that ¢(N33) = 3. If N34 is coloured 2, N3 is saturated and Ny
and Nys5 are both coloured 3. Then, Ny is saturated and ¢(Ns5) = ¢(Nsg) = 2.
This is a contradiction as In, (T2, ws,c) > 3. Then, ¢(N34) = 3 and then Nyy
is coloured 2. If Ny5 is coloured 3, Ny is saturated and then Ns; and Nsg
must be both coloured 2. This is a contradiction as Iy, (T2, wa,c) > 3. So
¢(Ny5) = 2 and Nj is saturated. As a consequence, we get ¢(Ns5) = ¢(N5g) =
¢(Noo) = ¢(No1) = 3. This is another contradiction as In,, (T2, ws,c) > 3.

e ¢(N2s) = 3 and ¢(Na3) = 3. N33 cannot be coloured 3 thanks to the interfer-
ence constraint in Nag.

— If ¢(N33) = 2, then N3 is saturated. In this case, N34, Nyq and Ny5 cannot
be all coloured 3 (Fact 3). So one of them is coloured 1 and the two others
are coloured 3 implying that Vy and N, are saturated and Ns5 and N5q are
both coloured 2. This is a contradiction as Iy, (T2, ws,c) > 3.

— If ¢(N33) = 1, then Vj is saturated. In case N34 is coloured 2, Nj is
also saturated and N4y and Ng; must be both coloured 3. Then Ny is
saturated and Ng5 and N5g are both coloured 2. This is a contradiction as
INS(‘IQ,w27c) > 3.

Thus we know that ¢(N34) = 3. In case Nyy is coloured 3, Ny is saturated
and N45, Ns5 and Nsg should be all coloured 2. This contradicts Fact 3.
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(d)

ii.

iii.

iv.

Then ¢(Nyq) = 2. So Nyy is coloured 2 and we know that Nag is saturated.
Then, among Nosz3, N333 and N334 there is exactly one vertex coloured 2,
due to Fact 3 and to the interference in N3. As N3 is saturated, we conclude
that ¢(Ny5) = 3. But Ny is saturated, Ns5 and N5 must be coloured 2
and we find a contradiction as Iy, (T2, wq,c) > 3.
Now, we study the case ¢(N2) = ¢(N3) = 2 and ¢(N4) = ¢(N5) = 3. Observe
that colours 2 and 3 are symmetric under these hypothesis. In order to use
this symmetry, let us consider the possible colourings of Noz and Ny5 (up to
the symmetries):

. In case ¢(Noz) = 2 and ¢(Nyg5) = 3, observe that N34 is necessarily coloured

1, thanks to Fact 3. Consequently, Vj is saturated, N33 is coloured 3 and Ny
is coloured 2. It implies that N3 and N, are also saturated and that N3sy4
and N3y44 are both coloured 1. As Nz, is also saturated, Nas3 and N33z are
coloured 3. Moreover, Nos is also coloured 3 as Vy and N3 are saturated. This
is a contradiction as In,, (T2, wq,c) > 3.

Now consider that ¢(Na3z) = 2 and ¢(Ny5) = 2. Since Nj is saturated and
Fact 3 holds, among N34 and N4y we have one vertex coloured 1 and the other
is coloured 3. So Vj is saturated, N33 is coloured 3 and Ny is then saturated.
Consequently, N334 and N34 are coloured 1 and Ns5 and N5g are coloured 2.
Ny44 can neither be coloured 3 as Ny is saturated, nor 1 as I,,, (52, wa, ) > 3.
So ¢(Nys5) is saturated and Nyys5 and Nyzs are both coloured 1. This is a
contradiction as either Iy,, (T2, wa,c) > 3 or In,, (T2, wa,c) > 3.

Let us study the case ¢(Naz) = 2 and ¢(Ny5) = 1. So, ¢(N33) = ¢(N3q) = 3
and C(N44) = 2. As N3, N4 and N34 are Saturated, ]\72337 N333, N334 and
N344 are coloured 1. As Nj is saturated, ¢(N12) = ¢(Nag) = 3. Ny and
N34 saturated imply that Nosz, N33z, N3zq and N3gq are coloured 1. So, by
Fact 5, ¢(Na33) = 3 and Nos is saturated. Consequently, ¢(Ny1) = 2 and No
is saturated. Therefore, ¢(N112) = ¢(N122) = 1, but we have a contradiction
as In, (T2, wq,c) > 3.

We now deal with the case ¢(N23) = 1 and ¢(Nys5) = 2. Observe that
N33 cannot be coloured 2, because in this case V) and N3 are saturated
and we would have a contradiction to Fact 3 as N3y and N4y should be
both coloured 3. Consequently, N33 is coloured 3. In case N34 is coloured
3, Ny is saturated and then N45, Ns5 and Nsg are coloured 2. This is a
contradiction as In,. (%%, we,c) > 3. So ¢(N34) = 2 and N3 is saturated.
As a consequence, Ny is coloured 3 and Ny is also saturated and the ver-
tices N55; and Nsg must be coloured 2. It implies that Ny5 is saturated and
¢(N344) = ¢(Ngaq) = ¢(Nyas) = ¢(Nys5) = 1. As N3 and N, are saturated,
N334 should be also coloured 1, but this contradicts Fact 5.

We now deal with the last subcase in which ¢(N2g) = 3 and ¢(Ny5) = 2 (Recall
that colours 2 and 3 are once more symmetric).

o If ¢(Ns3) = 2, N3 is saturated. Then N34 and Nyy cannot receive colour 2,

cannot be both coloured 1 (Fact 4 with V;) and cannot be both coloured 3
(Fact 4 with Ny).
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— In case ¢(N34) =1 and ¢(Nyg) = 3, Ny and Vj are saturated. Consequently,
¢(N334) = ¢(N344) = 1 and N34 is also saturated. Thus, ¢(N12) = ¢(Nag) =
¢(Na33) = ¢(N333) = 3. This is a contradiction to Fact 5.

— S0 ¢(N34) = 3 and ¢(Nyy) = 1. One more Vy, N3 and Ny are saturated. Tt
implies that ¢(N12) = ¢(Naz) = 3 and then Naj is also saturated. Conse-
quently, the vertices Nosz, N33z, N334 and N3gq must be all coloured 1. This
contradicts Fact 5.

As ¢(Ns3) # 2, by symmetry, we conclude that ¢(Ng4) # 3. We use this
information in the following subcase.

o If ¢(N33) = 3, observe that N34 cannot be coloured 3, thanks to Fact 5.
Recall that Ny is either coloured 1 or 2, by symmetry. Moreover, N34 and
Ny4 cannot be both coloured 2 due to Fact 5.

— In case ¢(N34) = 2 and ¢(Nyy) = 1, Vj and N3 are saturated. This implies
that ¢(N12) = ¢(Nag) = 3. This is a contradiction as In,, (T2, ws,c) > 3.

— So ¢(N34) = 1 and ¢(Nyyg) = 2. Ns5 and N cannot be both coloured 2,
otherwise I, (32, wa, ¢) > 3. So one is coloured 3 and Ny is saturated. Sim-
ilarly, N12 and Nap cannot be both coloured 3, otherwise Iy, (T2, w2, c) > 3.
Thus, one of them is coloured 2 and Nj is saturated. Then, ¢(Ns34) =
¢(N344) = 1 and N3y is saturated. Since Nj is also saturated, we have that
¢(Nasz) = ¢(N333) = 3, but then In,, (%%, ws,c) > 3, a contradiction.

As N33 cannot be coloured 3, again by symmetry we conclude that Ny4
cannot be coloured 2. Thus, we have a contradiction to Fact 4 in V} as
C(Ngg) = C(N44) =1.

(e) Let us consider now that ¢(N3) = ¢(Ny) = 2 and ¢(N3) = ¢(Ns) = 3. By
Facts 3 and 4, there is at most one vertex in I'? coloured 1. By symmetry, we
consider w.l.o.g. that this vertex is in {Nag, Na3, N33, N3g}. So we know that
Ny4, Nys and Ns5 are not coloured 1.

i. ¢(N34) =1 (and then Vj is saturated).

o ¢(Nyy) = ¢(Ny5) = 2. In this case, Ny is saturated. So, ¢(Naz) = ¢(N33) =
¢(Ns5) = ¢(Nsp) = 3 and N3 and N5 are saturated. We then reach a contra-
diction because ¢(N334) = ¢(N344) = ¢(Nyg5) = 1 and then I, (T2, we,c) >
3.

o ¢(Nyy) = ¢(Nys) = 3. So Nys is saturated and ¢(Ns5) = ¢(Nsg) = 2. Observe
that Nog and N33 cannot be both coloured 3, otherwise I, (T2, wo,c) > 3. If
both N3 and N33 are coloured 2, then Ny is also saturated and then Nss4,
Nygq, Nygs and Nys5 are all coloured 1, contradicting Fact 5. So among
No3 and N33 we have one vertex coloured 2 and the other is coloured 3 and,
consequently, N3 is saturated. So Ni5 and Nyg are coloured 1 and we have a
contradiction as Iy, (T2, ws,c) > 3.

e Either ¢(Ny4) = 2 and ¢(Nys) = 3, or ¢(Nyg) = 3 and ¢(Ny5) = 2. In this
case, No3 and N33 cannot be both coloured 3, otherwise Iy, (T2, wq,¢) > 3.
Similarly, Ns5 and Npo cannot be both coloured 3, otherwise Iy, (14'2, wa,c) >
3. At most two among Noz, N33, Ns5 and Nsg are coloured 2, otherwise
In, (T2, ws,c) > 3. Consequently, one vertex among Naz and N33 is coloured
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2 and the other is coloured 3, the same happens for vertices N5 and Nxg
and, then, Ny is saturated. N1 and Nag cannot be both coloured 2, otherwise
In, (T2, w2, c) > 3. So one of them is coloured 1 and Nj is saturated, implying
that C(N334) = C(N344) =1 and N34 is saturated.

If ¢(Nys5) = 3, then Nj is saturated and ¢(Nys) = 1, but then I, (T2, wa, ¢) >
3. If ¢(Ny5) = 2, we have that ¢(Nyg) = 3. Nygq and Nyy5 cannot be both
coloured 3, otherwise I,, (T2, wa,c) > 3. So one of them is coloured 3 and
again I,, (T2, wq,c) > 3.

il. ¢(N34) = 2. Recall that Nyg, Ny5 and Ns5 are not coloured 1. Observe that,
by Fact 3, at most one of Nyy and Nys is coloured 2. If one of these vertices
is coloured 2, N, is saturated and Ng5 and Nsg must be both coloured 1. It
implies a contradiction as Iy, (327 wa, ¢) > 3. Consequently, Nyy and Ny are
both coloured 3 and N5 is saturated. So Ng5 and Ngg are coloured 2 and Ny
is also saturated implying that ¢(N344) = ¢(Naaa) = ¢(Nags) = ¢(Nygs5) = 1.
Since Nyy44 is saturated, N334 must be coloured 3 and then No3 and N33 cannot
receive colour 3, otherwise Iy, (T2, wa,c) > 3. We obtain a contradiction
because Na3 and N33 are both coloured 1 and Iy, (T2, wq, c) > 3.

iii. ¢(N34) = 3. Observe that Ny and Ny5 cannot be both coloured 3, due to
Fact 5.

o ¢(Nyy) = ¢(Nyg5) = 2. In this case, Ny is saturated and then Ny5 and Njg
must be coloured 3. This is a contradiction because Iy, (%2, wa,c) > 3.

e ¢(Nyy) = 2 and ¢(Nyg5) = 3. Due to the interference in N5, we have that
¢(Ns5) = ¢(Nso) = 2 and then Ny is saturated. However, the vertices Nag
and N33 cannot receive colour 3, due to the interference in N3, and so they
are both coloured 1 and we have a contradiction as Iy, (T2, ws,c) > 3.

e ¢(Nyy) = 3 and ¢(Nyg5) = 2. In this case, N34 is saturated. If Nog and Nig

are both coloured 2, Ny is saturated and Ns5 and Nsg must be coloured 3
and we get Iy, (%%, wa,c) > 3. So among Naz and N33 we have one vertex
coloured 1 and the other is coloured 2.
Nss and Nsg can neither be both coloured 3, otherwise In, (T2, wa,c) > 3,
nor both coloured 2, otherwise I, (T2, wq,c) > 3. So one is coloured 2, the
other 3 and N4 and N5 are saturated. We then get a contradiction to Fact 5
because C(N334) = C(N344) = C(N444) = C(N445) = C(N455) =1.

(f) Now consider that ¢(Nz) = ¢(N5) = 2 and ¢(N3) = ¢(N4) = 3. As in Case le,
we consider w.l.o.g. that N4, N45 and N5 are not coloured 1. Observe that
Ny4 and Ny5 cannot be both coloured 3, otherwise I, (T2, ws,c) > 3.

i. Consider first that ¢(Ny4) = ¢(Ny5) = 2. Consequently, ¢(Ns5) = ¢(Nso) = 3
due to the interference constraints in Ny5; and N5. If Nyg is coloured 3,
N5 is saturated and then Np; must be coloured 2. As a consequence, Ny
is also saturated and Ngso and Nsgo must be both coloured 1. This is a
contradiction as I, (T2, wa,c) > 3. So Ny is coloured 2 and Nj is saturated.
Thus, ¢(Ng1) = 3 and Ns50 and Nsgp cannot receive colour 2 (interference
in N5) or 3 (interference in Njp). So, ¢(Nss0) = ¢(Nsoo) = 1, but them
INO(T2,’U)2,C) > 3.
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ii.

(a)

Either ¢(Ny) = 2 and ¢(Ngs) = 3, or ¢(Nyg) = 3 and ¢(Nyg5) = 2. In this
case, observe that Ns5 and Njo can neither be both coloured 2 (interference
in N5) nor 3 (interference in Ny). So one is coloured 2, the other is coloured
3 and Ny is saturated.

o If ¢(Nyy) = 3 and ¢(Ny5) = 2, then Ny is also saturated and N34 must be

coloured 1. Consequently, V; is saturated and ¢(Na3z) = ¢(N33) = 2 and
¢(Ngg) = ¢(Nog1) = 3. Due to the interference in No, Njo and Nay must
be coloured 3 and then, by Fact 5, Ny; must be coloured 2. So N is also
saturated and then, due to the interference in Ni5, Ni12 and Niso must be
both coloured 1. This is a contradiction because Iy, (T2, wz,c) > 3.

e S0 ¢(Nyy) = 2 and ¢(Nyg5) = 3. Observe that N33 and N34 cannot be both

coloured 2, otherwise In,, (T2, wa,c) > 3. So one of them is coloured 1 and
the other is coloured 2. Thus, Vj is saturated and No3 must be coloured 2. If
C(Ngg) =1 and C(N34) = 2, N34 is saturated and then C(N334) = C(N344) =
¢(Nyaa) = ¢(Nuas) = 1, contradicting Fact 5. So ¢(N33) = 2 and ¢(N3z4) = 1.
Due to the interference in Ny, we have that Nis and Ny are coloured 3
and then N3 is also saturated. Then, N334 must be coloured 1 due to the
interference in N3 and N33. If N3y is coloured 2, N33 is saturated and we
have a contradiction to Fact 5 because ¢(Nagz) = ¢(Nas3) = ¢(N333) = 1. So
we get ¢(N3qq) = 1 and N34 saturated. This is a contradiction because N33
must be coloured 2 and then Iy,, (T2, wa,c) > 3.

2. Subcase ¢(N2) = 1.

W.lo.g., let ¢(N7) = 2. We deal with the subcases according to the colouring
of N3, Ny and Nj: they are all coloured 2 (Case 2a), two of them are coloured
2 (Cases 2b and 2c¢), only one of them is coloured 2 (Cases 2d and 2e) or they
are all coloured 3 (Case 2f).

Consider first the subcase ¢(N3) = ¢(Ny) = ¢(N5) = 2. In this case, Ny is
saturated and all the vertices Na3, N33, N3g, Nag, Nys, N5 and N5g cannot
be coloured 2. Since at most one vertex in I'? is coloured 1, this vertex cannot
belong to the set {Na3, N33, N55, N5o} as it would imply a contradiction to
Facts 5 in colour 3. So all the vertices in this set are coloured 3, exactly
one vertex among Ns4, Nyy and Nys is coloured 1 and Vj is saturated. By
symmetry, we can consider that Ny5 is coloured 3.

If Ny is coloured 2, N; is also saturated and all the vertices Ni1, N12 and Noo
must be coloured 3. This is a contradiction to Fact 5. So ¢(Np1) = 3.

In order to avoid a Ps of vertices coloured 3, Ngg must be coloured 2. Then,
Ny1 and Nip must be coloured 3, due to the interference constraint in Nj.
Thanks to Fact 5, Ny must be coloured 2 and so N; and N3 are saturated.
The vertices Nyi12 and Na33 cannot be coloured 3 as we would be in Case 1,
then they are both coloured 1 and N, is also saturated. Consequently, Ny
must be coloured 3 and we reach a contradiction as I,, (T2, ws,c) > 3.

Let us now suppose that ¢(N3) = ¢(Ng) = 2 and ¢(N5) = 3. We show that
there is no feasible colour to Ny4 by examining the three possible cases:
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i. Suppose first that Ny is coloured 2. So Ny is saturated and then, if ¢(Ns5) =
3, as either N45 or N5g must be coloured 3, we are in Case 1. Thus, N5 is
coloured 1, Vj is saturated and Na3, N33, N34, Ny5 and Nsg are coloured 3.
Consequently, N5 is saturated and so Ny and Ng; are coloured 2. Thus, N;
is saturated and Npo and Naoy must be coloured 3, contradicting Fact 5.

ii. Now consider that ¢(N44) = 1. Thus, V; is saturated and N3y is coloured 3,
otherwise we would be in Case 1.

e Suppose that at one of the vertices Nog or N33 is coloured 2. Then, Nj is
saturated and the vertices N2, Nos and Nys must be all coloured 3. So N5 is
coloured 2, as we are no longer in Case 1, and it implies that Ny is saturated.
As a consequence, Nxg is coloured 3 and Nj is also saturated. Thus, Ny and
Ny1 must be coloured 2, Ny is saturated and Np; is coloured 3. Observe that
Ni12 and Nygo are both coloured 1, otherwise we are in Case 1. So N5 is also
saturated and no feasible colour remains to colour Nao3.

e So Ns3 and Ns3 are both coloured 3.

— If Ny is coloured 3, Ny is coloured 2 (Fact 5), Ny is coloured 3 (as we are
not in Case 1) and Ny; is also coloured 3 (interference in V and Ny).

If ¢(Noo) = 3, No is saturated and then Nsg is coloured 2. It implies that
N is saturated and Nyg; and Npi;; must be both coloured 1. Consequently,
Ny is saturated and Nygg and N5gg are both coloured 2. Thus, N5q is also
saturated and the vertices Ny5 and Ns5 should be both coloured 3. But then
we are in Case 1.

So Ny is coloured 2 and N; is saturated. Consequently, N5q is coloured 3
and Ns; must be coloured 2 as we are no longer in Case 1. But then no
feasible colour remains to colour Nys.

— Thus, we have ¢(Nag) = 2. If N5 is coloured 2, N; is saturated and we have
a contradiction to Fact 5, because all the vertices N5, Ngg, No1 and Ny
must be coloured 3. So, we conclude that ¢(Ny2) = 3.

If Np; or Nj; are coloured 2, Nj is saturated and N5 and Ngg must be
coloured 3. In this case, Ny5 and Ns5 cannot receive colour 3, due to the
interference in N5. So they are both coloured 2 and we reach a contradiction
as In, (%%, wq,c) > 3.
Consequently, Ny; and Nj; are both coloured 3. Observe that Ny5 is also
coloured 3, otherwise N, is saturated, N5g and Ngg are coloured 3 and we
are in Case 1. Consequently, N55 and N5q are coloured 2, as we are no longer
in Case 1 and we cannot violate the interference constraint in N5. Moreover,
Noo is also coloured 2, otherwise In,, (T2, wa,c) > 3. But then we have a
contradiction as Iy, (T2, wa,c) > 3.

ili. We conclude that N4y must be coloured 3. Recall that N34 cannot be coloured

2 as we would be in Case 1.

e Cousider first the case in which ¢(N34) = 1 and thus V} is saturated. If Nys
is coloured 2, Ny is saturated and N5y and Ny should be both coloured 3.
But then we are in Case 1. So Nyj5 is coloured 3 and Ns5 must be coloured 2.
Observe that Nog and N33 cannot be both coloured 2, due to Fact 3. In case
one of these vertices is coloured 2 and the other is coloured 3, observe that
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N3 and Ny are saturated. Consequently, Nsq is coloured 3 and N5 and N5
are also saturated. We then reach a contradiction to Fact 5 as all the vertices
N344, Nyaa, Naas and Nys5 must be coloured 1. So we conclude that Nog and
N33 must be both coloured 3.

If N5g is coloured 3, Ny is saturated. Then, Nyoy and Ny; must be coloured
2, then V7 is saturated and we reach a contradiction to Fact 5 as Ny1, Nia
and Nop must be all coloured 3. So Nzg is coloured 2 and N, is saturated.
Consequently, N34q and Ny44 are both coloured 1, due to the interference
constraints in N4 and Ng. Thus, N34 is also saturated and Nyu5 must be
coloured 3. But then we are in Case 1.

e We deduce that ¢(N34) = 3. We now study the possible colourings of Nys.

— If ¢(Nys) = 2, Ny is saturated. The interference constraints in V and N5 lead
us to the conclusion that among N55 and N5g we have one vertex coloured 1
and the other is coloured 3. Consequently, V} is saturated and Nog and N33
are both coloured 3. This is a contradiction as Iy, (T2, wa,c) > 3.

— Now consider that ¢(Ny5) = 1 (V) is saturated). The vertices Nag and Nss

cannot be both coloured 2, due to Fact 3. They cannot also be both coloured
3, because of the interference constraint in N34. So among Noz and N33 we
have one vertex coloured 2 and the other is coloured 3 and N3 is saturated.
The vertices N5; and Nsg can neither be both coloured 2, because of the
interference in Ny, nor 3, as we are not in Case 1. So one of them is coloured
2 and the other is coloured 3. Thus, N4 is also saturated.
Similarly, we can conclude that among Nj44 and N5 we have one vertex
coloured 1 and the other is coloured 3 (recall that these vertices cannot
receive colour 2 as Ny is saturated). Consequently, Ny4 is saturated and
the vertices N34q and Nyg55 must be coloured 1. This is a contradiction as
IN45 (12, w2, C) > 3.

— So we have ¢(Ng5) = 3. Consequently, N33, N55 and N5g cannot receive
colour 3. We thus conclude that two of these vertices are coloured 2 and
the other is coloured 1, by considering the interference in Vy and Ny. We
then obtain that N334, ]\[3447 N444, N445 and N455 are all coloured 1. This
contradicts Fact 5.

(c) We now treat the case ¢(N3) = ¢(N5) = 2 and ¢(N4) = 3. Let us consider the
possible colours of Naj.

i. Suppose first that N3 is coloured 1. In this case, Vi and N, are saturated.

e In case N33 is coloured 2, N34 must be coloured 3 and N4y must be coloured
2, otherwise we would be in Case 1. So N3 is also saturated and N5 must be
coloured 3. Since Ny and N3 are both saturated, Nis, Nog, Naoogz and Nazg
must be all coloured 3 and then Npg is saturated. It implies that Ny, Niio,
N2y are coloured 2 and then we reach a contradiction as Iy, (T2, ws,c) > 3.

e We conclude that N33 must be coloured 3. Observe that Ny and N45 cannot
be both coloured 3, as we are no longer in Case 1. Thus, at least one of
these vertices is coloured 2. If N34 is coloured 2, N3 is saturated. Then, the
vertices N12, Nag, Noog and Nog3 must be all coloured 3. This contradicts
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Fact 5. Consequently, N34 is coloured 3 and N44 must be coloured 2, otherwise
we would be in Case 1. Observe that N45 cannot be coloured 2, because,
otherwise N5 will be saturated, ¢(Nss5) = ¢(Nsp) = ¢(Nog) = ¢(No1) = 3 and
In,, (T2, wa,¢) > 3. So Nys is coloured 3, Ny is saturated and Ns5 and N
are both coloured 2. However, we are in Case 1 with N5.

ii. Now consider that ¢(Na3) = 2. Observe that neither N33 nor N34 are coloured
2 due to the interference in Nj.

e Suppose first that ¢(N33) = 1. It implies that Vj is saturated and that Nsy4
is coloured 3. Consequently, Ny must be coloured 2, otherwise we are in
Case 1, and then N3 is saturated. So, Nis, Nos and Ny5 are coloured 3.
Observe that among N55 and N5g, we must have one vertex coloured 2 and
the other must be coloured 3 (due to Fact 5 and to the hypothesis that we
are not in Case 1). So Ny is also saturated and it implies that N334 and N3gy
are coloured 1. We conclude that N33 is saturated and that the vertices Naas,
Nas3 and Ns33 should be all coloured 3. This contradicts Fact 5.

e Now consider the case in which ¢(Ns3) = 3 and ¢(N34) = 1. So Vj is saturated
and we can see that Nyy and Ny5 can neither be both coloured 2 (interference
in N3) nor 3 (Case 1 with Ny). Thus, one is coloured 2 and the other is
coloured 3. Consequently, V3 is saturated and N15 and Ny are both coloured
3. Furthermore, both N334 and N34y cannot be coloured 1 (Case 1 with Nag).
One of them at least is coloured 3. Then Ns; and N5g can neither be both
coloured 2 (Case 1 with N5) nor 3 (otherwise Iy, (T2, ws,c) > 3). So among
Ns5 and N5g we have one vertex coloured 2 and the other is coloured 3.
We conclude that N5 is saturated, Nog and Ng; are coloured 3 and, due to
Fact 5, N1 is coloured 2. It implies that N; is saturated and Njoo must be
coloured 1 (it cannot be coloured 3, otherwise we would be in Case 1 with
Ni2). So Ny is also saturated and Naas and Nosz must be both coloured 3.
This contradicts Fact 5.

e We obtain that N33 and N34 are both coloured 3. Consequently, Ny4 cannot
be coloured 3 (Fact 3 with Nay).

— Suppose first that Ny is coloured 1. If ¢(Nyg5) = 3, Ny is saturated and we
are in Case 1 with Ny instead of Vj, because N55 and Nsg must be both
coloured 2. So Nys is coloured 2 and it implies that Ns5 and Nsg must be
both coloured 3, due to the interference constraint in Vy and N5. Thus, Ny
is saturated. Since Nj is also saturated, we get that N334 and N344 are both
coloured 1. The vertices Nyg4 and Nyyg5 can neither receive colour 1, due to
the interference in Ny4, nor colour 3, since N, is saturated. Thus, they are
both coloured 2. But then we have a contradiction as In,. (%2, ws,c) > 3.

— So we get that ¢(Ny) = 2 and then Nj is saturated. Neither Nijz, nor
Ny can be coloured 1, otherwise Ny would also be saturated and it would
imply that Nass and Nazs should be coloured 3, leading to a contradiction
to Fact 5. So we get that ¢(Ni2) = c(N22) = 3. Consequently, ¢(Na33) =
¢(N333) = ¢(N334) = ¢(N3aq) = 1, due to interference constraints in N,
N33 and N34. So ¢(Nags) = 3 and N3 is also saturated. It implies that
Nyo is saturated and then Ni; can either be coloured 1 or 2. In case it is
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coloured 1, Ny is saturated, Nii12, Nios and Nogo must be coloured 2 and
we have a contradiction as I,,, (%%, we,c) > 3. If Ny is coloured 2, N; is
saturated and then Ny15 and N2 must be coloured 1. However, we get that
In, (T2, wa,c) > 3.

ili. We conclude that No3 is coloured 3.

e Suppose first that ¢(N33) = 1. Consequently, Vj is saturated.

— Let us first consider the subcase in which N34 is coloured 2. Then, Ny and
Ny5 can neither be both coloured 2, due to the interference in N3, nor 3,
since we are no longer in Case 1. So among N4y and N45 we have one vertex
coloured 2 and the other is coloured 3. It implies that N3 is saturated. Due
to the interference in Vo and N5, we conclude that ¢(Ns5) = ¢(Nsp) = 3. So
N, is saturated implying N334 and N34 must be both coloured 1. But then
N33 is also saturated, Nos and Nog3 are be both coloured 3 and we are in
Case 1 with vertex Nos.

— We conclude that ¢(N34) = 3. Since we are no longer in Case 1, we get that
¢(Nyq) = 2. Ny5 and Ns5 can neither be both coloured 2 (Fact 3 with Nys),
nor 3 (interference in Ny). So one of these vertices is coloured 2 and the
other is coloured 3, implying that Ns is saturated and then that ¢(Nsp) =
¢(Noo) = ¢(No1) = 3. However, we get a contradiction as neither Nys is
coloured 3, otherwise Iy, (T2, wg,c) > 3, nor Nss is coloured 3, otherwise
INsO(TQ, wa, C) > 3.

e Let us consider now the case ¢(N33) = 2. Observe that N3y cannot be also
coloured 2, due to the interference constraint in Nj.

— In case ¢(N34) = 1, we have that Vj is saturated and then Nyy and Ny5 can
neither be both coloured 2 (interference in N3) nor 3 (Case 1 with Ny4). So
among N4y and Nys5 we find one vertex coloured 2 and the other is necessarily
coloured 3. Consequently, N3 is saturated, N1 and Nao are coloured 3 and
then Nog3 must be coloured 1. So Nj is also saturated and No33 must be
coloured 3. This is a contradiction as Iy,, (T2, ws,c) > 3.

— We conclude that N34 must be coloured 3. Consequently, Ny4 cannot be
coloured 3, as we are not in Case 1. Let us check the possible colourings of
N44.

If Nyy is coloured 1, Vj is saturated. Then, if N45 is coloured 3, Ny is
saturated and N55 and N5g are forced to be coloured 2. But then we are in
Case 1 with N5. So Ny5 is coloured 2, N3 is saturated and the vertices N5
and N5o must be coloured 3, due to the interference in N5. As a consequence,
Ny is also saturated and the vertices N334 and N3uq must be coloured 1. As
we are no longer in Case 1, Nyqq must be coloured 2. Due to the interference
constraints in Ny and Ny5, we get that Nyg5 and Ny55 must be both coloured
1. This is a contradiction to Fact 5.

So N4 must be coloured 2 and then N3 is saturated. Observe that exactly
one of the vertices Ny5, Ns5 and Nsg must be coloured 1, otherwise Nys
must be coloured 3 (interference in N3) and Nj5 and N5 must be coloured
2 (interference in Ny) and we are in Case 1. Then, as N3 and V}, are sat-
urated we have ¢(N12) = ¢(Nag) = 3, implying that Nz is saturated and
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50 ¢(Nagg) = ¢(Naz3z) = ¢(N333) = ¢(N3z4) = 1. However, we have that
IN233 (‘IQ, wa, C) Z 3.
e So we have that ¢(N33) = 3. Let us now check the possible colourings of
c(N34).
— First consider that ¢(N34) = 1. Observe that V; is saturated.

x If ¢(Nyq) = 3, we get that ¢(Ng5) = 2 and, consequently, ¢(Ns5) = ¢(N5g) =
3 (otherwise, Iy, (T2, wq,c) > 3). However, observe that I, (T2, ws,c) > 3.

* S0 ¢(Ngg) = 2. If ¢(Nys) = 2, Nys and N5 are both saturated implying
that Ns5, Nsg, Noo and Ny must be all coloured 3. But then we have a
contradiction as I, (T2, wa,c) > 3.
So Nys is coloured 3. Nj5 and Nsg can neither be both coloured 2 (oth-
erwise, Case 1 with N5), nor 3 (otherwise, I, (%2, wa,c) > 3). So one of
these vertices is coloured 2 and the other is coloured 3. Thus, N4 and Nj
are saturated and then Nyg and Ny; must be coloured 3 and the vertices
Ny and Nys5 must be coloured 1. In case ¢(Nsg) = 3, Nso is saturated
and the vertices Nss5, Ns50 and Nsgp must be coloured 1, contradicting
Fact 5. So, we get that ¢(Ns5) = 3 and ¢(N5p) = 2. Observe that Ns55 and
Nss50 can neither receive colour 2 (since Nj is saturated) nor 3 (otherwise,
In,. (T2, wq,¢) > 3). Thus, they are both coloured 1 and, consequently,
N5op is coloured 3. It implies that Nyg is saturated and then we get that
N1 must be coloured 2. As a consequence, N is saturated and Nyo and
Nag are both coloured 3. However, we get that In,, (T2, ws,c) > 3.

— Now consider that ¢(N34) = 2. Let us check the possible colourings of Ny4.

x First suppose that ¢(Nyy) = 1. If Nys5 is coloured 2, then N3 is saturated
and we have that Nio and oy are coloured 3. This is a contradiction as
In,, (T2 wa,¢) > 3. So Nys is coloured 3. The vertices N5 and Nso can
neither be both coloured 2 (otherwise, Case 1 with N5) nor 3 (otherwise,
In, (%2, wa,c) > 3). So one is coloured 2 and the other is coloured 3. As a
consequence, Ny and N5 are both saturated implying that Ny45 and Nyss
are coloured 1 and then that N4y, is coloured 2. But then N334 and N3gq
must be both coloured 1 (interference in N34) and we have a contradiction
to Fact 5.

* Now let ¢(INgq) = 2. Observe that N3 and N34 are saturated and that Nijo
and Nay cannot be both coloured 3, otherwise Iy,, (T2, wa, ¢) > 3. So among
Ni5 and Ny we have one vertex coloured 1 and the other is coloured 3. It
implies that V; is saturated. Observe also that the vertices Ns5, N55 and
N5 cannot receive colour 2 due to the interference constraint in N5. Then,
we have a contradiction as Ny5, N55 and N5 are all coloured 3 and we get
IN4(‘I2, w2, C) > 3.

* We conclude that ¢(Ny4) = 3. If ¢(Ny5) = 1, Vp is saturated. In this case,
Ns5 and N can neither be both coloured 2 (otherwise, Case 1 with Nj)
nor 3 (otherwise, In, (T2, wa,c) > 3). So one of these vertices is coloured
2, the other is coloured 3 and we get that Ny and N5 are saturated. Thus,
Nys5 and Nys55 must be coloured 1 and we are in Case 1 for Nys.
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Nys5 cannot be coloured 3 as we are no longer in Case 1, so its colour is 2
and N3 and N5 are both saturated. Ns5 and N5g cannot be both coloured 3,
otherwise I, (T2, wg,c) > 3. So one of these vertices is coloured 1 implying
that 1} is saturated. Consequently, Ni5 and Ny are both coloured 3 and
we get a contradiction as I,, (T2, wg,c) > 3.

— So we conclude that N33 and N34 are both coloured 3 and both saturated. If
the vertices N1o, Ngy and Ny5 are not coloured 1, they must be all coloured
2 and we have that N3 is saturated and so ¢(Nag3) = ¢(Nags) = ¢(N3sz3) =
¢(N334) = ¢(N344) = 1, contradicting Fact 5. So one of these vertices is
coloured 1 and Vj is saturated. In case N15 is coloured 1, Ny and Ng5 must
be coloured 2 and Nys is saturated. Consequently, N55 and N5g are coloured
3 and we have a contradiction as Iy, (T2, ws,c) > 3.

Then, either Ny4 or Nys is coloured 1 (the other being coloured 2) and Njs
is coloured 2. If N4y is coloured 1, then Ns5 and Nsg are not coloured
2, otherwise Iy, (T2, w2,c) > 3. So they are both coloured 3, but then
IN4(‘32, wa, C) > 3.

So we have that N4y is coloured 2 and Ny5 is coloured 1. Consequently, Nss
and Nso can neither be both coloured 2 (interference in N5) nor 3 (interfer-
ence in Ny). So one is coloured 2 and the other is coloured 3 implying that
N, and Nj are saturated. Therefore, ¢(Nyg5) = ¢(Ng55) = 1 and we are in
Case 1.

(d) We now study the case ¢(N3) = 2 and ¢(N4) = ¢(N5) = 3. Observe that Nys
cannot be coloured 3, otherwise we are in Case 1.

i. First consider that ¢(Ngs) = 1 (Vg is saturated). If N5 is coloured 3, Njg
must be coloured 2 and we are in Case 2b with central vertex N5. So Ns5 is
coloured 2.

e In case Ny is coloured 3, N34 must be coloured 2 and then N33 must be
coloured 3, because we are not in Case 1. Thus, N4 is saturated, N3 and
N5¢ must be coloured 2 and N3 is also saturated. Consequently, N334 and
N344 are both coloured 1.

If Ngg is coloured 2, N5q is saturated and then N455 must be coloured 1, Nys
is also saturated and Ny; is coloured 3. Since Ns55 and N5 must be both
coloured 3, we reach a contradiction as In, (T2, ws,c) > 3.

So we conclude that ¢(Ngg) = 3. Recall that N3 is saturated and thus, N
and Nop must be both coloured 3. Ny; and Ny can neither be both coloured
2 (otherwise, Case 1) nor 3 (Fact 5). So one is coloured 2 and the other is
coloured 3. Thus, Nj is saturated and N122 must be coloured 1, since we are
not in Case 1. The vertices Nao3 and N33 cannot receive colour 2 as Nj is
saturated, cannot be both coloured 3, thanks to Fact 5, and cannot be both
coloured 1, due to the interference in N5. So one of these vertices is coloured
1 and the other is coloured 3; Ny is saturated and N1 must be coloured 3.
Consequently, N1; is coloured 2 and Ny; is coloured 3. We then observe that
Np1 and Nj are saturated and that Nyg; and Ngip must be both coloured 1.
It leads to a contradiction as I, (T2, ws,c) > 3.

e We conclude that N4 is coloured 2.
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— Suppose first that ¢(N34) = 2. In this case, N3 and N33 are both coloured
3 due to the interference in N3. Observe that N5 and Ny can neither be
both coloured 2 (interference in N3) nor 3 (interference in Np3). So one is
coloured 2 and the other is coloured 3. It implies that N3 is saturated. Thus,
Nao3 and Nogzz are both coloured 1, due to the interference in Noz. So Ns is
also saturated. The vertices N333 and N334 can neither be both coloured 1
(otherwise, In,,, (T2, wa,c) > 3) nor 3 (Fact 3). So one of them is coloured
1 and the other is coloured 3. As a consequence, Nog is saturated, Nos is
coloured 2 and Njg is coloured 3. But then N2y and Nags must be coloured
2 and we have a contradiction as In,, (T2, ws,c) > 3.

— We obtain that ¢(N34) = 3. Nog and N33 can neither be both coloured 2
(otherwise, Case 1 with N3) nor 3 (Fact 5). So one of them is coloured 2
and the other is coloured 3. It implies that Ny is saturated and Ns5 and Nsg
must be coloured 2.

If ¢(Ngo) = 2, Nso is saturated and thus Np; must be coloured 3. Observe
that Ns50 and Nsoo can neither be both coloured 1 (interference in Ny) nor
3 (interference in N5). So one of these vertices is coloured 1 and the other
is coloured 3. It implies that Ny and N3 are both saturated and thus that
Nooo and Nyg1 must be both coloured 3. Then, N1; and Nyi; cannot receive
colour 1 (Np is saturated) neither 3 (otherwise, In,, (T2, ws,c) > 3). So they
are both coloured 2 and we reach a contradiction as Iy, (T2, ws,c) > 3.

We conclude that Npg must be coloured 3. If Np; is coloured 3, Nj is
saturated. In this case, N550 and Njoo can neither be both coloured 1 (in-
terference in Ny) nor 2 (Fact 3). So one of them is coloured 1 and the other
is coloured 2 and, as a consequence, Ny and N5 are saturated. Thus, Nygg
and Ngg1 must be both coloured 3 and we reach a contradiction to Fact 3.
So we have that Ny; must be coloured 2 and ¢(N71) = ¢(N13) = 3, otherwise
In, (T2, wa,¢) > 3. In this case, Ns50 and Nsoo cannot receive colour 2
(interference in Nsp). They can neither be both coloured 1 (interference in
No) nor 3 (interference in N5). Thus, one of these vertices is coloured 1, the
other is coloured 3 and Ny and N5 are saturated. It implies that one of the
vertices Nygo or Ngp; must be coloured 2 and the other is coloured 3, because
they can neither be both coloured 2 (interference in Ny;) nor 3 (interference
in Ngo). But then, Ny is saturated and it implies that ¢(No11) = 2. This
leads to a contradiction as In,, (T2, w2,c) > 3.

ii. We then conclude that ¢(Ny5) = 2. Let us study the possible colourings of

e Suppose now that ¢(Nyy) = 3. Observe that N34 cannot be coloured 3, by
Fact 3. If ¢(N34) = 2, then we are in Case 2b with Ny.

So N34 is coloured 1 and V4 is saturated. Observe that Nog and N33 can

neither be both coloured 2 (otherwise, Case 1 with N3) nor 3 (interference in

Ny). So one of them is coloured 2, the other is coloured 3 and Ny is saturated.

It implies that N55 and Nsg must be coloured 2 and, due to the interference

in Nys, that N5 must be coloured 1. Moreover, N334 and N34 can neither

be both coloured 1 (interference in N34) nor 2 (interference in N3). Thus,
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one of them is coloured 1 and the other is coloured 2. As a consequence, N3
and Ny5 are saturated. We obtain that Na33 and N333 are both coloured 3.
So N33 cannot be coloured 3, as we are not in Case 1 and then ¢(Na3) = 3
and ¢(N33) = 2. Recall that N3 is saturated and thus Nyy and Nao must be
both coloured 3. This is a contradiction to Fact 5.

e Suppose now that ¢(Ny4) =1 (and thus that Vp is saturated).

— If ¢(N34) = 3, then Noz and N33 can neither be both coloured 2 (interfer-
ence in N3) nor 3 (Fact 5). So one of them is coloured 2 and the other is
coloured 3, implying that Ny is saturated. Consequently, N55 and N5o must
be coloured 2 and then that Ny45 and Ny55 must be both coloured 1 (other-
wise, In,. (%2, wa,c) > 3). Thus, N34q and Nygy are both coloured 2, due to
the interference in Ny4. However, we get that In,. (T2, wg,c) > 3.

— We conclude that N34 is coloured 2 and thus that Noz and N33 must be both
coloured 3, due to the interference in Nj.

x If ¢(Nay) = 3, then Nog is saturated and c(Ni3) = 2, implying that N3
is also saturated. So Nago3z and Noz3 are both coloured 1 and N, is sat-
urated. Consequently, Nioo and Naogo are both coloured 2 and we have a
contradiction as In,, (T2, ws,c) > 3.

* We obtain that ¢(Na2) = 2, and then N3 is saturated and Nj» must be
coloured 3. Consequently, Naos and Nagz must be both coloured 1 (inter-
ference in Ny5) and N is also saturated. Since Njse and Nags cannot be
both coloured 2 as we are not in Case 1, we conclude that at least one of
these vertices is coloured 3 and that Nag is saturated. But then we get that
¢(N333) = ¢(N334) = 1 and we have a contradiction as I,,, (T2, ws,c) > 3.

e So we have that Ny must be coloured 2. Let us now check the possible
colourings of N34.

— In case ¢(N34) = 2, N3, N34 and Nyy are all saturated. One of Nyo, Nag, Nas
and N33 must be coloured 1, otherwise they are all coloured 3 and we have
In,, (T2 wa,¢) > 3. So Vj is also saturated and then Ns5 must be coloured
3. Thus, Njq is coloured 2, by Fact 3, and Ny5 is also saturated.
If both No3 and N33 are coloured 3, Ny is saturated and then we have a
contradiction to Fact 5, because N334, N3aa, Naaa, Naas and Nys5 should be
all coloured 1.
So among N»3 and N33 we have one vertex coloured 1, the other is coloured
3 and then Njo and Nos must be coloured 3.
If Nog is coloured 1 (and then N33 is coloured 3), we have that Ny is sat-
urated and then Nso3 and Nozs must be coloured 3. But then we have a
contradiction to Fact 5.
So N33 must be coloured 1 (and then Nag is coloured 3). By Fact 3, we have
that Naogz is coloured 1 and then Ns is also saturated. Consequently, Nogs
must be coloured 3 and we have a contradiction as In,, (T2, wa,c) > 3.

— Suppose now that ¢(N34) =1 (so Vj is saturated).

x If ¢(N33) = 2, N3 is also saturated and then Njs, Nas and Noz must be all
coloured 3. However, Nos3 and Nog3 must be coloured 1, due to interference
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constraints in Naa, N3 and N3, which is a contradiction as I, (127 wa, c) >
3.
% So ¢(N33) = 3. Let us check the possible colourings of Na3.
If Nos is coloured 2, N3 is saturated and then 15 and Nas are both coloured
3. Naa3 and Nazz can neither be both coloured 1 (interference in N3) nor
3 (Fact 5). So one of them is coloured 1, the other is coloured 3 and Nj
is saturated. If Naog is coloured 3 (and then ¢(Nags) = 1), Nao is also
saturated. In this case, the vertices Ni1, Ni12, N122 and Nogo must be all
coloured 2, contradicting Fact 5.
So we conclude that Nas3 is coloured 1 and Nasj is coloured 3. Consequently,
N335 and N334 must be coloured 1 (interference in N3 and Ns3) and then
N34 is saturated. Thus, N34y and Nyy5 must be coloured 3. It implies
that N4 is saturated and then N55 and N5g are both coloured 2. This is a
contradiction as Iy, (T2, wa,c) > 3.
We conclude that Nogz is coloured 3. If Nog is also coloured 3, Nag is sat-
urated and then Nps is coloured 2. Nigoz and No33 can neither be both
coloured 1 (interference in Nz) nor 2 (interference in N3). So one of them
is coloured 1, the other is coloured 2 and Ny and N3 are both saturated. It
implies that N334 and Ns44 are both coloured 1, N34 is saturated and then
N344 must be coloured 3. But then N4 is saturated, N5 must be coloured
2 and we are in Case 1.
So Nag must be coloured 2. If ¢(Nj2) = 2, then Nj is saturated. Nooz and
Nj33 can neither be both coloured 1 (interference in N3), nor 3 (Fact 3).
Thus, one is coloured 1, the other is coloured 3 and N, and N,z are both
saturated. Consequently, N1, Ni22 and N9 must be all coloured 2, con-
tradicting Fact 3. Therefore, ¢(N13) = 3, but then Njz3 and Na3zz cannot
be coloured 3 (otherwise, I,, (T2, wa,c) > 3). So they are coloured 1 and
In, (%2, wq, ) > 3, a contradiction.

— We conclude that ¢(N34) = 3. Let us study the possible colourings of Nss.

x Suppose first that ¢(Ns5) = 3. So Ny and N5 are saturated. Naz and Nis
can neither be both coloured 1 (interference in V) nor 2 (we are not in
Case 1). So one of them is coloured 1, the other is coloured 2 and V4 and
N3 are also saturated. It implies that N334 and N34 must be both coloured
1 and that N5 and Ngo must be coloured 2. Observe then that N445 and
Nys5 cannot receive colour 2 (interference in Ny5) and 3 (Ny is saturated).
So they are both coloured 1 and, by Fact 5, Ny44 must be coloured 2. Since
Nys5 is also saturated, Ns55 and Ng50 must be coloured 1. But then we have
a contradiction because N5oo cannot receive colour 1 (Fact 5), 2 (we are not
in Case 1) or 3 (N5 is saturated).

* Now consider that ¢(Ns5) = 2. Observe that Ny5 is saturated. If Ny is
coloured 3, Ny and Nj are also saturated and we have a contradiction to
Fact 5, because N344, 1\74447 N445, N455, N555 and N550 are all coloured 1.
So Ngg is coloured 1 and V; and Ng are saturated. Nos and N33 can neither
be both coloured 2 (we are not in Case 1) nor 3 (Fact 5). So one is coloured
2, the other is coloured 3 and we have that N3 and N4 are both saturated.
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This leads to a contradiction to Fact 5, because N334, N344, Nags, Nags and
Nys5 are all coloured 1.

* We then conclude that Ns5 must be coloured 1 (and Vj is saturated). Again
No3 and N33 can neither be both coloured 2 nor 3. One of them is coloured
2 and the other is coloured 3 implying that N3 and N, are both saturated.
As a consequence, N334 and N3y are coloured 1 and Nsg is coloured 2.
Thus, Ny45 and Nyss are both coloured 1, due to the interference in Ny
and Ng5. So Nyg4 must be coloured 2 and Nys is saturated. Consequently,
Ns55 and Ns50 must be both coloured 3 due to the interference in Ny5 and
Ns5. We obtain that Ny is also saturated and then that Nyg and Ngp are
both coloured 2 and both saturated and N; is also saturated. So Naj3 is
coloured 3 and N33 is coloured 2. Furthermore, N5qq is coloured 1 and Ny is
saturated. But then Nyi1, N11, N12 and Nag are coloured 3, contradicting
Fact 5.

(e) Let us now consider the case ¢(Ny) = 2 and ¢(N3) = ¢(N5) = 3. We study
now the subcases concerning to the colour of Nys.

i. First consider that ¢(NNy5) = 1. Recall that Vj is saturated.

e In case Ny is coloured 2, N34 is coloured 3 and N33 is coloured 2, as we are
no longer in Case 1. N55 and Nso can neither be both coloured 2, otherwise
In, (T2, wy,c) > 3, nor 3, otherwise we would be in Case 1 with N5. So one
of these vertices is coloured 2, the other is coloured 3 and N, is saturated.
But then N3 is coloured 3 and we are in Case 2d with central vertex Nj.

o We conclude that N4y is coloured 3.

— If N34 is coloured 3, N34 is saturated and ¢(Na3) = ¢(N33) = 2. Then, Ny is
coloured 3, otherwise I,, (T2, ws,c) > 3, implying that N3 is saturated. So
¢(N12) = 2 and Nag is also saturated. Thus, Naag and Nags are both coloured

1, N is saturated, which implies that N2 and Ngos must be coloured 3.
Then, we are in Case 1.

— So N34 must be coloured 2. In case N33 is also coloured 2, then we are
in one of the cases from 2a to 2d with central vertex N34. Thus, N33
must be coloured 3 implying that Nos is coloured 2. N and Nag can
neither be both coloured 2 (otherwise, In,, (T2, wg,c) > 3) nor 3 (otherwise,
In, (%%, wa,c) > 3). So one is coloured 2, the other is coloured 3, Nj is
saturated and ¢(Na23) = ¢(Nazz) = 1 (otherwise, In,, (T2, ws,c) > 3).

Thus, Ns is also saturated. Ns5 and Ns5g cannot be both coloured 3, as we
are not in Case 1. Consequently, (exactly) one of these vertices is coloured 2
and Ny is saturated. It implies that N334 and N3y4 are coloured 1 and then
N333 must be coloured 2. Thus, Najs is saturated and Noo must be coloured 3
(otherwise, In,, (T2, wq,c) > 3). However, Nia2 and Nagp must be coloured
3 and we are in Case 1 with vertex Nos.

By symmetry, we conclude that ¢(N34) # 1.

ii. Suppose now that Ny5 is coloured 2. Observe that Ny cannot be coloured 2
as we are no longer in Case 1.
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iii.

(f)

i.

ii.

e Consider first the case ¢(Nyy) = 1 (Vj is saturated). If N34 is coloured 2, Ny

is saturated, Nogz and N33 are both coloured 3 and we are in Case 1 with Nj.
So N34 is coloured 3 and N33 must be coloured 2 (otherwise, Case 1 with
N3). Ns5 and Nyo cannot be both coloured 3 (otherwise, Case 1 with Nj).
So (exactly) one is coloured 2, Ny is saturated and Ny3 must be coloured 3.
However, we are in Case 2d with central vertex Nj.

e We conclude that Ny must be coloured 3. Recall that ¢(Ns4) # 1. In case

N3y is coloured 2, we are in Case 2¢ with Ny instead of V. So Nay is coloured
3 and it is saturated. So ¢(Nag) # 3, ¢(N33) # 3, among Naoz, N33, N55 and
Nsp at most one vertex is coloured 1 (interference in V) and at most two are
coloured 2 (interference in Ny). Moreover, at most one of the vertices Njs
and Njg is coloured 3, otherwise we are in Case 1 with N5. So, exactly one
of the vertices Ng5 and Njq is coloured 3 and Nj is saturated; exactly two of
the vertices Nog, N33, Ns5 and Njg are coloured 2 and Ny is saturated. But
then we find a contradiction to Fact 5 as N334, N3aa, Nysa, Nags and Nyss
are all coloured 1.

We then conclude that ¢(Ny5) = 3 and by symmetry that ¢(N3g) = 3. Ny
cannot be coloured 3 by Fact 5.

e Suppose first that Ny4 is coloured 1 (V; is saturated). Consequently, Nas,

N33, N55 and N5g must be coloured 2 due to the interference constraints in
N3 and N5. So N4 is saturated and N334, ]\/};447 N445 and N455 must be
coloured 1 due to the interference in N34 and Ny5. This is a contradiction to
Fact 5.

e We obtain that N4y must be coloured 2. Among Noz, N33, N5 and N5g at

most one vertex is coloured 1 (interference in V;) and none of them is coloured
3 (interference in N3 and N5). So at least 3 of them are coloured 2 and we
get a contradiction as Iy, (T2, wq,c) > 3.

Now consider that ¢(N3) = ¢(Ny) = ¢(N5) = 3. By Fact 3, we know that
N34, Nyy and Nys are not coloured 3. These vertices are also not coloured
1, otherwise we would be in one of the cases from 2a to 2e with vertex Ny
replacing of V. So Ns4, Nyy and Nys are all coloured 2. Let us check the
possible colourings of Njs.

First consider that Ns5 is coloured 3. If Nsg is coloured 2, then we are in
Case 2d with N5 instead of V. So Nsg is coloured 1 and Vj are saturated.
However, we obtain that Nog and N33 are both coloured 2 and we have a
contradiction to Fact 5.

Suppose now that ¢(Ns5) = 2. Observe that N5g cannot be coloured 2, by
Fact 5.

If ¢(Nsg) = 1, Vp is saturated and as Nyy is saturated we conclude that N33
is coloured 3. But then N3 and N, are saturated and we have a contradiction
to Fact 5, because all the vertices N334, N3qq, Nyaa, Nyss and Nys5 must be
coloured 1.

So Ny is coloured 3 and Ny, N5, Nyy and Nys5 are saturated. Consequently,
we find a contradiction to Fact 5 as N344, Naas, Nass, Nys5 and Ngss are all
coloured 1.
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iii

(a)

i.

ii.

iii.

. We conclude that ¢(Ns5) = 1 and V) is saturated. Na3 and N33 can neither be

both coloured 2, nor 3, due to Facts 5 and 3, respectively. If Na3 is coloured
3 and N33 is coloured 2, we have that Ny, N34 and Ny are saturated. Thus,
N334, N344, N444, N445 and N455 must be all coloured 1, contradicting Fact 5.
Consequently, ¢(Na3) = 2 and ¢(N33) = 3. But then we are in Case 2d with
vertex N3 replacing V.

3. Subcase ¢(N3) = 1.

Observe that the vertices Ngi, Nag, N34 and N5g cannot be coloured 1, other-
wise we would be in Case 2. Up to symmetries, we study the possible colourings
of N1, Ny, Ny and Nj: four of the same colour (Case 3a), three of the same
colour (Case 3b) or two of the same colour (Cases 3c and 3d).

Let us consider first the case ¢(Ny) = ¢(N2) = ¢(Ny) = ¢(N5) = 2. In this case,
No1, Nag, N34 and N5p must be coloured 3, due to interference constraints in
N1, N, Ns and N5, respectively. By symmetry, we consider that if there exists
a vertex coloured 1 in I'2] then it is in the set { N33, Ny4, Ny5, N55}. Thus, the
vertices N11 and N5 must be coloured 3 and we are in Case 2 with respect to
N11 .

Now let ¢(N1) = ¢(N2) = ¢(N4) = 2 and ¢(N5) = 3. Observe that the vertices
Ni1, N12 and Nao cannot be coloured 2, otherwise we would be in the previous
Cases 1 or 2. If these vertices are all coloured 3, Np; and No3 cannot receive
colour 3 as we would be in Case 2. So Ny and Nog must be both coloured 2
and we reach a contradiction as Iy, (52, wa, ¢) > 3. So one of the vertices Ni1,
Nis and Nys is coloured 1 and Vj is saturated.

If ¢(Ny1) = 1, Nig and Nap must be coloured 3. So Nag is coloured 2 (it
cannot be coloured 3 as we would be in Case 2) and then Nj is saturated.
Consequently, N33 and N34 are coloured 3. Observe that Ny and Nys can
neither be both coloured 2 (Fact 4 with N4) nor 3 (Fact 5). So Ny is saturated
and Ns5 and N5q are both coloured 3. Then we find a contradiction as we are
in Case 1 with vertex Ns.

In case Nay is coloured 1 and ¢(N11) = ¢(N12) = 3, we have that Nyp is
coloured 2. So Nj is saturated, Nog and Nsg must be coloured 3 and we are
in Case 2 with Njg.

So we have that C(ng) =1 and C(Nll) = C(NQQ) =3 If C(Ngg) = 2, we
have that N, is saturated, N33 and N34 must be coloured 3 and among the
vertices Ny4 and Ny5 we have one vertex coloured 2 and the other is coloured
3. Consequently, N5 and Ngg must be coloured 3 and we are in Case 1. So
C(Ngg) =3.

Observe that among N34, Ny and Ny5 we have at most one vertex coloured 2,
otherwise we would be in one of the Cases 1 or 2. Similarly, at most one of the
vertices Nys5, Ns5 and Ngg is coloured 3. In case there is a vertex coloured 2
among N34 and Nyy, due to two vertices coloured 2 in the set { Nys, N5, Nso },
we have a contradiction as I, (T2, ws,c) > 3. Observe that we cannot have
all the vertices N34, Nyy and Nys coloured 3 as we would be in Case 2. So,
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N34 and Ny4 are coloured 3 and Ny5 is coloured 2. Since that there is a vertex
in Ns5 and Ngg coloured 2, we conclude that Ny is saturated and then N33 is
coloured 3. This is a contradiction to Fact 5.

We now study the case ¢(N1) = ¢(N2) = 2 and ¢(Ny) = ¢(Ns) = 3. By
symmetry, we consider that the vertices Ngg, No1, N11, Ni2, Nog and Nog
are not coloured 1. Then, the vertices Ni;, Ni2 and Nyo must coloured 3,
otherwise we would be in Cases 1 or 2. By the same reason, Ny; and Nyo must
be coloured 2. As Nj is saturated, Nyg is coloured 3. Consequently, we can
neither colour N5¢ with colours 1 or 3, because we would be in Case 2, nor
colour it with colour 2, due to the interference in N7.

Let us consider now that ¢(N1) = 2, ¢(N3) = 3 and that among N4 and N5 we
have one vertex coloured 2 and the other is coloured 3. By symmetry, we can
once more consider that the vertices Nog, No1, N11, N12, Noo and No3 are not
coloured 1.

i. In case Niy is coloured 3, all the vertices N1, Noo and Na3 must be coloured

2, otherwise we would be in Cases 1 or 2. So N; is saturated and Nyg and
Np1 must be coloured 3. Then, as in Case 3¢ no feasible colour remains to
colour Nsg.

ii. Thus Nio is coloured 2. It implies that ¢(Ngp1) = ¢(N11) = ¢(Nag) = 3,

1.

(a)

otherwise we would be in Cases 1 or 2. Consequently, Ny is saturated, Nog
and N34 are coloured 2, and thus N33 must be coloured 1. So N3 is also
saturated and Noo3 and Naz3 must be coloured 2. Then we are in Case 1 with
N23.

CASeE: V| has exactly one neighbour coloured 1.

We also consider that no vertex v has two neighbours with its own colour,
otherwise we can consider that v is Vy and we are in the previous case. This
fact is extensively used in this proof and many times it is omitted. W.l.o.g, let
Ny be the only neighbour of V4 coloured 1 and let ¢(Ny) = 2.

Suppose first that ¢(N2) = 2. Consequently, ¢(N3) = 3, otherwise Ny would
have two neighbours coloured 2. We have three cases to analyse:

In case ¢(Ny) = ¢(N5) = 2, we claim that ¢(No1) = ¢(Nso) = 3. In fact, if not,
one of the vertices Ny, N7 or N5 would have two neighbours with their colours.
By the same reason, we conclude Nyg = 2. At this point, observe that N; and
N5 are saturated, thanks to the set {Ny, Na, Ny, N5, Noo}. Consequently, the
vertices N1; and Nio cannot receive colour 2 and they cannot be both coloured
3 as N1; would have two neighbours with its colour. Similarly, we can conclude
that at least one vertex of Nos and N33 is coloured 1 and also one of N34 and
Ny4 and one of Ny5 and Ns5. This is a contradiction because Iy, (2, ws,c) > 3.

Suppose now that ¢(Ny) = 2 and ¢(Ns) = 3. Observe that ¢(No;) = 3. By
the hypothesis that no vertex has two neighbours with the same colour, we
conclude that among the vertices N1; and N2 at least one of them is coloured
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1, none of them can receive colour 2 and they cannot be both coloured 3.
The same is valid for the vertices Noy and Naos3. Observe also that these four
vertices cannot be all coloured 1, otherwise Iy, (T2, wq,c) > 3. Then consider
that three of these vertices are coloured 1. Thus, since V; is saturated, we
must be able colour the remaining vertices of I'? with colours 2 and 3. If
we consider that ¢(N3z3) = 2, then all the other colours of vertices in I'? are
fixed by the hypothesis that each vertex has no two neighbours with its colour.
One may check that, in this case, ¢(Ngg) = ¢(Ns5) = ¢(Nsg) = 2. Thus,
In, (%%, w3, c) > 3, a contradiction. In case we colour N33 with colour 3, one
can check that there is no feasible colour for N45. Consequently, we conclude
that among N1, and Nio there is one vertex coloured 1 and the other is coloured
3; and the same holds for vertices Noo and Nog.

We now show by contradiction that no colour is feasible to Nss.

i. First suppose that Ns5 = 1. Thus, we already know that 1} is saturated
and we can no longer use colour 1 to colour vertices in I'2. If we suppose
that ¢(Ny5) = 2, we observe that we cannot colour the vertices N3y and
N4y with colours 2 and 3. Thus, let ¢(Nys5) = 3. In this case, ¢(Nsp) =
¢(Nyy) = 2, ¢(N34) = 3 and ¢(N33) = 2. We observe that I, (%2, wa,c) > 3,
a contradiction.

ii. Suppose now that ¢(Ns5) = 2. Observe that Ny cannot be coloured 2.

Suppose then that ¢(Nys5) = 1. Again V; is saturated and we cannot have
colour 1 in the remaining vertices of I'2. If ¢(Ny) = 2, then ¢(N33) = 2
and Iy, (T2 wg,c) > 3, a contradiction. Thus, let ¢(Ny) = 3. In this case
¢(N34) = 2 and ¢(N33) = 3. Consequently, N3 and Ny are saturated. It im-
plies that ¢(N334) = ¢(N344) = 1. As a consequence, ¢(Nyqq) = 3, ¢(Nyg5) =1
and, since Ny is saturated, no colour is feasible to colour Nyss.
We must consider then the case in which ¢(Ny5) = 3. As a consequence we
have ¢(Nso) = 2. Since In,(T?,wa,¢) > 2, we conclude that ¢(Ny) = 1,
¢(N34) = 3 and ¢(N33) = 2. We obtain that N3 and Ny are saturated.
Consequently, ¢(Nssq) = ¢(N3aq) = 1, but then Nygq has two neighbours
coloured 1, a contradiction.

iii. The last subcase to consider is the one in which ¢(Ns5) = 3. Observe that it
implies ¢(N509) = 2 and that Ny5 cannot be coloured 3. In case ¢(Nys5) = 1, Vo
is saturated and then N4y cannot be coloured 1. Suppose first that ¢(Nyq) = 2.
Observe that Ny is saturated and that ¢(Ns4) = 3. Consequently, no feasible
colour remains to colour Nss3. Then consider that ¢(Ny4) = 3. Consequently,
¢(N34) = 2 and Ny and Nj are saturated. This is a contradiction as the
vertices Ny45 and Nys5 should be both coloured 1, as they are at distance
two from Ny and N5, but then Ny5 would have two neighbours with the same
colour. Thus, ¢(Ny5) = 2 and Ny is saturated. If Ny is coloured 1, then Nsg
and N34 should be both coloured 3, a contradiction. Consequently, ¢(N44) = 3.
In this case, we get ¢(N33) = 3, ¢(N34) = 1 and Nj is saturated. However,
N334 and N344 should be both coloured 1, a contradiction since ¢(Ns4) = 1.

(¢) Now suppose that ¢(Ny) = 3 and ¢(N5) = 2. First observe that ¢(Np1) = 3 and
¢(Na3) = 1, thanks to the hypothesis that no vertex has two neighbours with
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(d)

2.

(a)
(b)

the same colour. By the same hypothesis, we can conclude that Ny; and Nio
cannot receive colour 2 and at most one of them is coloured 3. By the same
reasoning, we can conclude that at least one of the vertices Nyy and Nys is
coloured 1. Thus, V} is saturated and no other vertex at distance two from Vj
can receive colour 1. Consequently, by using this information combined with
the hypothesis that no vertex has two neighbours with its colour we conclude
that ¢(N33) = ¢(N34) = 2. Thus, we conclude that ¢(Nyy) =1 and ¢(Nygs5) = 2.
Since ¢(Ny5) = ¢(N5) = 2, we obtain that ¢(Ns5) = ¢(Nsg) = 3. This implies
that ¢(Nog) = 2. However, Iy, (T2, wa,c) > 3, thanks to the vertices Ny, Na,
Noo, N34 and Nys.

Finally, if ¢(N4) = ¢(N5) = 3, then Ny has two neighbours with its own colour
and we are in the previous case.

Suppose then that ¢(No) = 3. We consider the possible colourings of N3, Ny
and Ny:

First, it is not possible to have ¢(N3) = ¢(Ny) = ¢(N5) = 2 as Ny would have
two neighbours with its colour.

Then, consider the case in which ¢(N3) = ¢(N4) = 2 and ¢(N5) = 3. Once
more we know that Nsg, Ngp and Ng; cannot be coloured 1, otherwise Ng
would have two neighbours with its own colour. Similarly, none of the vertices
No3, N33, N34, Ny and Ny can receive colour 2, otherwise N3 or Ny would

have two neighbours coloured 2. We prove now that no colour is feasible for
N: 55.

i. First, consider that ¢(Ns5) = 1.

ii

e Suppose also that ¢(Ny5) = 1. Consequently, we get ¢(Nyq) = 3, otherwise
N45 has two neighbours with colour 1. In case N34 is coloured 1, Vj is sat-
urated and we reach a contradiction, because ¢(Nag) = ¢(N33) = 3 and Nog
would have two neighbours coloured 3. Thus, suppose that ¢(N34) = 3. Tt im-
plies that ¢(N33) = 1 and ¢(Na3) = 3. As a consequence, ¢(Nis) = ¢(Nog) =
2, because 1} is saturated and ¢(Nag) = 3. We then get a contradiction since
Ni2 has two neighbours coloured 2.

e We conclude then that Nys is coloured 3. Since ¢(Ns) = 3, we obtain that
¢(Nya) = 1. In case ¢(N3q) = 1, we have that V is saturated and both
Nao3 and N33 should be coloured 3. This would be a contradiction as Nag
would have two neighbours coloured 3. Consequently, ¢(Ns4) = 3. If N33 is
coloured 1, we have ¢(Naz) = 3. Once more ¢(Ni2) = ¢(Noz) = 2 and we
have a contradiction as Ny has two neighbours coloured 2. So ¢(N33) = 3
and, consequently, ¢(Na3) = 1. Since Vj is saturated and no vertex has two
neighbours with its own colour, either we have ¢(Ny1) = ¢(Nag) = 2 and
¢(N12) = 3 or we have ¢(N11) = ¢(Naz) = 3 and ¢(Ny2) = 2. In the first case,
we have a contradiction as Iy, (‘ZQ, wa,c¢) > 3 and in the latter case we also
have a contradiction as I, (T2, wa,c) > 3 (recall that ¢(N5p) = 2 and in the
set {Noo, No1} we have one vertex coloured 2 and the other coloured 3).

. Suppose then that ¢(Nj55) = 2. We distinguish three cases.
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e ¢(Nyy) = ¢(Nygs) = 1, we have that ¢(N34) = 3. In case ¢(N33) = 1, we
have that ¢(Na3) = 3 and Vj is saturated. This is a contradiction as Nio and
N5 have no feasible colouring. Then consider the case ¢(N33) = 3. Observe
that ¢(N344) = 2, otherwise N34 or Ny have two neighbours with their colour.
Consequently, V4 is saturated and all the vertices Ny4q, Nya5 and Nys5 should
be coloured 3, as they all have two adjacent neighbours coloured 1 and they
are all at distance two from N4. This is a contradiction as N455 would have
two neighbours with its own colour.

e ¢(Ny5) = 1 and ¢(Nyy) = 3. Suppose that ¢(N33) = ¢(N3yq) = 1. Thus, Vg
is saturated and ¢(No3) = 3. Once more we get a contradiction as Nio and
Ny should be both coloured 2. Thus, consider now that ¢(Ns3) = 3 and
¢(N3q) = 1. Observe that ¢(N2g) = 1 and Vj is saturated. If ¢(Nag) = 2, we
get that ¢(N12) = 3 and ¢(N11) = 2. Since at least one of the vertices Nig
and Noo must be coloured 2, we reach a contradiction as Iy, (T2, wa,c) > 3.
In case ¢(Na2) = 3, we get that ¢(N12) = 2 and ¢(Ny1) = 3. Since Ns is
saturated, we conclude that ¢(Ng1) = 2. Once more we obtain a contradiction
as In, (T2, wa,c) > 3. Let us now study the case ¢(N33) = 1 and ¢(N34) = 3.
In case ¢(Nsg) = 2, Ny is saturated and we obtain a contradiction as all
the vertices N334, N3qq and Nyg4 should be coloured 1. Thus, consider that
¢(N50) = 3. In this case, N5 is saturated and we get a contradiction as Ny
and Ny; should be both coloured 2. Since we do not have the case ¢(N33) = 3
and ¢(N34) = 3 as N34 would have two neighbours with its colour, we conclude
that ¢(Nyg5) = 3.

e S0 ¢(Nygs5) = 3, then we get that ¢(Nyg) = 1 (otherwise Nys has two neighbours
of the same colour), ¢(Nsg) = 2 and ¢(Ngg) = 3. In this case, we easily obtain
a contradiction as N4 is saturated and the vertices N5 and Nys5 have no
feasible colouring.

iii. We conclude that ¢(Ns5) = 3. As a consequence, we get ¢(Ny5) = 1 and
¢(N50) = 2. If ¢(Nyq) = 1, then ¢(Nys5) = 2 and Ny is saturated. But then all
the vertices N34, N344, Nyaq and Nyys should be coloured 3. This would be a
contradiction. Consequently, ¢(Ngq) = 3. In this case, in the set {Nog, No1}
there is exactly one vertex coloured 2 and the other is coloured 3, thanks to the
interference constraint in vertex N5 and to the hypothesis that no vertex has
two neighbours with its own colour. Similarly, we can conclude that in the set
{Nua5, Nys5} there is exactly one vertex coloured 1 and the other is coloured
2. Since Nj is saturated, we get ¢(Ns4) = 1. So, Ny5 is saturated and both
vertices Ngs5 and Nss9 should be coloured 2. This would be a contradiction
as Nx50 would have two neighbours coloured 2.

(¢) Now let ¢(N3) = ¢(N5) = 2 and ¢(N4) = 3. We show now that no colour is
feasible to Nxs.

i. Suppose first that ¢(Ns5) = 1.

e First consider that ¢(Ny5) = 1. Then Nyy cannot be coloured 1 because we
would have Iy,. (%%, ws,c) > 3.

— Then, suppose that Ny, is coloured 2 and N34 is coloured 1. Since Vj is
saturated, all the remaining vertices in I'? are not coloured 1. In case N33
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is coloured 2, we have that N3 is saturated and thus ¢(Naz) = ¢(Naz) = 3.
This is a contradiction to the hypothesis that no vertex has two neighbours
with its colour as ¢(N2) = 3. In case Nsz is coloured 3, we have that
¢(Na3) = 2, then ¢(Nag) = 3 and ¢(N12) = 2. But then, Iy, (T2, wa,c) > 3,
a contradiction.

— Consequently, if Ny4 is coloured 2, N3, must be coloured 3 (observe it cannot
be coloured 2 as it would have two neighbours N3 and Ny4 coloured 2). If
N5q is coloured 2, N is saturated and the vertices Nig5, Nis5 and Ngss
should be all coloured 3 (as Ny5 and Ns; are both coloured 1). This is a
contradiction as N455 has two neighbours with its own colour. Consequently,
we have ¢(N5g) = 3. Observe that among the vertices Nyg5 and Nys5 at least
one of them is coloured 3. Thus, Ny is saturated and in the set {Nas, N33}
we have exactly one vertex coloured 1 (due to the interference constraint in
Vo) and the other is coloured 2. Since V and N3 are saturated, the vertices
N2 and Nas should be both coloured 3. This is a contradiction as ¢(Ng) = 3.

— Thus, ¢(Nyg) = 3 and N34 can be either coloured 1 or 2. If ¢(N3y) = 1, we
get that V| is saturated. If N33 is coloured 2, Nog is necessarily coloured 3
and Nj2 and Nas should be both coloured 2. This is a contradiction as Nia
would have two neighbours coloured 2. Thus Nsj3 is coloured 3. It implies
that ¢(N23) = 2, then ¢(Nag) = 3, ¢(N12) = 2 and ¢(Np1) = ¢(N11) = 3.
This is a contradiction as Iy, (T2, ws,c) > 3.

— We conclude that ¢(Ng4) = 3 and ¢(N34) = 2. Observe that ¢(Nz44) = 1 and
¢(Ny45) = 2, thanks to the hypothesis that no vertex has two neighbours
with its colour. Since we get that Nys is saturated, we have ¢(Nyqq) = 2
and, consequently, ¢(Ny55) = 3. Observe now that N34 and Ny are saturated
(because among N33 and N334 we have exactly one vertex coloured 1 and the
other is coloured 3). As a consequence, ¢(N23) = 1 and ¢(N5o) = 2. At this
point the colours of the remaining vertices in I'? are fixed as V; is saturated.
We have ¢(Ngg) = ¢(Np1) = ¢(N12) = 3 and ¢(N11) = ¢(Naz) = 2. Thus we
observe that Iy, (T2, ws,c) > 3, a contradiction.

e Then, consider now that Ny5 is coloured 2. It implies that ¢(Ns¢) = 3 and
that among Nyo and Ny; we have exactly one vertex coloured 2 and the other
is coloured 3. Consequently, N5 is saturated and among Ns55 and Ng5o we
have exactly one vertex coloured 1 and one vertex coloured 3. In case Nyy
is coloured 1, Ns5 is saturated. Thus, N5, Nass and Nsgp are all coloured
3. This is a contradiction as In,, (T2, wa,c) > 3. If ¢(Ny) = 3, we obtain
that ¢(Nyg5) = 1 and that ¢(Ny55) = 3. Consequently, Nss is saturated and
¢(Ns00) = 3. Once more we have a contradiction as In,, (%2, ws,c) > 3.

e Suppose then that ¢(Ny5) = 3.

— If ¢(N5g) = 2, we have that ¢(Ngo) = 3. Since Iy, (T2, wa,c) > 2 and
¢(Ny) = ¢(Nys) = 3, we conclude that among N34, Nyg and Nygs5 we have
exactly two vertices coloured 1 and the other is coloured 2. Consequently, we
get Nj is saturated and thus ¢(Ny;) = 3. This implies that ¢(N5p0) = 1 and
then Nj5 is saturated. Thus, we get a contradiction as we have no feasible
colouring for the vertices Ny55 and Nss55.
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ii.

iii.

— So ¢(Nsg) = 3. If ¢(N3g) = ¢(Nyg) = 1, we observe that Vj is saturated

and that among No3 and N33 we have exactly one vertex coloured 2 and one
coloured 3. Consequently, V4 is saturated and we reach a contradiction as
no colouring is feasible to the vertices N334, N3qq and Nygq.

In case N4y is coloured 1, then N34 is coloured 2, we observe that among
No3 and N33 we have one vertex coloured 1 and the other is coloured 3. As
a consequence, we get that Vy and N, are saturated. Since ¢(Ns3q) = 1,
no colouring is feasible for the vertex Nzgqq. If Ny is coloured 2 (and so
N34 is coloured 1), observe that N is saturated, since there is a vertex
coloured 2 and another coloured 3 in the set {Ngg, No1} and we also find
a vertex coloured 1 and another coloured 2 among vertices Nyy4s and Nyss.
Consequently, the vertices Nss5 and Nsso receive colours 1 and 3 (in some
order). Thus, Nss is saturated and then ¢(Nsgp) = 3. This is a contradiction
as In., (T2, wa,c) > 3. Since no other colouring is feasible for N34 and Nyy
as we cannot assign them the colour 3, we conclude that the colour of N5
cannot be 1.

Let us consider now the case ¢(Ns5) = 2. It implies that ¢(N5o) = 3 and,
consequently, the vertices Nyg and Ny receive colours 2 and 3 in some or-
der. Thus, N5 is saturated. In case Nyy and Ny5 are both coloured 1, the
vertices N34, Nyg5 and Nys5 must be all coloured 3. This is a contradiction as
In, (T2, wy,c) > 3. In case ¢(Nyq) = 1 and ¢(Ny5) = 3, no colouring is feasible
to the vertices Nyy5 and Nyss. If ¢(Nyy) = 3 and ¢(Ny5) = 1, observe that
¢(N34) = ¢(Nyg5) = 1 and that one vertex among Ns55 and Nssg is coloured
1. Thus, Iy, (T2 ws,c) > 3, a contradiction.

We then conclude that the only possible colour for Ns5 is the colour 3. Recall
N5¢ cannot be coloured 1 as Ny would have two neighbours with its own
colour.

e Let us first consider the case in which ¢(N59) = 2. As a consequence, we

obtain ¢(Ngg) = 3 and ¢(Nyg5) = 1.

— If ¢(Np1) = 2, we can easily check that N; and Nj are saturated. Observe

also that Ny is saturated as Ny has a neighbour, the vertex Vj, coloured 1
and 3 other vertices at distance two also coloured 1 which are 45, one vertex
in the set {11, N12} and another in the set {N550, N500}. Consequently, we
reach a contradiction as Nyg; and Npi1 should be both coloured 3, but then
Noo1 would have two neighbours with colour 3.

— Thus, ¢(Np1) = 3 in this case. It implies that ¢(N590) = 1 and that the colour

3 does not appear in the vertices Nggg, Noo1 and Ng11. These three vertices
can also not be all coloured 1 or 2, as Nyg; would have two neighbours of the
same colour. We cannot have two of these vertices coloured 1 as we would
have I, (T2, wq,c) > 3. Consequently, in the set { Nooo, Noo1, No11} we have
one vertex coloured 1 and two vertices coloured 2. This implies that Ny
and N; are saturated. We then reach a contradiction as no feasible colour
remains to assign to Nyi.

e Then, we conclude that Nsg must be coloured 3 and then we get ¢(Noo) = 2

and ¢(Np1) = 3. Observe that if ¢(Ny5) = 2, we have a contradiction as Nj is
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saturated and all the vertices Ns55, N550 and N5gg should be coloured 1. Thus
we have that ¢(Ny5) = 1. Observe that the vertices N1; and Nja cannot be
both coloured the same, as we would either violate the interference constraint
in Ny (recall that there is one vertex coloured 1 in the set {Nss50, N500}) or
we would have a vertex with two neighbours of the same colour. In case Ni;
and Npo are coloured 1 and 2, in any order, observe that since Ny and Nj are
saturated, no colouring is feasible for the vertices Ngg1 and Npi1. We also
have no feasible colouring for these vertices in case Nps is coloured 1 (and
then Ny is saturated) or 2 (in this case N; is saturated) and the vertex Nig
is coloured 3.

Thus, ¢(N12) = 3 and suppose first that ¢(Ny;) = 1. Since N is saturated,
the vertices Nogo, Noo1 and Np11 can be just coloured 2 or 3. In case ¢(Nogg) =
2, we obtain that ¢(Npo1) = 3 and ¢(Np11) = 2. We reach a contradiction as
In,, (T2, wq,¢) > 3 (observe that one vertex among Ns50 and Niqp is coloured
2). If ¢(Nooo) = 3, we have that ¢(Ngp1) = 2 and ¢(Np11) = 3. Then, we also
find a contradiction as In,, (T2, ws,c) > 3.

Consequently, ¢(N71) = 2 and N; is saturated. In this case, no colouring is
feasible for the vertices 122, Nog and No3 and we complete the proof of this
case as no colour is feasible for the vertex Nss.

In case we have ¢(N3) = 2 and ¢(Ny) = ¢(N5) = 3, we are in a symmetric case
to 1b.

If ¢(N3) = 3 and ¢(N4) = ¢(N5) = 2, we obtain a symmetric case to lc.
The case ¢(N3) = ¢(N5) = 3 and ¢(N4) = 2 is symmetric to 2a.
Finally, it is not possible to have ¢(N3) = ¢(N4) = 3 as N3 would have two

neighbours, No and Ny, with its own colour.

CASE: V) has no neighbour coloured 1.

Now we consider that no vertex has a neighbour with its own colour, oth-

erwise we are in the previous case. W.l.o.g, we may conclude that ¢(Ny) =

¢(N2) = ¢(Ng) = 2 and ¢(N1) = ¢(N3) = ¢(N5) = 3. Thus, we obtain
¢(Np1) = ¢(N12) = ¢(Naz) = ¢(N34) = ¢(Ngs) = ¢(Nsg) = 1. This is a contra-
diction as Iy, (T2, wq,c) > 3.

Now we present the colouring providing the corresponding upper bound.
For a weighted 3-improper 3-colouring of (T2, ws) set, for 0 < j < 2, E; =

{(4,0)+a(3f1) +b(f2) | Va,b € Z}. Then, for 0 < j < 2, assign the colour j + 1

to all the vertices in E;. See Figure 7(e).

1.

Now we prove that (T2,w;) does not admit a weighted 4.5-improper 2-

colouring. Again, by contradiction, suppose that there exists a weighted 4.5-
improper 2-colouring ¢ of (T2, wy) with the interference function wy. A vertex
can have at most four neighbours of the same colour as it. We analyse some
cases:

There exists a vertex V| with four of its neighbours coloured with its own colour,
say 1. Therefore among the vertices of I'? at most one is coloured 1. Consider
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(a)

ii.

iii.

the two neighbours of Vj coloured 2. First, consider the case in which they
are adjacent and let them be Ny and N;. In I'?, Ny has three neighbours and
four vertices at distance two; since at most one being of colour 1, these vertices
produce in Ny an interference equal to 4 and as Np is also of colour 2, then
In, (T2, wq,¢) > 5, a contradiction. In case the two neighbours of V; coloured
2 are non adjacent, let them be N; and N;. At least one of them, say IV; has
its three neighbours in I'? coloured 2 and it has also at least three vertices at
distance two in I'? coloured 2; taking into account that N; is coloured 2 and at
distance two from N;, we get Iy, (T2, wg,c) > 5, a contradiction.

. No vertex has four neighbours with its colour and there exists at least one

vertex Vj coloured 1 that has three neighbours of the same colour 1.

The three other neighbours of V{ coloured 2 are consecutive and let them be
Ny, Ny and No. N34, Nyg and Nys are all coloured 2, otherwise N4 would have
four neighbours coloured 1 and we would be in Case 1. At most one of Ny,
Ni; and Nps has colour 2, otherwise N7 would have four neighbours coloured
2 and we would be again in Case 1.

. Nij is coloured 2. Then ¢(No1) = ¢(N12) = 1. As already Iy, (T2, waq,c) > 4,

there is at most another vertex in I'? coloured 1. So either the three vertices
Nayo, Nog and N33 or the three vertices Ngg, Nsg and Ns5 are all coloured 2
and then I, (%%, wa,c) > 5 or Iy, (T2, wa,c) > 5, a contradiction.

Noi is coloured 2 (the case Nig is symmetric). Then, ¢(N11) = ¢(N12) = 1.
One of Nyp and N5 is of colour 1 otherwise, Ny has four neighbours of colour
2. But then Iy, (T2, wg,c) > 4.5 so all the other vertices of I'? are coloured 2.
Therefore, In, (%2, ws,c) > 5, a contradiction.

No1, Ni1 and Nip all have colour 1. In that case Iy, (T2, wq,c) > 4.5. There-
fore all the other vertices of I'? are coloured 2 and I, (T2, wa,c) > 4.5. So the
other vertices at distance two of Ny are coloured 1 and then Iy, (T2, we,c) >
5, a contradiction.

Among the three vertices of colour 2, only two are consecutive. W.l.o.g., let
the three vertices of colour 2 be Ny, N7 and N3. At least one vertex of N,
Noo, Nop is coloured 1, otherwise Ny has four neighbours of the same colour
as it and we would be in the previous case. Similarly at least one vertex
of No1, Ni1, Nio is coloured 1, otherwise N7 has four neighbours with its
colour and we would be in the previous case. At least one vertex of Nag,
N33, N34 is coloured 1, otherwise N3 has three consecutive neighbours of the
same colour as it and we are in the previous case. Suppose Np; is coloured 2,
then Iy, (%2, wq,c) > 4.5 and exactly one of N5g, Ngo and one of Nyj, Nig is
coloured 1 and N5, Nss are coloured 2, otherwise Iy, (“52,11)2,0) > 5. Then
In, (T2, wq,c) > 5, a contradiction. So, ¢(Np1) = 1. If both Njg, Ngo are
coloured 2, then Iy, (%2, wg,c) > 5 with three neighbours coloured 2 and at
least four vertices at distance two coloured 2, namely N3 and three vertices
among Nys, Nss, N11, N12 (at most one vertex of these could be of colour 1,
otherwise Iy, (T2, wa,c) > 5). So, one of Nsg, Nyo is coloured 1 and all the
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3.

(a)

4.

other vertices in {Ny1, N12, Nog, Nyug, Ny5, N55} are coloured 2 implying that
In, (T2, w2y, c) > 5, a contradiction.

No two vertices of colour 2 are consecutive. W.l.o.g, let these vertices be
Ny, Na, Ny. The three neighbours of Ny (resp. N1, N3) in I'? that are not neigh-
bours of Vj cannot be all coloured 2, otherwise we are in Case (a). So exactly
one neighbour of Ny, N1, Ny in I'? is coloured 1, otherwise Iy, (T2, wq,c) > 5.
Furthermore all the other vertices of I'? are coloured 2. Then, if ¢(Ni2) =
¢(Nys) = 2, we conclude that Iy, (T2 wa,c) > 5, a contradiction. Conse-
quently, w.l.o.g., suppose that ¢(N12) = 1. In this case, Nag has at least three
neighbours coloured 2 and we are in some previous case.

No vertex has three neighbours coloured with its own colour, but there exists
at least one vertex, say Vj, of colour 1 that has two neighbours coloured 1.

These two neighbours are consecutive say Ny and N;. The neighbours of N3
and Ny in I'? are all coloured 1, otherwise they would have at least three
neighbours with the same colour. Similarly, at least one of Njo and Nao is
coloured 1, otherwise No would have at least three neighbours also coloured 2.
Then, Iy, (T2, ws,c) > 5, a contradiction.

These two neighbours are of the form N; and N;io, for some 0 < i < 3.
W.lo.g., let these neighbours be Ny and Ns. Thus, the three neighbours of
Ny in T2, N34, Nyg and Nys are coloured 1 and at least one vertex of Nas and
N33 (resp. Nss and Nsg) is coloured 1. Moreover, at least one vertex of Noyj,
N71 and N must be coloured 1, otherwise Ni would have three neighbours
with its colour. Consequently, Iy, (T2, ws,c) > 5, a contradiction.

These two neighbours are of the form N; and N;43, for some 0 < ¢ < 2.
W.lo.g., let these neighbours be Ny and N3. Again, at least three vertices
among Noi, N11, Ni2, Noo and Naog and at least three other vertices among
N3y, Nua, Nys, N55 and Nsg are coloured 1. Consequently, Iy (TQ,wg, c) > 5,
a contradiction.

No vertex has two neighbours of the same colour. Suppose Vj is coloured 1
and has only one neighbour Ny coloured 1. Then, its other five neighbours are
coloured 2 and Ny has two neighbours of the colour 2, a contradiction.

A weighted 5-improper 2-colouring of (T2,ws) is obtained as follows: for
0<j <1 let Fj ={(j0) +a(2f1) + b(f1 + 2f2) | Va,b € Z} and F] =
{(G—=1,1)+a(2f1) +b(f1 + 2f2) | Va,b € Z}. Then, for 0 < j < 1, assign the
colour j + 1 to all the vertices in Fj and in F}. See Figure 7(f).

Since each vertex has six neighbours and twelve vertices at distance two
in T, there is no weighted t-improper 1-colouring of (T2, wy), for any ¢t < 12.
Obviously, there is a weighted 12-improper 1-colouring of T2. O
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4. Integer Linear Programming Formulations, Algorithms and Re-
sults

In this section, we look at how to solve the WEIGHTED IMPROPER COLOUR-
ING and THRESHOLD IMPROPER COLOURING for general instances inspired by
the practical motivation. We present integer linear programming models for
both problems. These models can be solved exactly for small sized instances us-
ing solvers like CPLEX!. For larger instances, the solvers can take a prohibitive
time to provide exact solutions. It is usually possible to obtain a sub-optimal
solution stopping the solver after a limited time. If the time is too short, the
quality of the solution may be unsatisfactory. Thus, we introduce two algo-
rithmic approaches to find good solutions for THRESHOLD IMPROPER COLOUR-
ING in a short time: a simple polynomial-time greedy heuristic and an exact
Branch-and-Bound algorithm. We compare the three methods on different sets
of instances, among them Poisson-Voronoi tessellations as they are good models
of antenna networks [5, 13, 14].

4.1. Integer Linear Programming Models

Given an edge-weighted graph G = (V, E,w), w : E — R, and a positive
real threshold ¢, we model WEIGHTED IMPROPER COLOURING by using two
kinds of binary variables. Variable x;, indicates if vertex 4 is coloured p and
variable ¢, indicates if colour p is used, for every 1 <4 <nand 1 < p <[, where
[ is an upper bound for the number of colours needed in an optimal weighted
t-improper colouring of G. [ can be trivially chosen of value n, but a better
value may be given by the results of Section 2. The model follows:

min Z;Zl ¢p
subject to
ZijeE andj;éiw(ivj)mjp St+MQ1—ay) VieVl<p<l
Cp Z Tip VieV,1<p<lI
Z;Zl Tip = 1 VieV
zip € {0,1} VieV,1<p<l
cp €{0,1} 1<p<l

where M is a large integer. For instance, it is sufficient to choose M >
ZquE w(“” U)'

For THRESHOLD IMPROPER COLOURING, given an edge-weighted graph G =
(V,E,w), w: E — R, and a number of possible colours k € IN*, the model we
consider is:

Thttp://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
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min t

subject to
doije and j2i W DT St + M(1—x) VieV,1<p<lI
S wip =1 VieV
zip € {0,1} VieV,1<p<l

We give directly these models to the ILP solver CPLEX without using any
preprocessing or any other technique to speed the search for an optimal solution.

4.2. Algorithmic approach

In this section, we show a Branch-and-Bound algorithm and a randomised
greedy heuristic to tackle THRESHOLD IMPROPER COLOURING. Both are based
on common procedures to determine the order in which vertices are coloured
and colours are tried for a single vertex. Although, the Branch-and-Bound needs
an ordering of the vertices to be coloured as input while the heuristic colours
the vertices at the same time the order is being processed.

4.2.1. Order of vertices and colours

The order in which the vertices are chosen to be coloured follows essentially
the same idea as the DSATUR algorithm, created by Daniel Brélaz [6].

Consider a graph G = (V,E,w), w : E — R and a partial colouring
c:U = {1,...,k}, where U C V. We say that vertex v is coloured if v € U,
otherwise it is uncoloured. We define the total potential interference in vertex v
to be:

I = Z w(u, v),

{ueV|uveE and v¢U}

which is the sum of interferences for all colours induced in v by all its already
coloured neighbours.

The idea for both algorithms is to first colour vertices with highest total
potential interference. Whenever more than one vertex has the highest total
potential interference, one of them is chosen at random. At the beginning,
when all vertices have I é"j = 0, one of the highest weighted degree is chosen
instead.

Consider the following steps:

1. Colour a random vertex with maximal sum of incoming weights.
2. Colour a random vertex with maximal total potential interference.
3. If all vertices all coloured, stop. Otherwise, repeat step 2.

Note that the total potential interference does not depend on the actual
colours assigned to the vertices. Thus, in order to decide which is the next
vertex to be coloured, both algorithms, Branch-and-Bound and heuristic, use
these three steps. However, the Branch-and-Bound algorithm needs an order to
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colour the vertices as input. So, we decide which order to give to the Branch-
and-Bound algorithm as input by running these three steps and using a single
colour.

The procedure above specifies the order of vertices. For the order of colours
to try, we define the potential interference in vertex v for colour x as:

Ioys = Z w(u,v)

{ueV|uveE and c(v)=x}

Anytime one of our algorithms colours a vertex, it tries the colours in order of
increasing potential interference.

4.2.2. Branch-and-Bound Algorithm

Having an ordering procedure for both vertices and colours, we construct a
simple Branch-and-Bound algorithm using them. The order of vertices to colour
is fixed before running the algorithm, following the procedure in Section 4.2.1.
Then, the ordered vertices are coloured by a recursive function that tries all the
possible colours for each vertex as far as no interference constraint is violated.
The order in which the colours are tried is also presented in the previous section.
Our algorithm outputs all the feasible colourings it finds and, as all the possible
colours are tried, the one using the minimum number of colours is an optimal
one.

Here you have a pseudo code for the algorithm:

Algorithm 1: Branch&Bound

input : edge-weighted graph (G, w), number of colours k, partial
colouring ¢, upper bound ¢ and corresponding colouring ¢, order
in which vertices should be coloured O
output: new upper bound ¢’ and corresponding colouring ¢’
if max,ey I,(G,w,c) >t then
L return ¢ and ¢
if all vertices are coloured in ¢ then
| return (max,cy I,(G,w,c) and c)

v = next vertex uncoloured in ¢ according to O
for = € possible colours in order of increasing I. , , do

| (t and ¢) = Branch&Bound(G, k, ¢N (v < z), t, ¢, O)
return ¢t and ¢

Where by ¢N (v + z) we mean a partial colouring where colour of vertex v
(which was uncoloured in ¢) is set to z, and colours of all other vertices are as
in ¢. The algorithm is first called with all vertices uncoloured and t = oc.

This algorithm displays a problematic behaviour. Imagine the partial colour-
ing of the first few vertices yields good results locally, but implies a suboptimal
interference at a more distant part of the graph. As the solution search takes ex-
ponential time in number of vertices, it is easy to envision that the time required
to change the colouring of first vertices can be prohibitively long.
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4.2.8. Greedy Heuristic

Here we propose a randomised greedy heuristic that, repeated multiple, but
not exponentially many times, finds similar solutions to the above Branch-and-
Bound without the mentioned problem. On the other hand, there are some
solutions that are impossible to find with it, no matter the number of tries. An
example of such an unobtainable solution is the optimal colouring of infinite
square grid with 2 colours.

Algorithm 2: Levelling Heuristic

input : edge-weighted graph (G, w), number of colours k, upper bound ¢
output: failed or a colouring c

c(v) =0 YveV
forie {1,...,|V]} do

v = next, in order of increasing 1%

v

vertex uncoloured in ¢
for = € possible colours in order of increasing I, , do
if colouring v with x does not cause max,cy I,(G,w,c) >t then

c(v) ==z
break the inner loop

if ¢(v) = () then
L return failed

return c

Note that there is substantial randomness in this algorithm. The first ver-
tex is the one of the ones with highest weighted degree. In the extreme case
of regular graphs, this already means any vertex at random. If we use the
simple interference function defined in Section 3, then the second vertex is a
random neighbour of the first vertex. Any time there are multiple vertices with
maximum total potential interference, we choose one at random. Similarly, the
choice of colours is also random in case of equal potential interference.

Above algorithm is first called with ¢ = co. Whenever it returns a colour-
ing, we set t = maxyey I,(G,w,c) for further iterations. It is repeated for a
given number of times, or until a time limit is reached. In all instances in the
following sections the program is constrained by a time limit. This means that
the algorithm is called for an unknown, but probably big number of times (e.g.
for a 6-regular grid of 1024 vertices the program performs on average over 500
runs of the algorithm per second).

As a randomised greedy colouring heuristic, it has to be ran multiple times
to achieve satisfactory results. This is not a practical issue due to low compu-
tational cost of each run. The local immutable colouring decision is taken in
time O(kA). Then, after each such decision, the interference has to be propa-
gated, which takes linear time in the vertex degree. This gives a computational
complexity bound O(knA)-time.
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Figure 9: Results comparison for Levelling heuristic, Branch-and-Bound algorithm and Integer

Linear Programming Formulation.

4.83. Validation

In this section we validate our algorithmic approaches at THRESHOLD IM-
PROPER COLOURING, by examining performance of their implementations. Tests
cover a wide range of parameters, mostly on Delaunay graphs (see section 4.3.2).

4.8.1. Implementation
The ILP model is constructed out of the input graph and given directly
to the CPLEX ILP solver. Branch-and-Bound algorithm is implemented in a
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straightforward way in the Python programming language. The greedy heuristic
has a highly optimised implementation in the Cython programming language?.

In results displayed below, all programs are run simultaneously on the same
quad-core enterprise-grade CPU. Both the Branch-and-Bound and greedy heuris-
tic are limited to a single core. CPLEX is allowed to both the remaining cores.

4.8.2. Graphs

We consider random Delaunay graphs (dual of Voronoi diagram). This kind
of graphs is an intuitive approximation of a network of irregular cells. To obtain
a graph in this class, take a set of random points uniformly distributed over a
square. These represent the vertices of the graph. To obtain the edges, compute
a Delaunay triangulation. This can be done e.g. with Fortune’s algorithm
described in [12] in O(nlogn) time.

See Figure 9(a) for a depiction of a fragment of such graph. Vertices are
arranged according to the positions of original random points. Dotted lines
delimit corresponding Voronoi diagram cells. Only edges between vertices visible
on the illustration are displayed.

Note that, to follow the model of the physical motivation, we are dealing
with very sparse graphs. The average degree in Delaunay graph G converges to
six (this results follows from the observation that G is planar and triangulated,
thus |E(G)| = 3|V(G)| — 6 by Euler’s formula). To get an idea about the
proposed algorithms’ performance in denser graphs, we also run some tests on
Erdos-Rényi graphs with expected degree equal to 50.

The interference model we consider in all experiments is the one described
in Section 3: adjacent nodes interfere by 1 and nodes at distance two interfere
by 1/2.

4.3.3. Results

Figure 9 shows a performance comparison of the above-mentioned algo-
rithms. For all the plots, each data point represents an average over a number
(between 24 and 100) of different graphs. The experiment procedure is as fol-
lows. For each graph size considered in an experiment, a number of graphs is
generated. Each of those graphs is transformed into a set of instances, one for
each desired number of allowed colours. All the programs are run on each in-
stance, once for each desired value of time limit. Finally, a data point is created
with results and all the parameters, averaged over the number of graphs.

Figures 9(b) and 9(c) plot how results for a problem instance get enhanced
with increasing time limits. Plot 9(d) shows how well all the programmes scale
with increasing graph sizes. Plots 9(e) and 9(f) show decreasing interference
along increasing the number of colours allowed.

One immediate observation about both the heuristic and Branch-and-Bound
algorithm is that they provide good solutions in relatively short time. On the

2This is the faster implementation envisioned in [3].
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other hand, with limited time, they fail to improve up to optimal results, espe-
cially with a low number of allowed colours. An example near-optimal solution
found in around three minutes was not improved by Branch-and-Bound in over
six days.

The heuristic, is able to provide good results in sub-second times and scales
better with increasing graph sizes than the Branch-and-Bound. It is also not
prone to spending a lot time exploring a sub-optimal branch of a decision tree.
Still, in many cases it is unable to obtain optimal results and displays a worse
end result than an integer linear program, given enough time.

Solving the ILP does not scale with increasing graph sizes as well as our
simple algorithms. Furthermore, Figure 9(e) reveals one problem specific to ILP.
When increasing the number of allowed colours, obtaining small interferences
gets easier. But this introduces additional constraints in the formulation, thus
increasing the complexity for a solver.

Proposed algorithms also work well for denser graphs. Figure 9(f) plots
interferences for different numbers of colours allowed found by the programs for
an Erdos-Rényi graph with n = 500 and p = 0.1. This gives us an average
degree equal to 50. Both Branch-and-Bound and heuristic programs achieve
acceptable, and nearly identical, results. But the large number of constraints
makes the integer linear programming formulation very inefficient.

5. Conclusion, Open Problems and Future Directions

In this paper, we introduced and studied a new colouring problem, WEIGHTED
IMPROPER COLOURING. This problem is motivated by the design of telecom-
munication antenna networks in which the interference between two vertices
depends on different factors and can take various values. For each vertex, the
sum of the interferences it receives should be less than a given threshold value.

We first give general bounds on the weighted-improper chromatic number.
We then study the particular case of infinite paths, trees and grids: square,
hexagonal and triangular. For these graphs, we provide their weighted-improper
chromatic number for all possible values of t. Finally, we propose a heuristic
and a Branch-and-Bound algorithm to find good solutions of the problem. We
compare their results with the one of an integer linear programming formulation
on cell-like networks, Poisson-Voronoi tessellations.

Many problems remain to be solved:

e The study of the grid graphs, we considered a specific function where
vertices at distance one interfere by 1 and vertices at distance two by 1/2.
Other weight functions should be considered. e.g. 1/d? or 1/(2¢7 1), where
d is the distance between vertices.

e Other families of graphs could be considered, for example hypercubes.

e We showed that the THRESHOLD IMPROPER COLOURING problem can be
transformed into a problem with only two possible weights on the edges
1 and oo, that is a mix of proper and improper colouring. This simplify
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the nature of the graph interferences but at the cost of an important
increase of instance sizes. We want to further study this. In particular, let
G = (V, E,w) be an edge-weighted graph where the weights are all equal to
1 or M. Let G be the subgraph of G induced by the edges of weight M;

is it true that if A(Gyr) << A(G), then x; (G, w) < x:(G) < {%w?
A similar result for L(p, 1)-labelling [15] suggests it could be true.

Note that the problem can also be solved algorithmically for other classes
of graphs and for other functions of interference. We started looking in this
direction in [4]. The problem can be expressed as a linear program and then
be solved exactly using solvers such as CPLEX or Glpk® for small instances
of graphs. For larger instances, we propose a heuristic algorithm inspired by
DSATUR [6] but adapted to the specifics of our colouring problem. We used
it to derive colouring with few colours for Poisson-Voronoi tessellations as they
are good models of antenna networks [5, 13, 14]. We plan to further investigate
the algorithmic side of our colouring problem.
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