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Abstract

In this paper, we study a colouring problem motivated by a practical frequency
assignment problem and, up to our best knowledge, new. In wireless networks,
a node interferes with other nodes, the level of interference depending on numer-
ous parameters: distance between the nodes, geographical topography, obsta-
cles, etc. We model this with a weighted graph (G,w) where the weight function
w on the edges of G represents the noise (interference) between the two end-
vertices. The total interference in a node is then the sum of all the noises of
the nodes emitting on the same frequency. A weighted t-improper k-colouring
of (G,w) is a k-colouring of the nodes of G (assignment of k frequencies) such
that the interference at each node does not exceed the threshold t. We consider
here the Weighted Improper Colouring problem which consists in determining
the weighted t-improper chromatic number defined as the minimum integer k
such that (G,w) admits a weighted t-improper k-colouring. We also consider
the dual problem, denoted the Threshold Improper Colouring problem, where,
given a number k of colours, we want to determine the minimum real t such that
(G,w) admits a weighted t-improper k-colouring. We first present general upper
bounds for both problems; in particular we show a generalisation of Lovász’s
Theorem for the weighted t-improper chromatic number. We then show how
to transform an instance of the Threshold Improper Colouring problem into
another equivalent one where the weights are either one or M , for a sufficiently
large M . Motivated by the original application, we then study a special in-
terference model on various grids (square, triangular, hexagonal) where a node
produces a noise of intensity 1 for its neighbours and a noise of intensity 1/2 for
the nodes at distance two. We derive the weighted t-improper chromatic number
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for all values of t. Finally, we model the problem using integer linear program-
ming, propose and test heuristic and exact Branch-and-Bound algorithms on
random cell-like graphs, namely the Poisson-Voronoi tessellations.

Keywords: graph colouring, improper colouring, interference, radio networks,
frequency assignment.

1. Introduction

Let G = (V,E) be a graph. A k-colouring of G is a function c : V →
{1, . . . , k}. The colouring c is proper if uv ∈ E implies c(u) 6= c(v). The
chromatic number of G, denoted by χ(G), is the minimum integer k such that
G admits a proper k-colouring. The goal of the Vertex Colouring problem is
to determine χ(G) for a given graph G. It is a well-known NP-hard problem [16].

A k-colouring c is l-improper if |{v ∈ N(u) | c(v) = c(u)}| ≤ l, for all
u ∈ V (as usual in the literature, N(u) stands for the set {v | uv ∈ E(G)}).
Given a non-negative integer l, the l-improper chromatic number of a graph G,
denoted by χl(G), is the minimum integer k such that G admits an l-improper
k-colouring. Given a graph G and an integer l, the Improper Colouring
problem consists in determining χl(G) and is also NP-hard [19, 8]. Indeed, if
l = 0, observe that χ0(G) = χ(G). Consequently, Vertex Colouring is a
particular case of Improper Colouring.

In this work we define and study a new variation of the Improper Colour-
ing problem for edge-weighted graphs. An edge-weighted graph is a pair (G,w)
where G = (V,E) is a graph and w : E → R∗+. Given an edge-weighted graph
(G,w) and a colouring c of G, the interference of a vertex u in this colouring is
defined by

Iu(G,w, c) =
∑

{v∈N(u)|c(v)=c(u)}

w(u, v).

For any non-negative real number t, called threshold, we say that c is a weighted
t-improper k-colouring of (G,w) if c is a k-colouring of G such that Iu(G,w, c) ≤
t, for all u ∈ V .

Given a threshold t ∈ R∗+, the minimum integer k such that the graph G
admits a weighted t-improper k-colouring is the weighted t-improper chromatic
number of (G,w), denoted by χt(G,w). Given an edge-weighted graph (G,w)
and a threshold t ∈ R∗+, determining χt(G,w) is the goal of the Weighted
Improper Colouring problem. Note that if t = 0 then χ0(G,w) = χ(G),
and if w(e) = 1 for all e ∈ E, then χl(G,w) = χl(G) for any positive integer l.
Therefore, the Weighted Improper Colouring problem is clearly NP-hard
since it generalises Vertex Colouring and Improper Colouring.

On the other hand, given a positive integer k, we define the minimum k-
threshold of (G,w), denoted by Tk(G,w) as the minimum real t such that (G,w)
admits a weighted t-improper k-colouring. Then, for a given edge-weighted
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graph (G,w) and a positive integer k, the Threshold Improper Colour-
ing problem consists in determining Tk(G,w). The Threshold Improper
colouring problem is also NP-hard. This fact follows from the observation
that determining whether χl(G) ≤ k is NP-complete, for every l ≥ 2 and
k ≥ 2 [10, 9, 8]. Consequently, in particular, it is a NP-complete problem
to decide whether a graph G admits a weighted t-improper 2-colouring when all
the weights of the edges of G are equal to one, for every t ≥ 2.

1.1. Motivation

Our initial motivation to these problems was the design of satellite antennas
for multi-spot MFTDMA satellites [2]. In this technology, satellites transmit
signals to areas on the ground called spots. These spots form a grid-like struc-
ture which is modelled by an hexagonal cell graph. To each spot is assigned
a radio channel or colour. Spots are interfering with other spots having the
same channel and a spot can use a colour only if the interference level does not
exceed a given threshold t. The level of interference between two spots depends
on their distance. The authors of [2] introduced a factor of mitigation γ and the
interference of remote spots are reduced by a factor 1−γ. When the interference
level is too low, the nodes are considered to not interfere anymore. Considering
such types of interference, where nodes at distance at most i interfere, leads to
the study of the i-th power of the graph modelling the network and a case of
special interest is the power of grid graphs (see Section 3).

1.2. Related Work

Our problems are particular cases of the Frequency Assignment problem
(FAP). FAP has several variations that were already studied in the literature
(see [1] for a survey). In most of these variations, the main constraint to be
satisfied is that if two vertices (mobile phones, antennas, spots, etc.) are close,
then the difference between the frequencies that are assigned to them must be
greater than some function which usually depends on their distance.

There is a strong relationship between most of these variations and the
L(p1, . . . , pd)-labelling problem [20]. In this problem, the goal is to find a
colouring of the vertices of a given graph G, in such a way that the difference
between the colours assigned to vertices at distance i is at least pi, for every
i = 1, . . . , d.

In some other variants, for each non-satisfied interference constraint a penalty
must be paid. In particular, the goal of the Minimum Interference Fre-
quency Assignment problem (MI-FAP) is to minimise the total penalties
that must be paid, when the number of frequencies to be assigned is given.
This problem can also be studied for only co-channel interference, in which the
penalties are applied only if the two vertices have the same frequency. However,
MI-FAP under these constraints does not correspond to Weighted Improper
Colouring, because we consider the co-channel interference, i.e. penalties,
just between each vertex and its neighbourhood.
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The two closest related works we found in the literature are [18] and [11].
However, they both apply penalties over co-channel interference, but also to the
adjacent channel interference, i.e. when the colours of adjacent vertices differ by
one unit. Moreover, their results are not similar to ours. In [18], they propose an
enumerative algorithm for the problem, while in [11] a Branch-and-Cut method
is proposed and applied over some instances.

1.3. Results

In this article, we study both parameters χt(G,w) and Tk(G,w). We first
present general bounds; in particular we show a generalisation of Lovász’s The-
orem for χt(G,w). We after show how to transform an instance of Threshold
Improper colouring into an equivalent one where the weights are either one
or M , for a sufficiently large M .

Motivated by the original application, we then study a special interference
model on various grids (square, triangular, hexagonal) where a node produces a
noise of intensity 1 for its neighbours and a noise of intensity 1/2 for the nodes
that are at distance two. We derive the weighted t-improper chromatic number
for all possible values of t.

Finally, we propose a heuristic and a Branch-and-Bound algorithm to solve
Threshold Improper colouring for general graphs. We compare them to
an integer linear programming formulation on random cell-like graphs, namely
Voronoi diagrams of random points of the plan. These graphs are classically
used in the literature to model telecommunication networks [5, 13, 14].

2. General Results

In this section, we present some results for Weighted Improper colour-
ing and Threshold Improper colouring for general graphs and general
interference models.

2.1. Upper bounds

Let (G,w) be an edge-weighted graph with positive real weights given by
w : E(G) → Q∗+. For any vertex v ∈ V (G), its weighted degree is dw(v) =∑
u∈N(v) w(u, v). The maximum weighted degree ofG is ∆(G,w) = maxv∈V dw(v).

Given a k-colouring c : V → {1, . . . , k} of G, we define, for every vertex
v ∈ V (G) and colour i = 1, . . . , k, diw,c(v) =

∑
{u∈N(v)|c(u)=i}(u, v). Note that

d
c(v)
w,c (v) = Iv(G,w, c). We say that a k-colouring c of G is w-balanced if c

satisfies the following property:

For any vertex v ∈ V (G), Iv(G,w, c) ≤ djw,c(v), for every j = 1, . . . , k.

We denote by gcd(w) the greatest common divisor of the weights of w (ob-
serve that gcd(w) > 0 because we just consider positive weights). We use here
the generalisation of the gcd to non-integer numbers (e.g. in Q) where a number
x is said to divide a number y if the fraction y/x is an integer. The important
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property of gcd(w) is that the difference between two interferences is a multiple
of gcd(w); in particular, if for two vertices v and u, diw,c(v) > djw,c(u), then

diw,c(v) ≥ djw,c(u) + gcd(w).
If t is not a multiple of the gcd(w), that is, there exists an integer a ∈ Z

such that a gcd(w) < t < (a+ 1)gcd(w), then χwt (G) = χwa gcd(w)(G).

Proposition 1. Let (G,w) be an edge-weighted graph. For any k ≥ 2, there
exists a w-balanced k-colouring of G.

Proof. Let us colour G = (V,E) arbitrarily with k colours and then repeat
the following procedure: if there exists a vertex v coloured i and a colour j
such that diw,c(v) > djw,c(v), then recolour v with colour j. Observe that this
procedure neither increases (we just move a vertex from one colour to another)
nor decreases (a vertex without neighbour on its colour is never moved) the
number of colours within this process. Let W be the sum of the weights of
the edges having the same colour in their end-vertices. In this transformation,
W has increased by djw,c(v) (edges incident to v that previously had colour j

in its endpoint opposite to v), but decreased by diw,c(v) (edges that previously

had colour i in both of their end-vertices). So, W has decreased by diw,c(v) −
djw,c(v) ≥ gcd(w). As W ≤ |E|maxe∈E w(e) is finite, this procedure finishes
and produces a w-balanced k-colouring of G.

The existence of a w-balanced colouring gives easily some upper bounds on
the weighted t-improper chromatic number and the minimum k-threshold of
an edge-weighted graph (G,w). It is a folklore result that χ(G) ≤ ∆(G) + 1,
for any graph G. Lovász [17] extended this result for Improper Colouring

problem using w-balanced colouring. He proved that χl(G) ≤ d∆(G)+1
l+1 e. In

what follows, we extend this result to weighted improper colouring.

Theorem 2. Let (G,w) be an edge-weighted graph with w : E(G) → Q∗+, and
t a multiple of gcd(w). Then

χt(G,w) ≤
⌈

∆(G,w) + gcd(w)

t+ gcd(w)

⌉
.

Proof. If t, ω, and G are such that χt(G,ω) = 1, then the inequality is trivially
satisfied. Thus, consider that χt(G,ω) > 1.

Observe that, in any w-balanced k-colouring c of a graph G, the following
holds:

dw(v) =
∑

u∈N(v)

w(u, v) ≥ kdc(v)
w,c (v). (1)

Let k∗ =
⌈

∆(G,w)+gcd(w)
t+gcd(w)

⌉
≥ 2 and c∗ be a w-balanced k∗-colouring of G.

We claim that c∗ is a weighted t-improper k∗-colouring of (G,w).
By contradiction, suppose that there is a vertex v in G such that c∗(v) = i

and that diw,c(v) > t. Since c∗ is w-balanced, djw,c(v) > t, for all j = 1, . . . , k∗.

By the definition of gcd(w) and as t is a multiple of gcd(w), it leads to djw,c(v) ≥
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t+ gcd(w) for all j = 1, . . . , k∗. Combining this inequality with Inequality (1),
we obtain:

∆(G,w) ≥ dw(v) ≥ k∗(t+ gcd(w)),

giving
∆(G,w) ≥ ∆(G,w) + gcd(w),

a contradiction. The result follows.

Note that when all weights are unit, we obtain the bound for the improper
colouring derived in [17]. Brooks [7] proved that for a connected graph G,
χ(G) = ∆(G)+1 if, and only if, G is complete or an odd cycle. One could wonder
for which edge-weighted graphs the bound we provided in Theorem 2 is tight.
However, Correa et al. [8] already showed that it is NP-complete to determine
if the improper chromatic number of a graph G attains the upper bound of
Lovász, which is a particular case of Weighted Improper colouring, i.e. of
the bound of Theorem 2.

We now show that w-balanced colourings also yield upper bounds for the
minimum k-threshold of an edge-weighted graph (G,w). When k = 1, then all
the vertices must have the same colour, and T1(G,w) = ∆(G,w). This may be
generalised as follows, using w-balanced colourings.

Theorem 3. Let (G,w) be an edge-weighted graph with w : E(G) → R∗+, and
let k be a positive integer. Then

Tk(G,w) ≤ ∆(G,w)

k
.

Proof. Let c be a w-balanced k-colouring of G. Then, for every vertex v ∈ V (G):

kTk(G,w) ≤ kdc(v)
w,c (v) ≤ dw(v) =

∑
u∈N(v)

w(u, v) ≤ ∆(G,w)

Because T1(G,w) = ∆(G,w), Theorem 3 may be restated as kTk(G,w) ≤
. . . ≤ T1(G,w). This inequality may be generalised as follows.

Theorem 4. Let (G,w) be an edge-weighted graph with w : E(G) → R+, and
let k and p be two positive integers. Then

Tkp(G,w) ≤ Tp(G,w)

k
.

Proof. Set t = Tp(G,w). Let c be a t-improper p-colouring of (G,w). For
i = 1, . . . , p, let Gi be the subgraph of G induced by the vertices coloured i
by c. By definition of improper colouring ∆(Gi, w) ≤ t for all 1 ≤ i ≤ p.
By Theorem 3, each (Gi, w) admits a t/k-improper k-colouring ci with colours
{(i− 1)k+ 1, . . . , ik}. The union of the ci’s is then a t/k-improper kp-colouring
of (G,w).
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Theorem 4 and its proof suggest that to find a kp-colouring with small impro-
priety, it may be convenient to first find a p-colouring with small impropriety and
then to refine it. In addition, such a strategy allows to adapt dynamically the re-
finement. In the above proof, the vertex set of each part Gi is again partitioned
into k parts. However, sometimes, we shall get a better kp-colouring by parti-
tioning each Gi into a number of ki parts, with

∑p
i=1 ki = kp. Doing so, we ob-

tain a T -improper kp-colouring of (G,w), where T = max{∆(Gi,w)
ki

, 1 ≤ i ≤ p}.
One can also find an upper bound on the minimum k-threshold by consider-

ing first the k − 1 edges of largest weight around each vertex. Let (G,w) be an
edge-weighted graph, and let v1, . . . , vn be an ordering of the vertices of G. The
edges of G may be ordered in increasing order of their weight. Furthermore, to
make sure that the edges incident to any particular vertex are totally ordered,
we break ties according to the label of the second vertex. Formally, we say that
vivj ≤w vivj′ if either w(vivj) < w(vivj′) or w(vivj) = w(vivj′) and j < j′.
With such a partial order on the edge set, the set Ekw(v) of min{|N(v)|, k − 1}
greatest edges (according to this ordering) around a vertex is uniquely defined.
Observe that every edge incident to v and not in Ekw(v) is smaller than an edge
of Ek(v) for ≤w.

Let Gkw be the graph with vertex set V (G) and edge set
⋃
v∈V (G)E

k
w(v).

Observe that every vertex of Ekw(v) has degree at least min{|N(v)|, k − 1}, but
a vertex may have an arbitrarily large degree. For if any edge incident to v has
a greater weight than any edge not incident to v, the degree of v in Gkw is equal
to its degree in G. However we now prove that at least one vertex has degree
k − 1.

Proposition 5. If (G,w) is an edge-weighted graph, then Gkw has a vertex of
degree at most k − 1.

Proof. Suppose for a contradiction, that every vertex has degree at least k, then
for every vertex x there is an edge xy in E(Gkw)\Ekw(x), and so in Ekw(y)\Ekw(x).
Therefore, there must be a cycle (x1, . . . , xr) such that, for all 1 ≤ i ≤ r,
xixi+1 ∈ Ekw(xi+1)\Ekw(xi) (with xr+1 = x1). It follows that x1x2 ≤w x2x3 ≤w
· · · ≤w xrx1 ≤w x1x2. Hence, by definition, w(x1x2) = w(x2x3) = · · · =
w(xrx1) = w(x1x2). Let m be the integer such that xm has maximum index
in the ordering v1, . . . , vn. Then there exists j and j′ such that xm = vj and
xm+2 = vj′ . By definition of m, we have j > j′. But this contradicts the fact
that xmxm+1 ≤w xm+1xm+2.

Corollary 6. If (G,w) is an edge-weighted graph, then Gkw has a proper k-
colouring.

Proof. By induction on the number of vertices. By Proposition 5, Gkw has a
vertex x of degree at most k − 1. Trivially, Gkw − x is a subgraph of (G− x)kw.
By the induction hypothesis, (G − x)kw has a proper k-colouring, which is also
a proper k-colouring of Gkw − x. This colouring can be extended in a proper
k-colouring of Gkw, by assigning to x a colour not assigned to any of its k − 1
neighbours.
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u v

u’K Kv’

w’(u,v)=w(u,v)−1

u v

Figure 1: Construction of G′ from G using edge uv ∈ E(G) and k = 4 colours. Dashed edges
represent edges of weight M .

Corollary 7. If (G,w) is an edge-weighted graph, then Tk(G,w) ≤ ∆(G \
E(Gkw), w).

2.2. Transformation

In this section, we prove that the Threshold Improper Colouring prob-
lem can be transformed into a problem mixing proper and improper colouring.
More precisely, we prove the following:

Theorem 8. Let (G,w) be an edge-weighted graph where w is an integer-
valued function, and let k be a positive integer. We can construct an edge-
weighted graph (G∗, w∗) such that w∗(e) ∈ {1,M} for any e ∈ E(G∗), satisfying
Tk(G,w) = Tk(G∗, w∗), where M = 1 +

∑
e∈E(G) w(e).

Proof. Consider the function f(G,w) =
∑
{e∈E(G)|w(e) 6=M}(w(e)− 1).

If f(G,w) = 0, all edges have weight either one or M and G has the desired
property. In this case, G∗ = G. Otherwise, we construct a graph G′ and a
function w′ such that Tk(G′, w′) = Tk(G,w), but f(G′, w′) = f(G,w) − 1. By
repeating this operation f(G,w) times we get the required edge-weighted graph
(G∗, w∗).

In case f(G,w) > 0, there exists an edge e = uv ∈ E(G) such that 2 ≤
w(e) < M . G′ is obtained from G by adding two complete graphs on k − 1
vertices Ku and Kv and two new vertices u′ and v′. We join u and u′ to all
the vertices of Ku and v and v′ to all the vertices of Kv. We assign weight M
to all these edges. Note that, u and u′ (v and v′) always have the same colour,
namely the remaining colour not used in Ku (resp. Kv).

We also add two edges uv′ and u′v both of weight 1. The edges of G keep
their weight in G′, except the edge e = uv whose weight is decreased by one
unit, i.e. w′(e) = w(e) − 1. Thus, f(G′, ω′) = f(G,ω) − 1 as we added only
edges of weights 1 and M and we decreased the weight of e by one unit.

Now consider a weighted t-improper k-colouring c of (G,w). We produce a
weighted t-improper k-colouring c′ of (G′, w′) as follows: we keep the colours of
all the vertices in G, we assign to u′ (v′) the same colour as u (resp. v), and
we assign to Ku (resp. Kv) the k − 1 colours different from the one used in u
(resp. v).

Conversely, from any weighted improper k-colouring c′ of (G′, w′), we get
a weighted improper k-colouring c of (G,w) by just keeping the colours of the
vertices that belong to G.
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For such colourings c and c′ we have that Ix(G,w, c) = Ix(G′, w′, c′), for
any vertex x of G different from u and v. For x ∈ Ku ∪ Kv, Ix(G′, w′, c′) =
0. The neighbours of u with the same colour as u in G′ are the same as in
G, except possibly v′ which has the same colour of u if, and only if, v has
the same colour of u. Let ε = 1 if v has the same colour as u, otherwise
ε = 0. As the weight of uv decreases by one and we add the edge uv′ of
weight 1 in G′, we get Iu(G′, w′, c′) = Iu(G,w, c)− ε+ w′(u, v′)ε = Iu(G,w, c).
Similarly, Iv(G

′, w′, c′) = Iv(G,w, c). Finally, Iu′(G′, w′, c′) = Iv′(G
′, w′, c′) =

ε. But Iu(G′, w′, c′) ≥ (w(u, v) − 1)ε and so Iu′(G′, w′, c′) ≤ Iu(G′, w′, c′) and
Iv′(G

′, w′, c′) ≤ Iv(G′, w′, c′). In summary, we have

max
x

Ix(G′, w′, c′) = max
x

Ix(G,w, c)

and therefore Tk(G,w) = Tk(G′, w′).

In the worst case, the number of vertices of G∗ is n+m(wmax−1)2k and the
number of edges of G∗ is m+m(wmax− 1)[(k+ 4)(k− 1) + 2] with n = |V (G)|,
m = |E(G)| and wmax = maxe∈E(G) w(e).

In conclusion, this construction allows to transform the Threshold Im-
proper Colouring problem into a problem mixing proper and improper
colouring. Therefore the problem consists in finding the minimum l such that
a (non-weighted) l-improper k-colouring of G∗ exists with the constraint that
some subgraphs of G∗ must admit a proper colouring. The equivalence of the
two problems is proved here only for integers weights, but it is possible to adapt
the transformation to prove it for rational weights.

3. Squares of Particular Graphs

As mentioned in the introduction, Weighted Improper colouring is
motivated by networks of antennas similar to grids [2]. In these networks, the
noise generated by an antenna undergoes an attenuation with the distance it
travels. It is often modelled by a decreasing function of d, typically 1/dα or
1/(2d−1).

Here we consider a simplified model where the noise between two neigh-
bouring antennas is normalised to 1, between antennas at distance two is 1/2
and 0 when the distance is strictly greater than two. Studying this model of
interference corresponds to study the Weighted Improper colouring of the
square of the graph G, that is the graph G2 obtained from G by joining every
pair of vertices at distance two, and to assign weights w2(e) = 1, if e ∈ E(G),
and w2(e) = 1/2, if e ∈ E(G2) \E(G). Observe that in this case the interesting
threshold values are the non-negative multiples of 1/2.

Figure 2 shows some examples of colouring for the square grid. In Fig-
ure 2(b), each vertex x has neither a neighbour nor a vertex at distance two
coloured with its own colour, so Ix(G2, w2, c) = 0 and G2 admits a weighted
0-improper 5-colouring. In Figure 2(c), each vertex x has no neighbour with its
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colour and at most one vertex of the same colour at distance 2. So Ix(G2, w2, c) =
1/2 and G2 admits a weighted 0.5-improper 4-colouring.

For any t ∈ R+, we determine the weighted t-improper chromatic number
for the square of infinite paths, square grids, hexagonal grids and triangular
grids under the interference model w2. We also present lower and upper bounds
for χt(T

2, w2), for any tree T and any threshold t.

3.1. Infinite paths and trees

In this section, we characterise the weighted t-improper chromatic number
of the square of an infinite path, for all positive real t. Moreover, we present
lower and upper bounds for χt(T

2, w2), for a given tree T .

Theorem 9. Let P = (V,E) be an infinite path. Then,

χt(P
2, w2) =


3, if 0 ≤ t < 1;

2, if 1 ≤ t < 3;

1, if 3 ≤ t.

Proof. Let V = {vi | i ∈ Z} and E = {(vi−1, vi) | i ∈ Z}. Each vertex of P has
two neighbours and two vertices at distance two. Consequently, the equivalence
χt(P

2, ω2) = 1 if, and only if, t ≥ 3 holds trivially.
There is a 2-colouring c of (P 2, w2) with maximum interference 1 by just

colouring vi with colour (i mod 2) + 1. So χt(P
2, w2) ≤ 2 if t ≥ 1. We claim

that there is no weighted 0.5-improper 2-colouring of (P 2, w2). By contradiction,
suppose that c is such a colouring. If c(vi) = 1, for some i ∈ Z, then c(vi−1) =
c(vi+1) = 2 and c(vi−2) = c(vi+2) = 1. This is a contradiction because vi would
have interference 1.

Finally, the colouring c(vi) = (i mod 3) + 1, for every i ∈ Z, is a feasible
weighted 0-improper 3-colouring.

Theorem 10. Let T = (V,E) be a (non-empty) tree. Then,
⌈

∆(T )−btc
2t+1

⌉
+ 1 ≤

χt(T
2, w2) ≤

⌈
∆(T )−1

2t+1

⌉
+ 2.

Proof. The lower bound is obtained by two simple observations. First, χt(H,w) ≤
χt(G,w), for any H ⊆ G. Let T be a tree and v be a node of maximum degree
in T . Then, observe that the weighted t-improper chromatic number of the

subgraph of T 2 induced by v and its neighbourhood is at least d∆(T )−btc
2t+1 e+ 1.

Indeed, the colour of v can be assigned to at most btc vertices on its neighbour-
hood. Any other colour used in the neighbourhood of v cannot appear in more
than 2t + 1 vertices because each pair of vertices in the neighbourhood of v is
at distance two.

Let us look now at the upper bound. Choose any node r ∈ V to be the root
of T . Colour r with colour 1. Then, by a breadth-first traversal in the tree,

for each visited node v colour all the children of v with the d∆(T )−1
2t+1 e colours

different from the ones assigned to v and to its parent in such a way that at
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most 2t+ 1 nodes have the same colour. This is a feasible weighted t-improper

k-colouring of T 2, with k ≤ d∆(T )−1
2t+1 e + 2, since each vertex interferes with at

most 2t vertices at distance two which are children of its parent.

For a tree T and the weighted function w2, Theorem 10 provides upper and
lower bounds on χt(T

2, w2), but we do not know the computational complexity
of determining χt(T

2, w2).

3.2. Grids

In this section, we show the optimal values of χt(G
2, w2), whenever G is an

infinite square, hexagonal or triangular grid, for all the possible values of t.

3.2.1. Square Grid

The square grid is the graph S in which the vertices are all integer linear
combinations ae1 + be2 of the two vectors e1 = (1, 0) and e2 = (0, 1), for any
a, b ∈ Z. Each vertex (a, b) has four neighbours: its down neighbour (a, b− 1),
its up neighbour (a, b + 1), its right neighbour (a + 1, b) and its left neighbour
(a− 1, b) (see Figure 2(a)).

Theorem 11.

χt(S
2, w2) =



5, if t = 0;

4, if t = 0.5;

3, if 1 ≤ t < 3;

2, if 3 ≤ t < 8;

1, if 8 ≤ t.

Proof. If t = 0, then the colour of vertex (a, b) must be different from the
ones used on its four neighbours. Moreover, all the neighbours have different
colours, as each pair of neighbours is at distance two. Consequently, at least five
colours are needed. The following construction provides a weighted 0-improper
5-colouring of (S2, w2): for 0 ≤ j ≤ 4, let Aj = {(j, 0) + a(5e1) + b(2e1 + 1e2) |
∀a, b ∈ Z}. For 0 ≤ j ≤ 4, assign the colour j + 1 to all the vertices in Aj (see
Figure 2(b)).

When t = 0.5, we claim that at least four colours are needed to colour
(S2, w2). The proof is by contradiction. Suppose that there exists a weighted
0.5-improper 3-colouring of it. Let (a, b) be a vertex coloured 1. None of its
neighbours is coloured 1, otherwise (a, b) has interference 1. If three neighbours
have the same colour, then each of them will have interference 1. So two of its
neighbours have to be coloured 2 and the two other ones 3 (see Figure 3(a)).
Now consider the four nodes (a − 1, b − 1), (a − 1, b + 1), (a + 1, b − 1) and
(a + 1, b + 1). For all configurations, at least two of these four vertices have
to be coloured 1 (the ones indicated by a * in Figure 3(a)). But then (a, b)
will have interference at least 1, a contradiction. A weighted 0.5-improper 4-
colouring of (S2, w2) can be obtained as follows (see Figure 2(c)): for 0 ≤ j ≤ 3,
let Bj = {(j, 0)+a(4e1)+b(3e1+2e2) | ∀a, b ∈ Z} and B′j = {(j+1, 2)+a(4e1)+

11
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Figure 2: Optimal colourings of (S2, w2): (b) weighted 0-improper 5-colouring of (S2, w2),
(c) weighted 0.5-improper 4-colouring of (S2, w2), and (d) weighted 3-improper 2-colouring
of (S2, w2).
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(c)

Figure 3: Lower bounds for the square grid: (a) if t ≤ 0.5 and k ≤ 3, there is no weighted
t-improper k-colouring of (S2, w2); (b) the first case when t ≤ 2.5 and k ≤ 2, and (c) the
second case.

b(3e1 +2e2) | ∀a, b ∈ Z}. For 0 ≤ j ≤ 3, assign the colour j+1 to all the vertices
in Bj and in B′j .

If t = 1, there exists a weighted 1-improper 3-colouring of (S2, w2) given by
the following construction: for 0 ≤ j ≤ 2, let Cj = {(j, 0) + a(3e1) + b(e1 + e2) |
∀a, b ∈ Z}. For 0 ≤ j ≤ 2, assign the colour j + 1 to all the vertices in Cj .

Now we prove by contradiction that for t = 2.5 we still need at least three
colours in a weighted 2.5-improper colouring of (S2, w2). Consider a weighted
2.5-improper 2-colouring of (S2, w2) and let (a, b) be a vertex coloured 1. Vertex
(a, b) has at most two neighbours of colour 1, otherwise it will have interference
3. We distinguish three cases:

1. Exactly one of its neighbours is coloured 1; let (a− 1, b) be this vertex. Then,
the three other neighbours are coloured 2 (see Figure 3(b)). Consider the two
sets of vertices {(a− 1, b− 1), (a+ 1, b− 1), (a, b− 2)} and {(a− 1, b+ 1), (a+
1, b+ 1), (a, b+ 2)} (these sets are surrounded by dotted lines in Figure 3(b));
each of them has at least two vertices coloured 1, otherwise the vertex (a, b−1)
or (a, b + 1) will have interference 3. But then (a, b) having four vertices at
distance two coloured 1 has interference 3, a contradiction.

2. Two neighbours of (a, b) are coloured 1.

(a) These two neighbours are opposite, say (a−1, b) and (a+1, b) (see Figure 3(c)
left). Consider again the two sets {(a− 1, b− 1), (a+ 1, b− 1), (a, b− 2)} and
{(a − 1, b + 1), (a + 1, b + 1), (a, b + 2)} (these sets are surrounded by dotted

13



lines in Figure 3(c) left); they both contain at least one vertex of colour 1 and
therefore (a, b) will have interference 3, a contradiction.

(b) The two neighbours of colour 1 are of the form (a, b − 1) and (a − 1, b) (see
Figure 3(c) right). Consider the two sets of vertices {(a+ 1, b− 1), (a+ 1, b+
1), (a+2, b)} and {(a+1, b+1), (a−1, b+1), (a, b+2)} (these sets are surrounded
by dotted lines in Figure 3(c) right); these two sets contain at most one vertex
of colour 1, otherwise (a, b) will have interference 3. Moreover, each of these
sets cannot be completely coloured 2, otherwise (a + 1, b) or (a, b + 1) will
have interference at least 3. So vertices (a + 1, b − 1), (a + 2, b), (a, b + 2)
and (a − 1, b + 1) are of colour 2 and the vertex (a + 1, b + 1) is of colour 1.
But then (a− 2, b) and (a− 1, b− 1) are of colour 2, otherwise (a, b) will have
interference 3. Thus, vertex (a − 1, b) has exactly one neighbour coloured 1
and we are again in Case 1.

3. All neighbours of (a, b) are coloured 2. If one of these neighbours has itself
a neighbour (distinct from (a, b)) of colour 2, we are in Case 1 or 2 for this
neighbour. Therefore, all vertices at distance two from (a, b) have colour 1 and
the interference in (a, b) is 4, a contradiction.

A weighted 3-improper 2-colouring of (S2, w2) can be obtained as follows:
a vertex of the grid (a, b) is coloured with colour (

⌊
a
2

⌋
+
⌊
b
2

⌋
mod 2) + 1, see

Figure 2(d).
Finally, since each vertex has four neighbours and eight vertices at distance

two, there is no weighted 7.5-improper 1-colouring of (S2, w2) and, whenever
t ≥ 8, one colour suffices.

3.2.2. Hexagonal Grid

There are many ways to define the system of coordinates of the hexagonal
grid. Here, we use grid coordinates as shown in Figure 4. The hexagonal grid
graph is then the graph H whose vertex set consists of pairs of integers (a, b) ∈ Z2

and where each vertex (a, b) has three neighbours: (a − 1, b), (a + 1, b), and
(a, b+ 1) if a+ b is odd, or (a, b− 1) otherwise.

Theorem 12.

χt(H
2, w2) =


4, if 0 ≤ t < 1;

3, if 1 ≤ t < 2;

2, if 2 ≤ t < 6;

1, if 6 ≤ t.

Proof. Note first, that when t = 0, at least four colours are needed to colour the
grid, because a vertex and its neighbourhood in H form a clique of size four in
H2. The same number of colours are needed if we allow a threshold t = 0.5. To
prove this fact, let A be a vertex (a, b) of H and B = (a−1, b), C = (a, b−1) and
D = (a+1, b) be its neighbours in H. Denote by G = (a−2, b), E = (a−1, b−1),
F = (a−2, b−1), H = (a+1, b−1), I = (a+2, b−1) and J = (a+1, b−2) (see
Figure 6(a)). By contradiction, suppose there exists a weighted 0.5-improper
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Figure 4: Weighted 0-improper 4-colouring of (H2, w2). Left: Graph with coordinates. Right:
Corresponding hexagonal grid in the euclidean space.
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(b) t = 2, k = 2

Figure 5: (a) weighted 1-improper 3-colouring of (H2, w2) and (b) weighted 2-improper 2-
colouring of (H2, w2).
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3-colouring of H2. Consider a node A coloured 1. Its neighbours B, C, D cannot
be coloured 1 and they cannot all have the same colour. W.l.o.g., suppose that
two of them B and C have colour 2 and D has colour 3. Then E, F and G
cannot be coloured 2 because of the interference constraint in B and C. If F
is coloured 3, then G and E are coloured 1, creating interference 1 in A. So F
must be coloured 1 and G and E must be coloured 3. Then, H can be neither
coloured 2 (interference in C) nor 3 (interference in E). So H is coloured 1.
The vertex I is coloured 3, otherwise the interference constraint in H or in C is
not satisfied. Then, J can receive neither colour 1, because of the interference
in H, nor colour 2, because of the interference in C, nor colour 3, because of
the interference in I.

There exists a construction attaining this bound and the number of colours,
i.e. a 0-improper 4-colouring of (H2, w2) as depicted in Figure 4. We define for
0 ≤ j ≤ 3 the sets of vertices Aj = {(j, 0) + a(4e1) + b(2e1 + e2)|∀a, b ∈ Z}. We
then assign the colour j+1 to the vertices in Aj . This way no vertex experiences
any interference as vertices of the same colours are at distance at least three.

For t = 1.5 it is not possible to colour the grid with less than three colours.
By contradiction, suppose that there exists a weighted 1.5-improper 2-colouring.
Consider a vertex A coloured 1. If all of its neighbours are coloured 2, they
have already interference 1, so all the vertices at distance two from A need to
be coloured 1; this gives interference 3 in A. Therefore one of A’s neighbours,
say D, has to be coloured 1 and consider that the other two neighbours B and C
are coloured 2. B and C have at most one neighbour of colour 2. It implies that
A has at least two vertices at distance two coloured 1. This is a contradiction,
because the interference in A would be at least 2 (see Figure 6(b)).

Figure 5(a) presents a weighted 1-improper 3-colouring of (H2, w2). To ob-
tain this colouring, let Bj = {(j, 0) + a(3e1) + b(e1 + e2) | ∀a, b ∈ Z}, for
0 ≤ j ≤ 2. Then, we colour all the vertices in the set Bj with colour j + 1, for
every 0 ≤ j ≤ 2.

For t < 6, it is not possible to colour the grid with one colour. As a matter
of fact, each vertex has three neighbours and six vertices at distance two in H.
Using one colour leads to an interference equal to 6. There exists a 2-improper
2-colouring of the hexagonal grid as depicted in Figure 5(b). We define for
0 ≤ j ≤ 1 the sets of vertices Cj = {(j, 0) + a(2e1) + be2|∀a, b ∈ Z}. We then
assign the colour j + 1 to the vertices in Cj .

3.2.3. Triangular Grid

The triangular grid is the graph T whose vertices are all the integer linear

combinations af1 + bf2 of the two vectors f1 = (1, 0) and f2 = ( 1
2 ,
√

3
2 ). Thus

we may identify the vertices with the ordered pairs (a, b) of integers. Each
vertex v = (a, b) has six neighbours: its right neighbour (a + 1, b), its right-up
neighbour (a, b+1), its left-up neighbour (a−1, b+1), its left neighbour (a−1, b),
its left-down neighbour (a, b− 1) and its right-down neighbour (a+ 1, b− 1) (see
Figure 8(a)).
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Figure 6: Lower bounds for the hexagonal grid. (a) when t ≤ 0.5 and k ≤ 3, there is no
weighted t-improper k-colouring of (H2, w2); (b) vertices coloured 2 force a vertex coloured 1
in each ellipse, leading to interference 2 in central node.

Theorem 13.

χt(T
2, w2) =



7, if t = 0;

6, if t = 0.5;

5, if t = 1;

4, if 1.5 ≤ t < 3;

3, if 3 ≤ t < 5;

2, if 5 ≤ t < 12;

1, if 12 ≤ t.

Proof. If t = 0, there is no weighted 0-improper 6-colouring of (T2, w2), since in
T2 there is a clique of size seven induced by each vertex and its neighbourhood.
There is a weighted 0-improper 7-colouring of (T2, w2) as depicted in Figure 7(a).
This colouring can be obtained by the following construction: for 0 ≤ j ≤ 6, let
Aj = {(j, 0) + a(7f1) + b(2f1 + f2) | ∀a, b ∈ Z}. For 0 ≤ j ≤ 6, assign the colour
j + 1 to all the vertices in Aj .

In what follows, we denote by V0 a vertex coloured 1; by N0, N1, N2, N3,
N4, N5 the six neighbours of V0 in T be in a cyclic order. Let Γ2 be the set of
twelve vertices at distance two of V0 in T; more precisely Ni(i+1) denotes the
vertex of Γ2 adjacent to both Ni and Ni+1 and by Nii the vertex of Γ2 joined
only to Ni, for every 0 ≤ i ≤ 5, i + 1 is taken modulo 6 (see Figure 8(b)) and
we denote by Nijk the vertex at distance three from V0 adjacent to both Nij
and Njk .

We claim that there is no weighted 0.5-improper 5-colouring of (T2, w2). We
prove it by contradiction, thus let c be such a colouring. No neighbour of V0

can be coloured 1, otherwise IV0(T2, w2, c) ≥ 1. As two consecutive neighbours
are adjacent, they cannot have the same colour. Furthermore, there cannot be
three neighbours with the same colour (each of them will have an interference
at least 1). As there are four colours different from 1, exactly two of them, say 2
and 3, are repeated twice among the six neighbours. So, there exists a sequence
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Figure 7: Optimal colourings of (T2, w2): (a) weighted 0-improper 7-colouring, (b) weighted
0.5-improper 6-colouring, (c) weighted 1-improper 5-colouring, (d) weighted 1.5-improper 4-
colouring, (e) weighted 3-improper 3-colouring, and (f) weighted 5-improper 2-colouring.
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(a) (b)

Figure 8: Notations used in proofs: (a) of existence, and (b) of non-existence; of weighted
improper colourings of (T2, w2).

of three consecutive neighbours the first one with a colour different from 2 and
3 and the two others coloured 2 and 3. W.l.o.g., let c(N5) = 4, c(N0) = 2,
c(N1) = 3.

Note that the vertices coloured 2 and 3 have already an interference of 0.5,
and so none of their vertices at distance two can be coloured 2 or 3. In particular,
let A = {N50, N00, N01, N11, N12}; the vertices of A cannot be coloured 2 or 3.
At most one vertex in Γ2 can be coloured 1, otherwise IV0(T2, w2, c) ≥ 1. If
there is no vertex coloured 1 in A, we have a contradiction as we cannot have
a sequence of five vertices uniquely coloured 4 and 5 (indeed colours should
alternate and the vertex in the middle N01 will have interference at least 1).
Suppose N4 is coloured 3, then N45 and N55 can only be coloured 1 and 5;
but, as they have different colours, one is coloured 1 and so there is no vertex
coloured 1 in A. So the second vertex coloured 3 in the neighbourhood of V0 is
necessarily N3 (it cannot be N2 neighbour of N1 coloured 3). Then, N4 cannot
be also coloured 5, otherwise N45 is coloured 1 and again there is no vertex
coloured 1 in A. In summary c(N4) = 2, c(N3) = 3 and the vertex of Γ2 coloured
1 is in A. But then the five consecutive vertices A′ = {N23, N33, N34, N44, N45}
can only be coloured 4 and 5. A contradiction as IN34(T2, w2, c) ≥ 1.

A weighted 0.5-improper 6-colouring of (T2, w2) can be obtained by the
following construction (see Figure 7(b)): for 0 ≤ j ≤ 11, let Bj = {(j, 0) +
a(12f1) + b(2f1 + f2) | ∀a, b ∈ Z}. For 0 ≤ j ≤ 5, assign the colour j + 1 to
all the vertices in Bj , B6 with colour 2, B7 with colour 1, B8 with colour 4, B9

with colour 3, B10 with colour 6 and B11 with colour 5.
Now we prove that (T2, w2) does not admit a weighted 1-improper 4-colouring.

Again, by contradiction, suppose that there exists a weighted 1-improper 4-
colouring c of (T2, w2). We analyse some cases:

1. There exist two adjacent vertices in T with the same colour.
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Let V0 and one of its neighbours be both coloured 1. Note that no other neigh-
bour of V0, nor the vertices at distance two from V0 are coloured 1 (otherwise,
IV0

(T2, w2, c) > 1). We use intensively the following facts:

Fact 1. There do not exist three consecutive vertices with the same colour
(otherwise the vertex in the middle would have interference at least 2).

Fact 2. In a path of five vertices there cannot be four of the same colour
(otherwise the second or the fourth vertex in this path would have interference
at least 1.5).

One colour other than 1 should appear at least twice in the neighbourhood of
V0. Let this colour be denoted 2 (the other colours being denoted 3 and 4).

(a) Two neighbours of V0 coloured 2 are consecutive, say N0 and N1. By Fact 1,
N2 is coloured 3 w.l.o.g. None of N05, N00, N01, N11, N12, N22 and N23 can be
coloured 2, otherwise IN1(T2, w2, c) > 1. One of N12, N22 and N23 is coloured
3, otherwise we contradict Fact 1 with colour 4 and at most one of N01, N11,
N12, N22 and N23 is coloured 3, otherwise IN2

(T2, w2, c) > 1; but we have a
contradiction with Fact 2.

(b) Two neighbours of V0 coloured 2 are at distance two, sayN0 andN2. ThenN50,
N00 and N01 (respectively N12, N22 and N23) are not coloured 2, otherwise
IN0

(T2, w2, c) > 1 (respectively IN2
(T2, w2, c) > 1). One of N3 and N5 is not

coloured 1, say N3. It is not coloured 2, otherwise IN3
(T2, w2, c) > 1. Let

c(N3) = 3. If N4 or N11 is coloured 2, then N33 and N34 are not coloured 2,
otherwise IN2(T2, w2, c) > 1 and we have a sequence of five vertices N12, N22,
N23, N33 and N34 contradicting Fact 2 as four are of colour 4 (indeed, at most
one is coloured 3 due to interference in colour 3 with N3 or N22). So N11 is
coloured 3 or 4. If N1 also is coloured 3 or 4, we have a contradiction with
Fact 2 applied to the five vertices N00, N01, N11, N12 and N22, by the same
previous argument. So c(N1) = 1; furthermore N4 is not coloured 1 (at most
one neighbour coloured 1), nor 2 as we have seen above, nor 3, otherwise we
are in the case (a). Therefore c(N4) = 4 and c(N5) = 3, by the same reason.
But then c(N23) = 4, otherwise the interference in V0 or N2 or N3 is greater
than 1. N33 and N34 can be only coloured 2, otherwise V0, N3, N4 or N23 will
have interference strictly greater than 1, but N33 has interference greater than
1, a contradiction.

(c) Two neighbours of V0 coloured 2 are at distance three say N0 and N3. Then
N50, N00 andN01 (respectivelyN23, N33 andN34) are not coloured 2, otherwise
IN0

(T2, w2, c) > 1 (respectively IN3
(T2, w2, c) > 1). W.l.o.g., let N1 be the

vertex coloured 1. Among the four vertices N12, N22, N44 and N45 at most
one is coloured 2, otherwise IN3

(T2, w2, c) > 1. So, w.l.o.g, we can suppose
N44 and N45 are coloured 3 or 4; but we have a set of five consecutive vertices
N23, N33, N34, N44, N45, contradicting Fact 2 (indeed at most one can be of
the colour of N4).
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2. No colour appears in two adjacent vertices of T.

Let V0 be coloured 1. No colour can appear four or more times among the
neighbours of V0, otherwise there are two adjacent neighbours with the same
colour.

(a) One colour appears three times among the neighbours of V0, say c(N0) =
c(N2) = c(N4) = 2. W.l.o.g., let c(N1) = 3. No vertex at distance two can
be coloured 2. N01, N11 and N12 being neighbours of N1 cannot be coloured
3 and they cannot be all coloured 4. So one of N01, N11, N12 is coloured 1.
Similarly one of N23, N33, N34 is coloured 1 (same reasoning with N3 instead
of N1) and one of N45, N55, N50 is coloured 1, so IV0

(T2, w2, c) > 1.

(b) The three colours appear each exactly twice in the neighbourhood of V0.

i. The same colour appears in some Ni and Ni+2, 0 ≤ i ≤ 3. W.l.o.g., let
c(N0) = c(N2) = 2 and c(N1) = 3. Then, c(N3) = c(N5) = 4 and c(N4) = 3.
Then, c(N50) = 1 or 3, c(N01) = 1 or 4. If c(N50) = 3 and c(N01) = 4, then
c(N00) = 1. Among N50, N00, N01, at least one has colour 1. Similarly one of
N12, N22, N23 has colour 1. So IV0(T2, w2, c) ≥ 1 and c(N34) = c(N45) = 2.
Consequently, no matter the colour of N44 some vertex will have interference
greater than 1.

ii. We have c(N0) = c(N3) = 2, c(N1) = c(N4) = 3 and c(N2) = c(N5) = 4. Here
we find in each of the sets {N50, N00, N01} ,{N12, N22, N23} and {N34, N44,
N45} a vertex coloured 1. Therefore IV0

(T2, w2, c) > 1, a contradiction.

To obtain a weighted 1-improper 5-colouring of (T2, w2), for 0 ≤ j ≤ 4, let
Cj = {(j, 0) + a(5f1) + b(2f1 + f2) | ∀a, b ∈ Z}. For 0 ≤ j ≤ 4, assign the colour
j + 1 to all the vertices in Cj . See Figure 7(c).

(T2, w2) has a weighted 1.5-improper 4-colouring as depicted in Figure 7(d).
Formally, this colouring can be obtained by the following construction: for
0 ≤ j ≤ 3, let Dj = {(j, 0) + a(4f1) + b(f1 + 2f2) | ∀a, b ∈ Z}; then assign
colour 4 to all the vertices in D0, 1 to all the vertices in D1, 3 to all the
vertices in D2 and 2 to all the vertices in D3. Now, for 0 ≤ j ≤ 3, let D′j =
{(j, 1) + a(4f1) + b(f1 + 2f2) | ∀a, b ∈ Z}. Then, for 0 ≤ j ≤ 3, assign colour
j + 1 to all the vertices in D′j .

Let us prove that (T2, w2) does not admit a weighted 2.5-improper 3-colouring.
Suppose, by contradiction, that there exists a weighted 2.5-improper 3-colouring
c of (T2, w2). A vertex can have at most two neighbours of the same colour as
it. Suppose again, w.l.o.g., that c(V0) = 1. We use the following facts:

Fact 3. No vertex has three neighbours of the same colour.

Fact 4. If a vertex has two neighbours of the same colour, then it has at most
one vertex at distance two with its colour.

Fact 5. There is no path of five vertices of the same colour.

We say that a vertex v is saturated, if we know that Iv(T
2, w2, c) ≥ 2.5.

Let us analyse now each of these cases.
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Case: V0 has exactly two neighbours coloured 1.

We assume, w.l.o.g., that N0 is coloured 1. We subdivide this case into
three subcases according to the position of the second neighbour of V0 coloured
1. Due to the symmetry, we analyse the three possible cases where respectively
N1, N2 or N3 is coloured 1.

1. Subcase c(N1) = 1.

We now show that no colouring is feasible, for all possible different colourings
of the vertices N2, N3, N4 and N5 (up to symmetries). We can have all these
vertices of the same colour (Case 1a) or three of the same colour, say 2, and
the other of colour 3 (Cases 1b and 1c) and two of colour 2 and two of colour
3 (Cases 1d, 1e and 1f).

(a) Suppose that c(N2) = c(N3) = c(N4) = c(N5) = 2. Observe that c(N12) =
c(N50) = 3, thanks to Facts 3 and 5. Since N3 and N4 are saturated, we get
that all the vertices N22, N23, N33, N34, N44, N45 and N55 cannot be coloured
2. At most one of these vertices is coloured 1, due to the interference in V0.
W.l.o.g, we can then consider that c(N22) = c(N23) = c(N33) = 3. But then,
since N23 and N3 are saturated, we conclude that N223, N233, N333, N334 and
N34 must be all coloured 1. This is a contradiction to Fact 5.

(b) Now consider the case in which c(N2) = c(N3) = c(N4) = 2 and c(N5) = 3.
Observe that N12 cannot be coloured 1. Let us study the two other cases:

i. Now consider the case in which N12 is coloured 2. We observe that N2 and
N3 are saturated.
In case N44 is coloured 1, we also have that V0 is saturated and thus all the
vertices N22, N23, N33 and N34 must be coloured 3. Consequently, as N23

and N33 are saturated, we reach a contradiction to Fact 5 as all the vertices
N222, N223, N233, N333 and N334 must be coloured 1. Thus, N44 is coloured
3 (it cannot be coloured 2 due to Fact 5).
In case N33 is coloured 1, we have that V0 is saturated and all the vertices
N23, N34 and N45 are coloured 3. As N34 is saturated, the vertices N233,
N333 and N334 must be coloured 1. This contradicts Fact 3. Consequently,
N33 is coloured 3. N34 cannot be coloured 3, because it would imply that
c(N45) = 1 and, consequently, V0 is saturated and the vertices N22 and N23

should be coloured 3 and we would have a contradiction to Fact 5. Thus, N34

is coloured 1. Consequently, N22, N23 and N45 are coloured 3. The vertices
N334 and N344 must then be coloured 1 due to the interference constraints on
the vertices N3, N33 and N44. However, we reach a contradiction as no colour
is feasible to vertex N233 (and N333).

ii. So we conclude that c(N12) = 3.

• Consider first the case c(N22) = 1 (and thus V0 is saturated). We have that
N23, N33 and N34 must be coloured 3, thanks to the Facts 3 and 4 and V0

being saturated. N44 cannot be coloured 3 as we would have IN34
(T2, w2, c) ≥

3. Since V0 is also saturated, it implies that c(N44) = 2. Therefore, N4 is
saturated and so c(N45) = c(N55) = c(N50) = 3, but then IN5(T2, w2, c) ≥ 3.

22



• Thus, consider the case c(N22) = 2. Then, N2 and N3 are saturated. One of
the vertices N33, N34, N44 and N45 is coloured 1, thanks to Fact 5. So V0 is
saturated and c(N01) = c(N11) = c(N23) = 3. Then, N112 and N122 cannot
be coloured 3, otherwise IN12

(T2, w2, c) ≥ 3; they cannot be coloured 2 as N2

is saturated; so c(N112) = c(N122) = 1, but then we reach a contradiction as
IN1(T2, w2, c) ≥ 3.

• We then conclude that c(N22) = 3. Due to Facts 3 and 5, at least one of the
vertices N23, N33 and N34 is coloured 1 and the two others are coloured 3.
Consequently, V0 is saturated. In case N44 is coloured 2, then N4 is saturated
and the vertices N45, N55 and N50 are coloured 3, contradicting Fact 3. Thus,
c(N44) = 3.

– If N45 is coloured 2, N3 and N4 are saturated and then, N55 and N50 are
coloured 3 and it implies that N5 is saturated. Consequently, N34 is coloured
1 and N23 and N33 are coloured 3.
Thus, N23 is saturated and the vertices N223, N233, N333 and N334 are
coloured 1, contradicting Fact 5.

– Thus, N45 is also coloured 3 and we obtain c(N55) = 2. N23 cannot be
coloured 1, otherwise N33 and N34 being coloured 3, we would contradict
Fact 5. If N34 is coloured 3, N44 is saturated and then N50 must be coloured
2 and N4 is saturated. In this case, we get a contradiction to Fact 5 because
all the vertices N334, N344, N444 and N445 must be coloured 1.
So c(N23) = c(N33) = 3, c(N34) = 1 and c(N11) = 2.
If N01 is coloured 2, we have that N2 is saturated and, since N22 is saturated,
we have that the vertices N112, N122, N222, N223 and N233 must be all
coloured 1, contradicting Fact 5. Thus, N01 is coloured 3 and then N50 must
be coloured 2, due to the interference constraint in N5.
Consequently, N4 is saturated and all the vertices N344, N444, N445 and N455

must be coloured 1, due to the interference constraints in N4, N44 and N45.
This contradicts Fact 5.

(c) Let us consider now the case c(N2) = c(N3) = c(N5) = 2 and c(N4) = 3.
Recall that N12, N11, N01, N00 and N50 cannot be coloured 1.

i. Let us study the case c(N12) = 2. In this case, N2 is saturated and thus N01

and N11 must be coloured 3.

• In case N34 is coloured 1, the vertices N22, N23 and N33 must be coloured 3 as
V0 and N2 are saturated. Consequently, N23 is also saturated. It implies that
the vertices N122, N222, N223 and N233 must be all coloured 1. By Fact 5,
we conclude that N333 must be coloured 2 and then N3 is also saturated.
Consequently, c(N44) = c(N45) = 3, but then N4 has interference at least 3,
a contradiction.

• Thus we conclude that N34 is coloured 3, as it cannot be coloured 2 thanks
to the interference constraint on N2. Observe that none of the vertices N44

and N45 can be coloured 1, as it would imply that V0 is saturated and that
the vertices N22, N23 and N33 should be all coloured 3, leading to a contra-
diction to Fact 5. N44 and N45 can neither be both coloured 2 nor 3, due to
interference constraints in N3 and N4, respectively.
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In case c(N44) = 2 and c(N45) = 3, observe that among N23 and N33 we
have one vertex coloured 1 and the other is coloured 3. Consequently, V0

and N4 are both saturated and N55 and N50 must be coloured 2. But then
IN5

(T2, w2, c) ≥ 3, a contradiction.
In case c(N44) = 3 and c(N45) = 2, we conclude that N33 is coloured 1,
thanks to Fact 3, and thus V0 is saturated; consequently, c(N23) = 3 and N4

is saturated, but then c(N55) = c(N50) = 2 and IN5(T2, w2, c) ≥ 3.

ii. Then consider that N12 is coloured 3. We claim that neither N22 nor N23 can
receive colour 2. For otherwise, suppose the case where at least one of these
vertices would be coloured 2. As N2 would be saturated, the vertices N01 and
N11 should be both coloured 3. This would imply that N112 and N122 should
be coloured 1 and 3, respectively, due to Fact 3 and the interference constraint
in N1 and N2. Consequently, as N1 and N12 would be both saturated, N22

and N23 should be both coloured 2, a contradiction to Fact 3. Observe that
N22 and N23 cannot be both coloured 1 due to the interference in V0. Let us
study the three remaining cases:

• c(N22) = 1 and c(N23) = 3. At most one of the vertices N33 and N34 is
coloured 2, due to Fact 3. If exactly one of them is coloured 2 (and thus the
other is coloured 3 thanks to the interference in V0), as N3 is saturated, N44

and N45 must be coloured 3. This is a contradiction as IN4
(T2, w2, c) ≥ 3.

Thus, N33 and N34 are both coloured 3 and it implies that N44 and N45 are
both coloured 2, because of Facts 3 and 5. As N45 is saturated, N55 and N50

are both coloured 3 and we reach a contradiction as IN4
(T2, w2, c) ≥ 3.

• c(N22) = 3 and c(N23) = 1. If N33 is coloured 2, we observe that N3 is
saturated and N34, N44 and N45 must be all coloured 3. This contradicts
Fact 3.
We conclude that c(N33) = 3. If N34 is coloured 2, N3 is saturated and N44

and N45 are both coloured 3. Then, N4 is saturated and c(N55) = c(N50) = 2.
This is a contradiction as IN5

(T2, w2, c) ≥ 3. Then, c(N34) = 3 and then N44

is coloured 2. If N45 is coloured 3, N4 is saturated and then N55 and N50

must be both coloured 2. This is a contradiction as IN5(T2, w2, c) ≥ 3. So
c(N45) = 2 and N5 is saturated. As a consequence, we get c(N55) = c(N50) =
c(N00) = c(N01) = 3. This is another contradiction as IN50

(T2, w2, c) ≥ 3.

• c(N22) = 3 and c(N23) = 3. N33 cannot be coloured 3 thanks to the interfer-
ence constraint in N23.

– If c(N33) = 2, then N3 is saturated. In this case, N34, N44 and N45 cannot
be all coloured 3 (Fact 3). So one of them is coloured 1 and the two others
are coloured 3 implying that V0 and N4 are saturated and N55 and N50 are
both coloured 2. This is a contradiction as IN5

(T2, w2, c) ≥ 3.

– If c(N33) = 1, then V0 is saturated. In case N34 is coloured 2, N3 is
also saturated and N44 and N45 must be both coloured 3. Then N4 is
saturated and N55 and N50 are both coloured 2. This is a contradiction as
IN5

(T2, w2, c) ≥ 3.
Thus we know that c(N34) = 3. In case N44 is coloured 3, N4 is saturated
and N45, N55 and N50 should be all coloured 2. This contradicts Fact 3.
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Then c(N44) = 2. So N44 is coloured 2 and we know that N23 is saturated.
Then, among N233, N333 and N334 there is exactly one vertex coloured 2,
due to Fact 3 and to the interference in N3. As N3 is saturated, we conclude
that c(N45) = 3. But N4 is saturated, N55 and N50 must be coloured 2
and we find a contradiction as IN5

(T2, w2, c) ≥ 3.

(d) Now, we study the case c(N2) = c(N3) = 2 and c(N4) = c(N5) = 3. Observe
that colours 2 and 3 are symmetric under these hypothesis. In order to use
this symmetry, let us consider the possible colourings of N23 and N45 (up to
the symmetries):

i. In case c(N23) = 2 and c(N45) = 3, observe that N34 is necessarily coloured
1, thanks to Fact 3. Consequently, V0 is saturated, N33 is coloured 3 and N44

is coloured 2. It implies that N3 and N4 are also saturated and that N334

and N344 are both coloured 1. As N34 is also saturated, N233 and N333 are
coloured 3. Moreover, N22 is also coloured 3 as V0 and N3 are saturated. This
is a contradiction as IN33

(T2, w2, c) ≥ 3.

ii. Now consider that c(N23) = 2 and c(N45) = 2. Since N3 is saturated and
Fact 3 holds, among N34 and N44 we have one vertex coloured 1 and the other
is coloured 3. So V0 is saturated, N33 is coloured 3 and N4 is then saturated.
Consequently, N334 and N344 are coloured 1 and N55 and N50 are coloured 2.
N444 can neither be coloured 3 as N4 is saturated, nor 1 as IN344(T2, w2, c) ≥ 3.
So c(N45) is saturated and N445 and N455 are both coloured 1. This is a
contradiction as either IN34

(T2, w2, c) ≥ 3 or IN44
(T2, w2, c) ≥ 3.

iii. Let us study the case c(N23) = 2 and c(N45) = 1. So, c(N33) = c(N34) = 3
and c(N44) = 2. As N3, N4 and N34 are saturated, N233, N333, N334 and
N344 are coloured 1. As N3 is saturated, c(N12) = c(N22) = 3. N4 and
N34 saturated imply that N233, N333, N334 and N344 are coloured 1. So, by
Fact 5, c(N233) = 3 and N22 is saturated. Consequently, c(N11) = 2 and N2

is saturated. Therefore, c(N112) = c(N122) = 1, but we have a contradiction
as IN1(T2, w2, c) ≥ 3.

iv. We now deal with the case c(N23) = 1 and c(N45) = 2. Observe that
N33 cannot be coloured 2, because in this case V0 and N3 are saturated
and we would have a contradiction to Fact 3 as N34 and N44 should be
both coloured 3. Consequently, N33 is coloured 3. In case N34 is coloured
3, N4 is saturated and then N45, N55 and N50 are coloured 2. This is a
contradiction as IN45

(T2, w2, c) ≥ 3. So c(N34) = 2 and N3 is saturated.
As a consequence, N44 is coloured 3 and N4 is also saturated and the ver-
tices N55 and N50 must be coloured 2. It implies that N45 is saturated and
c(N344) = c(N444) = c(N445) = c(N455) = 1. As N3 and N4 are saturated,
N334 should be also coloured 1, but this contradicts Fact 5.

v. We now deal with the last subcase in which c(N23) = 3 and c(N45) = 2 (Recall
that colours 2 and 3 are once more symmetric).

• If c(N33) = 2, N3 is saturated. Then N34 and N44 cannot receive colour 2,
cannot be both coloured 1 (Fact 4 with V0) and cannot be both coloured 3
(Fact 4 with N4).
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– In case c(N34) = 1 and c(N44) = 3, N4 and V0 are saturated. Consequently,
c(N334) = c(N344) = 1 and N34 is also saturated. Thus, c(N12) = c(N22) =
c(N233) = c(N333) = 3. This is a contradiction to Fact 5.

– So c(N34) = 3 and c(N44) = 1. One more V0, N3 and N4 are saturated. It
implies that c(N12) = c(N22) = 3 and then N23 is also saturated. Conse-
quently, the vertices N233, N333, N334 and N344 must be all coloured 1. This
contradicts Fact 5.

As c(N33) 6= 2, by symmetry, we conclude that c(N44) 6= 3. We use this
information in the following subcase.

• If c(N33) = 3, observe that N34 cannot be coloured 3, thanks to Fact 5.
Recall that N44 is either coloured 1 or 2, by symmetry. Moreover, N34 and
N44 cannot be both coloured 2 due to Fact 5.

– In case c(N34) = 2 and c(N44) = 1, V0 and N3 are saturated. This implies
that c(N12) = c(N22) = 3. This is a contradiction as IN23

(T2, w2, c) ≥ 3.

– So c(N34) = 1 and c(N44) = 2. N55 and N50 cannot be both coloured 2,
otherwise IN45(T2, w2, c) ≥ 3. So one is coloured 3 and N4 is saturated. Sim-
ilarly, N12 and N22 cannot be both coloured 3, otherwise IN23(T2, w2, c) ≥ 3.
Thus, one of them is coloured 2 and N3 is saturated. Then, c(N334) =
c(N344) = 1 and N34 is saturated. Since N3 is also saturated, we have that
c(N233) = c(N333) = 3, but then IN33

(T2, w2, c) ≥ 3, a contradiction.

As N33 cannot be coloured 3, again by symmetry we conclude that N44

cannot be coloured 2. Thus, we have a contradiction to Fact 4 in V0 as
c(N33) = c(N44) = 1.

(e) Let us consider now that c(N2) = c(N4) = 2 and c(N3) = c(N5) = 3. By
Facts 3 and 4, there is at most one vertex in Γ2 coloured 1. By symmetry, we
consider w.l.o.g. that this vertex is in {N22, N23, N33, N34}. So we know that
N44, N45 and N55 are not coloured 1.

i. c(N34) = 1 (and then V0 is saturated).

• c(N44) = c(N45) = 2. In this case, N4 is saturated. So, c(N23) = c(N33) =
c(N55) = c(N50) = 3 and N3 and N5 are saturated. We then reach a contra-
diction because c(N334) = c(N344) = c(N445) = 1 and then IN34

(T2, w2, c) ≥
3.

• c(N44) = c(N45) = 3. So N45 is saturated and c(N55) = c(N50) = 2. Observe
that N23 and N33 cannot be both coloured 3, otherwise IN3

(T2, w2, c) ≥ 3. If
both N23 and N33 are coloured 2, then N4 is also saturated and then N334,
N444, N445 and N455 are all coloured 1, contradicting Fact 5. So among
N23 and N33 we have one vertex coloured 2 and the other is coloured 3 and,
consequently, N3 is saturated. So N12 and N22 are coloured 1 and we have a
contradiction as IN2(T2, w2, c) ≥ 3.

• Either c(N44) = 2 and c(N45) = 3, or c(N44) = 3 and c(N45) = 2. In this
case, N23 and N33 cannot be both coloured 3, otherwise IN3

(T2, w2, c) ≥ 3.
Similarly, N55 and N50 cannot be both coloured 3, otherwise IN5

(T2, w2, c) ≥
3. At most two among N23, N33, N55 and N50 are coloured 2, otherwise
IN4(T2, w2, c) ≥ 3. Consequently, one vertex among N23 and N33 is coloured
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2 and the other is coloured 3, the same happens for vertices N55 and N50

and, then, N4 is saturated. N12 and N22 cannot be both coloured 2, otherwise
IN2

(T2, w2, c) ≥ 3. So one of them is coloured 1 and N3 is saturated, implying
that c(N334) = c(N344) = 1 and N34 is saturated.
If c(N45) = 3, thenN5 is saturated and c(N445) = 1, but then IN34

(T2, w2, c) ≥
3. If c(N45) = 2, we have that c(N44) = 3. N444 and N445 cannot be both
coloured 3, otherwise IN44(T2, w2, c) ≥ 3. So one of them is coloured 3 and
again IN34

(T2, w2, c) ≥ 3.

ii. c(N34) = 2. Recall that N44, N45 and N55 are not coloured 1. Observe that,
by Fact 3, at most one of N44 and N45 is coloured 2. If one of these vertices
is coloured 2, N4 is saturated and N55 and N50 must be both coloured 1. It
implies a contradiction as IN5

(T2, w2, c) ≥ 3. Consequently, N44 and N45 are
both coloured 3 and N45 is saturated. So N55 and N50 are coloured 2 and N4

is also saturated implying that c(N344) = c(N444) = c(N445) = c(N455) = 1.
Since N444 is saturated, N334 must be coloured 3 and then N23 and N33 cannot
receive colour 3, otherwise IN3

(T2, w2, c) ≥ 3. We obtain a contradiction
because N23 and N33 are both coloured 1 and IV0

(T2, w2, c) ≥ 3.

iii. c(N34) = 3. Observe that N44 and N45 cannot be both coloured 3, due to
Fact 5.

• c(N44) = c(N45) = 2. In this case, N4 is saturated and then N55 and N50

must be coloured 3. This is a contradiction because IN5
(T2, w2, c) ≥ 3.

• c(N44) = 2 and c(N45) = 3. Due to the interference in N5, we have that
c(N55) = c(N50) = 2 and then N4 is saturated. However, the vertices N23

and N33 cannot receive colour 3, due to the interference in N3, and so they
are both coloured 1 and we have a contradiction as IV0

(T2, w2, c) ≥ 3.

• c(N44) = 3 and c(N45) = 2. In this case, N34 is saturated. If N23 and N33

are both coloured 2, N4 is saturated and N55 and N50 must be coloured 3
and we get IN5

(T2, w2, c) ≥ 3. So among N23 and N33 we have one vertex
coloured 1 and the other is coloured 2.
N55 and N50 can neither be both coloured 3, otherwise IN5(T2, w2, c) ≥ 3,
nor both coloured 2, otherwise IN4(T2, w2, c) ≥ 3. So one is coloured 2, the
other 3 and N4 and N5 are saturated. We then get a contradiction to Fact 5
because c(N334) = c(N344) = c(N444) = c(N445) = c(N455) = 1.

(f) Now consider that c(N2) = c(N5) = 2 and c(N3) = c(N4) = 3. As in Case 1e,
we consider w.l.o.g. that N44, N45 and N55 are not coloured 1. Observe that
N44 and N45 cannot be both coloured 3, otherwise IN4

(T2, w2, c) ≥ 3.

i. Consider first that c(N44) = c(N45) = 2. Consequently, c(N55) = c(N50) = 3
due to the interference constraints in N45 and N5. If N00 is coloured 3,
N50 is saturated and then N01 must be coloured 2. As a consequence, N5

is also saturated and N550 and N500 must be both coloured 1. This is a
contradiction as IN0

(T2, w2, c) ≥ 3. So N00 is coloured 2 and N5 is saturated.
Thus, c(N01) = 3 and N550 and N500 cannot receive colour 2 (interference
in N5) or 3 (interference in N50). So, c(N550) = c(N500) = 1, but them
IN0(T2, w2, c) ≥ 3.
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ii. Either c(N44) = 2 and c(N45) = 3, or c(N44) = 3 and c(N45) = 2. In this
case, observe that N55 and N50 can neither be both coloured 2 (interference
in N5) nor 3 (interference in N4). So one is coloured 2, the other is coloured
3 and N4 is saturated.

• If c(N44) = 3 and c(N45) = 2, then N5 is also saturated and N34 must be
coloured 1. Consequently, V0 is saturated and c(N23) = c(N33) = 2 and
c(N00) = c(N01) = 3. Due to the interference in N2, N12 and N22 must
be coloured 3 and then, by Fact 5, N11 must be coloured 2. So N2 is also
saturated and then, due to the interference in N12, N112 and N122 must be
both coloured 1. This is a contradiction because IN1(T2, w2, c) ≥ 3.

• So c(N44) = 2 and c(N45) = 3. Observe that N33 and N34 cannot be both
coloured 2, otherwise IN34

(T2, w2, c) ≥ 3. So one of them is coloured 1 and
the other is coloured 2. Thus, V0 is saturated and N23 must be coloured 2. If
c(N33) = 1 and c(N34) = 2, N34 is saturated and then c(N334) = c(N344) =
c(N444) = c(N445) = 1, contradicting Fact 5. So c(N33) = 2 and c(N34) = 1.
Due to the interference in N2, we have that N12 and N22 are coloured 3
and then N3 is also saturated. Then, N334 must be coloured 1 due to the
interference in N3 and N33. If N344 is coloured 2, N33 is saturated and we
have a contradiction to Fact 5 because c(N223) = c(N233) = c(N333) = 1. So
we get c(N344) = 1 and N34 saturated. This is a contradiction because N333

must be coloured 2 and then IN33
(T2, w2, c) ≥ 3.

2. Subcase c(N2) = 1.

W.l.o.g., let c(N1) = 2. We deal with the subcases according to the colouring
of N3, N4 and N5: they are all coloured 2 (Case 2a), two of them are coloured
2 (Cases 2b and 2c), only one of them is coloured 2 (Cases 2d and 2e) or they
are all coloured 3 (Case 2f).

(a) Consider first the subcase c(N3) = c(N4) = c(N5) = 2. In this case, N4 is
saturated and all the vertices N23, N33, N34, N44, N45, N55 and N50 cannot
be coloured 2. Since at most one vertex in Γ2 is coloured 1, this vertex cannot
belong to the set {N23, N33, N55, N50} as it would imply a contradiction to
Facts 5 in colour 3. So all the vertices in this set are coloured 3, exactly
one vertex among N34, N44 and N45 is coloured 1 and V0 is saturated. By
symmetry, we can consider that N45 is coloured 3.

If N01 is coloured 2, N1 is also saturated and all the vertices N11, N12 and N22

must be coloured 3. This is a contradiction to Fact 5. So c(N01) = 3.

In order to avoid a P5 of vertices coloured 3, N00 must be coloured 2. Then,
N11 and N12 must be coloured 3, due to the interference constraint in N1.
Thanks to Fact 5, N22 must be coloured 2 and so N1 and N3 are saturated.
The vertices N112 and N233 cannot be coloured 3 as we would be in Case 1,
then they are both coloured 1 and N2 is also saturated. Consequently, N122

must be coloured 3 and we reach a contradiction as IN12
(T2, w2, c) ≥ 3.

(b) Let us now suppose that c(N3) = c(N4) = 2 and c(N5) = 3. We show that
there is no feasible colour to N44 by examining the three possible cases:
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i. Suppose first that N44 is coloured 2. So N4 is saturated and then, if c(N55) =
3, as either N45 or N50 must be coloured 3, we are in Case 1. Thus, N55 is
coloured 1, V0 is saturated and N23, N33, N34, N45 and N50 are coloured 3.
Consequently, N5 is saturated and so N00 and N01 are coloured 2. Thus, N1

is saturated and N12 and N22 must be coloured 3, contradicting Fact 5.

ii. Now consider that c(N44) = 1. Thus, V0 is saturated and N34 is coloured 3,
otherwise we would be in Case 1.

• Suppose that at one of the vertices N23 or N33 is coloured 2. Then, N3 is
saturated and the vertices N12, N22 and N45 must be all coloured 3. So N55 is
coloured 2, as we are no longer in Case 1, and it implies that N4 is saturated.
As a consequence, N50 is coloured 3 and N5 is also saturated. Thus, N00 and
N01 must be coloured 2, N1 is saturated and N11 is coloured 3. Observe that
N112 and N122 are both coloured 1, otherwise we are in Case 1. So N2 is also
saturated and no feasible colour remains to colour N223.

• So N23 and N33 are both coloured 3.

– If N22 is coloured 3, N12 is coloured 2 (Fact 5), N11 is coloured 3 (as we are
not in Case 1) and N01 is also coloured 3 (interference in V0 and N1).
If c(N00) = 3, N01 is saturated and then N50 is coloured 2. It implies that
N1 is saturated and N001 and N011 must be both coloured 1. Consequently,
N0 is saturated and N000 and N500 are both coloured 2. Thus, N50 is also
saturated and the vertices N45 and N55 should be both coloured 3. But then
we are in Case 1.
So N00 is coloured 2 and N1 is saturated. Consequently, N50 is coloured 3
and N55 must be coloured 2 as we are no longer in Case 1. But then no
feasible colour remains to colour N45.

– Thus, we have c(N22) = 2. If N12 is coloured 2, N1 is saturated and we have
a contradiction to Fact 5, because all the vertices N50, N00, N01 and N11

must be coloured 3. So, we conclude that c(N12) = 3.
If N01 or N11 are coloured 2, N1 is saturated and N50 and N00 must be
coloured 3. In this case, N45 and N55 cannot receive colour 3, due to the
interference in N5. So they are both coloured 2 and we reach a contradiction
as IN4

(T2, w2, c) ≥ 3.
Consequently, N01 and N11 are both coloured 3. Observe that N45 is also
coloured 3, otherwise N4 is saturated, N50 and N00 are coloured 3 and we
are in Case 1. Consequently, N55 and N50 are coloured 2, as we are no longer
in Case 1 and we cannot violate the interference constraint in N5. Moreover,
N00 is also coloured 2, otherwise IN01

(T2, w2, c) ≥ 3. But then we have a
contradiction as IN50(T2, w2, c) ≥ 3.

iii. We conclude that N44 must be coloured 3. Recall that N34 cannot be coloured
2 as we would be in Case 1.

• Consider first the case in which c(N34) = 1 and thus V0 is saturated. If N45

is coloured 2, N4 is saturated and N50 and N00 should be both coloured 3.
But then we are in Case 1. So N45 is coloured 3 and N55 must be coloured 2.
Observe that N23 and N33 cannot be both coloured 2, due to Fact 3. In case
one of these vertices is coloured 2 and the other is coloured 3, observe that
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N3 and N4 are saturated. Consequently, N50 is coloured 3 and N45 and N5

are also saturated. We then reach a contradiction to Fact 5 as all the vertices
N344, N444, N445 and N455 must be coloured 1. So we conclude that N23 and
N33 must be both coloured 3.
If N50 is coloured 3, N5 is saturated. Then, N00 and N01 must be coloured
2, then N1 is saturated and we reach a contradiction to Fact 5 as N11, N12

and N22 must be all coloured 3. So N50 is coloured 2 and N4 is saturated.
Consequently, N344 and N444 are both coloured 1, due to the interference
constraints in N4 and N44. Thus, N34 is also saturated and N445 must be
coloured 3. But then we are in Case 1.

• We deduce that c(N34) = 3. We now study the possible colourings of N45.

– If c(N45) = 2, N4 is saturated. The interference constraints in V0 and N5 lead
us to the conclusion that among N55 and N50 we have one vertex coloured 1
and the other is coloured 3. Consequently, V0 is saturated and N23 and N33

are both coloured 3. This is a contradiction as IN34
(T2, w2, c) ≥ 3.

– Now consider that c(N45) = 1 (V0 is saturated). The vertices N23 and N33

cannot be both coloured 2, due to Fact 3. They cannot also be both coloured
3, because of the interference constraint in N34. So among N23 and N33 we
have one vertex coloured 2 and the other is coloured 3 and N3 is saturated.
The vertices N55 and N50 can neither be both coloured 2, because of the
interference in N4, nor 3, as we are not in Case 1. So one of them is coloured
2 and the other is coloured 3. Thus, N4 is also saturated.
Similarly, we can conclude that among N444 and N445 we have one vertex
coloured 1 and the other is coloured 3 (recall that these vertices cannot
receive colour 2 as N4 is saturated). Consequently, N44 is saturated and
the vertices N344 and N455 must be coloured 1. This is a contradiction as
IN45(T2, w2, c) ≥ 3.

– So we have c(N45) = 3. Consequently, N33, N55 and N50 cannot receive
colour 3. We thus conclude that two of these vertices are coloured 2 and
the other is coloured 1, by considering the interference in V0 and N4. We
then obtain that N334, N344, N444, N445 and N455 are all coloured 1. This
contradicts Fact 5.

(c) We now treat the case c(N3) = c(N5) = 2 and c(N4) = 3. Let us consider the
possible colours of N23.

i. Suppose first that N23 is coloured 1. In this case, V0 and N2 are saturated.

• In case N33 is coloured 2, N34 must be coloured 3 and N44 must be coloured
2, otherwise we would be in Case 1. So N3 is also saturated and N45 must be
coloured 3. Since N2 and N3 are both saturated, N12, N22, N223 and N233

must be all coloured 3 and then N22 is saturated. It implies that N11, N112,
N122 are coloured 2 and then we reach a contradiction as IN1

(T2, w2, c) ≥ 3.

• We conclude that N33 must be coloured 3. Observe that N44 and N45 cannot
be both coloured 3, as we are no longer in Case 1. Thus, at least one of
these vertices is coloured 2. If N34 is coloured 2, N3 is saturated. Then, the
vertices N12, N22, N223 and N233 must be all coloured 3. This contradicts
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Fact 5. Consequently, N34 is coloured 3 andN44 must be coloured 2, otherwise
we would be in Case 1. Observe that N45 cannot be coloured 2, because,
otherwise N5 will be saturated, c(N55) = c(N50) = c(N00) = c(N01) = 3 and
IN50

(T2, w2, c) ≥ 3. So N45 is coloured 3, N4 is saturated and N55 and N50

are both coloured 2. However, we are in Case 1 with N5.

ii. Now consider that c(N23) = 2. Observe that neither N33 nor N34 are coloured
2 due to the interference in N3.

• Suppose first that c(N33) = 1. It implies that V0 is saturated and that N34

is coloured 3. Consequently, N44 must be coloured 2, otherwise we are in
Case 1, and then N3 is saturated. So, N12, N22 and N45 are coloured 3.
Observe that among N55 and N50, we must have one vertex coloured 2 and
the other must be coloured 3 (due to Fact 5 and to the hypothesis that we
are not in Case 1). So N4 is also saturated and it implies that N334 and N344

are coloured 1. We conclude that N33 is saturated and that the vertices N223,
N233 and N333 should be all coloured 3. This contradicts Fact 5.

• Now consider the case in which c(N33) = 3 and c(N34) = 1. So V0 is saturated
and we can see that N44 and N45 can neither be both coloured 2 (interference
in N3) nor 3 (Case 1 with N4). Thus, one is coloured 2 and the other is
coloured 3. Consequently, N3 is saturated and N12 and N22 are both coloured
3. Furthermore, both N334 and N344 cannot be coloured 1 (Case 1 with N34).
One of them at least is coloured 3. Then N55 and N50 can neither be both
coloured 2 (Case 1 with N5) nor 3 (otherwise IN4(T2, w2, c) ≥ 3). So among
N55 and N50 we have one vertex coloured 2 and the other is coloured 3.
We conclude that N5 is saturated, N00 and N01 are coloured 3 and, due to
Fact 5, N11 is coloured 2. It implies that N1 is saturated and N122 must be
coloured 1 (it cannot be coloured 3, otherwise we would be in Case 1 with
N12). So N2 is also saturated and N223 and N233 must be both coloured 3.
This contradicts Fact 5.

• We obtain that N33 and N34 are both coloured 3. Consequently, N44 cannot
be coloured 3 (Fact 3 with N34).

– Suppose first that N44 is coloured 1. If c(N45) = 3, N4 is saturated and we
are in Case 1 with N5 instead of V0, because N55 and N50 must be both
coloured 2. So N45 is coloured 2 and it implies that N55 and N50 must be
both coloured 3, due to the interference constraint in V0 and N5. Thus, N4

is saturated. Since N3 is also saturated, we get that N334 and N344 are both
coloured 1. The vertices N444 and N445 can neither receive colour 1, due to
the interference in N44, nor colour 3, since N4 is saturated. Thus, they are
both coloured 2. But then we have a contradiction as IN45(T2, w2, c) ≥ 3.

– So we get that c(N44) = 2 and then N3 is saturated. Neither N12, nor
N22 can be coloured 1, otherwise N2 would also be saturated and it would
imply that N223 and N233 should be coloured 3, leading to a contradiction
to Fact 5. So we get that c(N12) = c(N22) = 3. Consequently, c(N233) =
c(N333) = c(N334) = c(N344) = 1, due to interference constraints in N3,
N33 and N34. So c(N223) = 3 and N33 is also saturated. It implies that
N22 is saturated and then N11 can either be coloured 1 or 2. In case it is
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coloured 1, N2 is saturated, N112, N122 and N222 must be coloured 2 and
we have a contradiction as IN122(T2, w2, c) ≥ 3. If N11 is coloured 2, N1 is
saturated and then N112 and N122 must be coloured 1. However, we get that
IN2

(T2, w2, c) ≥ 3.

iii. We conclude that N23 is coloured 3.

• Suppose first that c(N33) = 1. Consequently, V0 is saturated.

– Let us first consider the subcase in which N34 is coloured 2. Then, N44 and
N45 can neither be both coloured 2, due to the interference in N3, nor 3,
since we are no longer in Case 1. So among N44 and N45 we have one vertex
coloured 2 and the other is coloured 3. It implies that N3 is saturated. Due
to the interference in V0 and N5, we conclude that c(N55) = c(N50) = 3. So
N4 is saturated implying N334 and N344 must be both coloured 1. But then
N33 is also saturated, N22 and N223 are be both coloured 3 and we are in
Case 1 with vertex N23.

– We conclude that c(N34) = 3. Since we are no longer in Case 1, we get that
c(N44) = 2. N45 and N55 can neither be both coloured 2 (Fact 3 with N45),
nor 3 (interference in N4). So one of these vertices is coloured 2 and the
other is coloured 3, implying that N5 is saturated and then that c(N50) =
c(N00) = c(N01) = 3. However, we get a contradiction as neither N45 is
coloured 3, otherwise IN4

(T2, w2, c) ≥ 3, nor N55 is coloured 3, otherwise
IN50(T2, w2, c) ≥ 3.

• Let us consider now the case c(N33) = 2. Observe that N34 cannot be also
coloured 2, due to the interference constraint in N3.

– In case c(N34) = 1, we have that V0 is saturated and then N44 and N45 can
neither be both coloured 2 (interference in N3) nor 3 (Case 1 with N4). So
among N44 and N45 we find one vertex coloured 2 and the other is necessarily
coloured 3. Consequently, N3 is saturated, N12 and N22 are coloured 3 and
then N223 must be coloured 1. So N2 is also saturated and N233 must be
coloured 3. This is a contradiction as IN23(T2, w2, c) ≥ 3.

– We conclude that N34 must be coloured 3. Consequently, N44 cannot be
coloured 3, as we are not in Case 1. Let us check the possible colourings of
N44.
If N44 is coloured 1, V0 is saturated. Then, if N45 is coloured 3, N4 is
saturated and N55 and N50 are forced to be coloured 2. But then we are in
Case 1 with N5. So N45 is coloured 2, N3 is saturated and the vertices N55

and N50 must be coloured 3, due to the interference in N5. As a consequence,
N4 is also saturated and the vertices N334 and N344 must be coloured 1. As
we are no longer in Case 1, N444 must be coloured 2. Due to the interference
constraints in N4 and N45, we get that N445 and N455 must be both coloured
1. This is a contradiction to Fact 5.
So N44 must be coloured 2 and then N3 is saturated. Observe that exactly
one of the vertices N45, N55 and N50 must be coloured 1, otherwise N45

must be coloured 3 (interference in N3) and N55 and N50 must be coloured
2 (interference in N4) and we are in Case 1. Then, as N3 and V0 are sat-
urated we have c(N12) = c(N22) = 3, implying that N23 is saturated and
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so c(N223) = c(N233) = c(N333) = c(N334) = 1. However, we have that
IN233(T2, w2, c) ≥ 3.

• So we have that c(N33) = 3. Let us now check the possible colourings of
c(N34).

– First consider that c(N34) = 1. Observe that V0 is saturated.

∗ If c(N44) = 3, we get that c(N45) = 2 and, consequently, c(N55) = c(N50) =
3 (otherwise, IN5

(T2, w2, c) ≥ 3). However, observe that IN4
(T2, w2, c) ≥ 3.

∗ So c(N44) = 2. If c(N45) = 2, N45 and N5 are both saturated implying
that N55, N50, N00 and N01 must be all coloured 3. But then we have a
contradiction as IN50

(T2, w2, c) ≥ 3.
So N45 is coloured 3. N55 and N50 can neither be both coloured 2 (oth-
erwise, Case 1 with N5), nor 3 (otherwise, IN4(T2, w2, c) ≥ 3). So one of
these vertices is coloured 2 and the other is coloured 3. Thus, N4 and N5

are saturated and then N00 and N01 must be coloured 3 and the vertices
N445 and N455 must be coloured 1. In case c(N50) = 3, N50 is saturated
and the vertices N555, N550 and N500 must be coloured 1, contradicting
Fact 5. So, we get that c(N55) = 3 and c(N50) = 2. Observe that N555 and
N550 can neither receive colour 2 (since N5 is saturated) nor 3 (otherwise,
IN55

(T2, w2, c) ≥ 3). Thus, they are both coloured 1 and, consequently,
N500 is coloured 3. It implies that N00 is saturated and then we get that
N11 must be coloured 2. As a consequence, N1 is saturated and N12 and
N22 are both coloured 3. However, we get that IN23(T2, w2, c) ≥ 3.

– Now consider that c(N34) = 2. Let us check the possible colourings of N44.

∗ First suppose that c(N44) = 1. If N45 is coloured 2, then N3 is saturated
and we have that N12 and N22 are coloured 3. This is a contradiction as
IN23

(T2, w2, c) ≥ 3. So N45 is coloured 3. The vertices N55 and N50 can
neither be both coloured 2 (otherwise, Case 1 with N5) nor 3 (otherwise,
IN4(T2, w2, c) ≥ 3). So one is coloured 2 and the other is coloured 3. As a
consequence, N4 and N5 are both saturated implying that N445 and N455

are coloured 1 and then that N444 is coloured 2. But then N334 and N344

must be both coloured 1 (interference in N34) and we have a contradiction
to Fact 5.

∗ Now let c(N44) = 2. Observe that N3 and N34 are saturated and that N12

and N22 cannot be both coloured 3, otherwise IN23
(T2, w2, c) ≥ 3. So among

N12 and N22 we have one vertex coloured 1 and the other is coloured 3. It
implies that V0 is saturated. Observe also that the vertices N45, N55 and
N50 cannot receive colour 2 due to the interference constraint in N5. Then,
we have a contradiction as N45, N55 and N50 are all coloured 3 and we get
IN4

(T2, w2, c) ≥ 3.

∗ We conclude that c(N44) = 3. If c(N45) = 1, V0 is saturated. In this case,
N55 and N50 can neither be both coloured 2 (otherwise, Case 1 with N5)
nor 3 (otherwise, IN4

(T2, w2, c) ≥ 3). So one of these vertices is coloured
2, the other is coloured 3 and we get that N4 and N5 are saturated. Thus,
N445 and N455 must be coloured 1 and we are in Case 1 for N45.
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N45 cannot be coloured 3 as we are no longer in Case 1, so its colour is 2
and N3 and N5 are both saturated. N55 and N50 cannot be both coloured 3,
otherwise IN4

(T2, w2, c) ≥ 3. So one of these vertices is coloured 1 implying
that V0 is saturated. Consequently, N12 and N22 are both coloured 3 and
we get a contradiction as IN23

(T2, w2, c) ≥ 3.

– So we conclude that N33 and N34 are both coloured 3 and both saturated. If
the vertices N12, N44 and N45 are not coloured 1, they must be all coloured
2 and we have that N3 is saturated and so c(N223) = c(N233) = c(N333) =
c(N334) = c(N344) = 1, contradicting Fact 5. So one of these vertices is
coloured 1 and V0 is saturated. In case N12 is coloured 1, N44 and N45 must
be coloured 2 and N45 is saturated. Consequently, N55 and N50 are coloured
3 and we have a contradiction as IN4

(T2, w2, c) ≥ 3.
Then, either N44 or N45 is coloured 1 (the other being coloured 2) and N12

is coloured 2. If N44 is coloured 1, then N55 and N50 are not coloured
2, otherwise IN5

(T2, w2, c) ≥ 3. So they are both coloured 3, but then
IN4

(T2, w2, c) ≥ 3.
So we have that N44 is coloured 2 and N45 is coloured 1. Consequently, N55

and N50 can neither be both coloured 2 (interference in N5) nor 3 (interfer-
ence in N4). So one is coloured 2 and the other is coloured 3 implying that
N4 and N5 are saturated. Therefore, c(N445) = c(N455) = 1 and we are in
Case 1.

(d) We now study the case c(N3) = 2 and c(N4) = c(N5) = 3. Observe that N45

cannot be coloured 3, otherwise we are in Case 1.

i. First consider that c(N45) = 1 (V0 is saturated). If N55 is coloured 3, N50

must be coloured 2 and we are in Case 2b with central vertex N5. So N55 is
coloured 2.

• In case N44 is coloured 3, N34 must be coloured 2 and then N33 must be
coloured 3, because we are not in Case 1. Thus, N4 is saturated, N23 and
N50 must be coloured 2 and N3 is also saturated. Consequently, N334 and
N344 are both coloured 1.
If N00 is coloured 2, N50 is saturated and then N455 must be coloured 1, N45

is also saturated and N01 is coloured 3. Since N555 and N550 must be both
coloured 3, we reach a contradiction as IN5

(T2, w2, c) ≥ 3.
So we conclude that c(N00) = 3. Recall that N3 is saturated and thus, N12

and N22 must be both coloured 3. N01 and N11 can neither be both coloured
2 (otherwise, Case 1) nor 3 (Fact 5). So one is coloured 2 and the other is
coloured 3. Thus, N1 is saturated and N122 must be coloured 1, since we are
not in Case 1. The vertices N223 and N233 cannot receive colour 2 as N3 is
saturated, cannot be both coloured 3, thanks to Fact 5, and cannot be both
coloured 1, due to the interference in N2. So one of these vertices is coloured
1 and the other is coloured 3; N2 is saturated and N112 must be coloured 3.
Consequently, N11 is coloured 2 and N01 is coloured 3. We then observe that
N01 and N5 are saturated and that N001 and N011 must be both coloured 1.
It leads to a contradiction as IN0

(T2, w2, c) ≥ 3.

• We conclude that N44 is coloured 2.
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– Suppose first that c(N34) = 2. In this case, N23 and N33 are both coloured
3 due to the interference in N3. Observe that N12 and N22 can neither be
both coloured 2 (interference in N3) nor 3 (interference in N23). So one is
coloured 2 and the other is coloured 3. It implies that N3 is saturated. Thus,
N223 and N233 are both coloured 1, due to the interference in N23. So N2 is
also saturated. The vertices N333 and N334 can neither be both coloured 1
(otherwise, IN233(T2, w2, c) ≥ 3) nor 3 (Fact 3). So one of them is coloured
1 and the other is coloured 3. As a consequence, N23 is saturated, N22 is
coloured 2 and N12 is coloured 3. But then N122 and N222 must be coloured
2 and we have a contradiction as IN22

(T2, w2, c) ≥ 3.

– We obtain that c(N34) = 3. N23 and N33 can neither be both coloured 2
(otherwise, Case 1 with N3) nor 3 (Fact 5). So one of them is coloured 2
and the other is coloured 3. It implies that N4 is saturated and N55 and N50

must be coloured 2.
If c(N00) = 2, N50 is saturated and thus N01 must be coloured 3. Observe
that N550 and N500 can neither be both coloured 1 (interference in N0) nor
3 (interference in N5). So one of these vertices is coloured 1 and the other
is coloured 3. It implies that N0 and N3 are both saturated and thus that
N000 and N001 must be both coloured 3. Then, N11 and N011 cannot receive
colour 1 (N0 is saturated) neither 3 (otherwise, IN01

(T2, w2, c) ≥ 3). So they
are both coloured 2 and we reach a contradiction as IN1(T2, w2, c) ≥ 3.
We conclude that N00 must be coloured 3. If N01 is coloured 3, N5 is
saturated. In this case, N550 and N500 can neither be both coloured 1 (in-
terference in N0) nor 2 (Fact 3). So one of them is coloured 1 and the other
is coloured 2 and, as a consequence, N0 and N50 are saturated. Thus, N000

and N001 must be both coloured 3 and we reach a contradiction to Fact 3.
So we have that N01 must be coloured 2 and c(N11) = c(N12) = 3, otherwise
IN1

(T2, w2, c) ≥ 3. In this case, N550 and N500 cannot receive colour 2
(interference in N50). They can neither be both coloured 1 (interference in
N0) nor 3 (interference in N5). Thus, one of these vertices is coloured 1, the
other is coloured 3 and N0 and N5 are saturated. It implies that one of the
vertices N000 or N001 must be coloured 2 and the other is coloured 3, because
they can neither be both coloured 2 (interference in N01) nor 3 (interference
in N00). But then, N00 is saturated and it implies that c(N011) = 2. This
leads to a contradiction as IN01

(T2, w2, c) ≥ 3.

ii. We then conclude that c(N45) = 2. Let us study the possible colourings of
N44.

• Suppose now that c(N44) = 3. Observe that N34 cannot be coloured 3, by
Fact 3. If c(N34) = 2, then we are in Case 2b with N4.
So N34 is coloured 1 and V0 is saturated. Observe that N23 and N33 can
neither be both coloured 2 (otherwise, Case 1 with N3) nor 3 (interference in
N4). So one of them is coloured 2, the other is coloured 3 and N4 is saturated.
It implies that N55 and N50 must be coloured 2 and, due to the interference
in N45, that N445 must be coloured 1. Moreover, N334 and N344 can neither
be both coloured 1 (interference in N34) nor 2 (interference in N3). Thus,

35



one of them is coloured 1 and the other is coloured 2. As a consequence, N3

and N45 are saturated. We obtain that N233 and N333 are both coloured 3.
So N33 cannot be coloured 3, as we are not in Case 1 and then c(N23) = 3
and c(N33) = 2. Recall that N3 is saturated and thus N12 and N22 must be
both coloured 3. This is a contradiction to Fact 5.

• Suppose now that c(N44) = 1 (and thus that V0 is saturated).

– If c(N34) = 3, then N23 and N33 can neither be both coloured 2 (interfer-
ence in N3) nor 3 (Fact 5). So one of them is coloured 2 and the other is
coloured 3, implying that N4 is saturated. Consequently, N55 and N50 must
be coloured 2 and then that N445 and N455 must be both coloured 1 (other-
wise, IN45

(T2, w2, c) ≥ 3). Thus, N344 and N444 are both coloured 2, due to
the interference in N44. However, we get that IN45(T2, w2, c) ≥ 3.

– We conclude that N34 is coloured 2 and thus that N23 and N33 must be both
coloured 3, due to the interference in N3.

∗ If c(N22) = 3, then N23 is saturated and c(N12) = 2, implying that N3

is also saturated. So N223 and N233 are both coloured 1 and N2 is sat-
urated. Consequently, N122 and N222 are both coloured 2 and we have a
contradiction as IN12(T2, w2, c) ≥ 3.

∗ We obtain that c(N22) = 2, and then N3 is saturated and N12 must be
coloured 3. Consequently, N223 and N233 must be both coloured 1 (inter-
ference in N45) and N2 is also saturated. Since N122 and N222 cannot be
both coloured 2 as we are not in Case 1, we conclude that at least one of
these vertices is coloured 3 and that N23 is saturated. But then we get that
c(N333) = c(N334) = 1 and we have a contradiction as IN233

(T2, w2, c) ≥ 3.

• So we have that N44 must be coloured 2. Let us now check the possible
colourings of N34.

– In case c(N34) = 2, N3, N34 and N44 are all saturated. One of N12, N22, N23

and N33 must be coloured 1, otherwise they are all coloured 3 and we have
IN23

(T2, w2, c) ≥ 3. So V0 is also saturated and then N55 must be coloured
3. Thus, N50 is coloured 2, by Fact 3, and N45 is also saturated.
If both N23 and N33 are coloured 3, N4 is saturated and then we have a
contradiction to Fact 5, because N334, N344, N444, N445 and N455 should be
all coloured 1.
So among N23 and N33 we have one vertex coloured 1, the other is coloured
3 and then N12 and N22 must be coloured 3.
If N23 is coloured 1 (and then N33 is coloured 3), we have that N2 is sat-
urated and then N223 and N233 must be coloured 3. But then we have a
contradiction to Fact 5.
So N33 must be coloured 1 (and then N23 is coloured 3). By Fact 3, we have
that N223 is coloured 1 and then N2 is also saturated. Consequently, N233

must be coloured 3 and we have a contradiction as IN23
(T2, w2, c) ≥ 3.

– Suppose now that c(N34) = 1 (so V0 is saturated).

∗ If c(N33) = 2, N3 is also saturated and then N12, N22 and N23 must be all
coloured 3. However, N223 and N233 must be coloured 1, due to interference
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constraints in N22, N23 and N3, which is a contradiction as IN2(T2, w2, c) ≥
3.

∗ So c(N33) = 3. Let us check the possible colourings of N23.
If N23 is coloured 2, N3 is saturated and then N12 and N22 are both coloured
3. N223 and N233 can neither be both coloured 1 (interference in N2) nor
3 (Fact 5). So one of them is coloured 1, the other is coloured 3 and N2

is saturated. If N223 is coloured 3 (and then c(N233) = 1), N22 is also
saturated. In this case, the vertices N11, N112, N122 and N222 must be all
coloured 2, contradicting Fact 5.
So we conclude that N223 is coloured 1 and N233 is coloured 3. Consequently,
N333 and N334 must be coloured 1 (interference in N3 and N33) and then
N34 is saturated. Thus, N344 and N445 must be coloured 3. It implies
that N4 is saturated and then N55 and N50 are both coloured 2. This is a
contradiction as IN45

(T2, w2, c) ≥ 3.
We conclude that N23 is coloured 3. If N22 is also coloured 3, N23 is sat-
urated and then N12 is coloured 2. N223 and N233 can neither be both
coloured 1 (interference in N2) nor 2 (interference in N3). So one of them
is coloured 1, the other is coloured 2 and N2 and N3 are both saturated. It
implies that N334 and N344 are both coloured 1, N34 is saturated and then
N344 must be coloured 3. But then N4 is saturated, N445 must be coloured
2 and we are in Case 1.
So N22 must be coloured 2. If c(N12) = 2, then N3 is saturated. N223 and
N233 can neither be both coloured 1 (interference in N2), nor 3 (Fact 3).
Thus, one is coloured 1, the other is coloured 3 and N2 and N23 are both
saturated. Consequently, N12, N122 and N222 must be all coloured 2, con-
tradicting Fact 3. Therefore, c(N12) = 3, but then N223 and N233 cannot
be coloured 3 (otherwise, IN23(T2, w2, c) ≥ 3). So they are coloured 1 and
IN2

(T2, w2, c) ≥ 3, a contradiction.

– We conclude that c(N34) = 3. Let us study the possible colourings of N55.

∗ Suppose first that c(N55) = 3. So N4 and N5 are saturated. N23 and N33

can neither be both coloured 1 (interference in V0) nor 2 (we are not in
Case 1). So one of them is coloured 1, the other is coloured 2 and V0 and
N3 are also saturated. It implies that N334 and N344 must be both coloured
1 and that N50 and N00 must be coloured 2. Observe then that N445 and
N455 cannot receive colour 2 (interference in N45) and 3 (N4 is saturated).
So they are both coloured 1 and, by Fact 5, N444 must be coloured 2. Since
N45 is also saturated, N555 and N550 must be coloured 1. But then we have
a contradiction because N500 cannot receive colour 1 (Fact 5), 2 (we are not
in Case 1) or 3 (N5 is saturated).

∗ Now consider that c(N55) = 2. Observe that N45 is saturated. If N50 is
coloured 3, N4 and N5 are also saturated and we have a contradiction to
Fact 5, because N344, N444, N445, N455, N555 and N550 are all coloured 1.
So N50 is coloured 1 and V0 and N0 are saturated. N23 and N33 can neither
be both coloured 2 (we are not in Case 1) nor 3 (Fact 5). So one is coloured
2, the other is coloured 3 and we have that N3 and N4 are both saturated.
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This leads to a contradiction to Fact 5, because N334, N344, N444, N445 and
N455 are all coloured 1.

∗ We then conclude that N55 must be coloured 1 (and V0 is saturated). Again
N23 and N33 can neither be both coloured 2 nor 3. One of them is coloured
2 and the other is coloured 3 implying that N3 and N4 are both saturated.
As a consequence, N334 and N344 are coloured 1 and N50 is coloured 2.
Thus, N445 and N455 are both coloured 1, due to the interference in N4

and N45. So N444 must be coloured 2 and N45 is saturated. Consequently,
N555 and N550 must be both coloured 3 due to the interference in N45 and
N55. We obtain that N5 is also saturated and then that N00 and N01 are
both coloured 2 and both saturated and N1 is also saturated. So N23 is
coloured 3 and N33 is coloured 2. Furthermore, N500 is coloured 1 and N0 is
saturated. But then N011, N11, N12 and N22 are coloured 3, contradicting
Fact 5.

(e) Let us now consider the case c(N4) = 2 and c(N3) = c(N5) = 3. We study
now the subcases concerning to the colour of N45.

i. First consider that c(N45) = 1. Recall that V0 is saturated.

• In case N44 is coloured 2, N34 is coloured 3 and N33 is coloured 2, as we are
no longer in Case 1. N55 and N50 can neither be both coloured 2, otherwise
IN4(T2, w2, c) ≥ 3, nor 3, otherwise we would be in Case 1 with N5. So one
of these vertices is coloured 2, the other is coloured 3 and N4 is saturated.
But then N23 is coloured 3 and we are in Case 2d with central vertex N3.

• We conclude that N44 is coloured 3.

– If N34 is coloured 3, N34 is saturated and c(N23) = c(N33) = 2. Then, N22 is
coloured 3, otherwise IN23(T2, w2, c) ≥ 3, implying that N3 is saturated. So
c(N12) = 2 and N23 is also saturated. Thus, N223 and N233 are both coloured
1, N2 is saturated, which implies that N122 and N222 must be coloured 3.
Then, we are in Case 1.

– So N34 must be coloured 2. In case N33 is also coloured 2, then we are
in one of the cases from 2a to 2d with central vertex N34. Thus, N33

must be coloured 3 implying that N23 is coloured 2. N12 and N22 can
neither be both coloured 2 (otherwise, IN23

(T2, w2, c) ≥ 3) nor 3 (otherwise,
IN3(T2, w2, c) ≥ 3). So one is coloured 2, the other is coloured 3, N3 is
saturated and c(N223) = c(N233) = 1 (otherwise, IN23(T2, w2, c) ≥ 3).
Thus, N2 is also saturated. N55 and N50 cannot be both coloured 3, as we
are not in Case 1. Consequently, (exactly) one of these vertices is coloured 2
and N4 is saturated. It implies that N334 and N344 are coloured 1 and then
N333 must be coloured 2. Thus, N23 is saturated and N22 must be coloured 3
(otherwise, IN23(T2, w2, c) ≥ 3). However, N122 and N222 must be coloured
3 and we are in Case 1 with vertex N22.

By symmetry, we conclude that c(N34) 6= 1.

ii. Suppose now that N45 is coloured 2. Observe that N44 cannot be coloured 2
as we are no longer in Case 1.
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• Consider first the case c(N44) = 1 (V0 is saturated). If N34 is coloured 2, N4

is saturated, N23 and N33 are both coloured 3 and we are in Case 1 with N3.
So N34 is coloured 3 and N33 must be coloured 2 (otherwise, Case 1 with
N3). N55 and N50 cannot be both coloured 3 (otherwise, Case 1 with N5).
So (exactly) one is coloured 2, N4 is saturated and N23 must be coloured 3.
However, we are in Case 2d with central vertex N3.

• We conclude that N44 must be coloured 3. Recall that c(N34) 6= 1. In case
N34 is coloured 2, we are in Case 2c with N4 instead of V0. So N34 is coloured
3 and it is saturated. So c(N23) 6= 3, c(N33) 6= 3, among N23, N33, N55 and
N50 at most one vertex is coloured 1 (interference in V0) and at most two are
coloured 2 (interference in N4). Moreover, at most one of the vertices N55

and N50 is coloured 3, otherwise we are in Case 1 with N5. So, exactly one
of the vertices N55 and N50 is coloured 3 and N5 is saturated; exactly two of
the vertices N23, N33, N55 and N50 are coloured 2 and N4 is saturated. But
then we find a contradiction to Fact 5 as N334, N344, N444, N445 and N455

are all coloured 1.

iii. We then conclude that c(N45) = 3 and by symmetry that c(N34) = 3. N44

cannot be coloured 3 by Fact 5.

• Suppose first that N44 is coloured 1 (V0 is saturated). Consequently, N23,
N33, N55 and N50 must be coloured 2 due to the interference constraints in
N3 and N5. So N4 is saturated and N334, N344, N445 and N455 must be
coloured 1 due to the interference in N34 and N45. This is a contradiction to
Fact 5.

• We obtain that N44 must be coloured 2. Among N23, N33, N55 and N50 at
most one vertex is coloured 1 (interference in V0) and none of them is coloured
3 (interference in N3 and N5). So at least 3 of them are coloured 2 and we
get a contradiction as IN4(T2, w2, c) ≥ 3.

(f) Now consider that c(N3) = c(N4) = c(N5) = 3. By Fact 3, we know that
N34, N44 and N45 are not coloured 3. These vertices are also not coloured
1, otherwise we would be in one of the cases from 2a to 2e with vertex N4

replacing of V0. So N34, N44 and N45 are all coloured 2. Let us check the
possible colourings of N55.

i. First consider that N55 is coloured 3. If N50 is coloured 2, then we are in
Case 2d with N5 instead of V0. So N50 is coloured 1 and V0 are saturated.
However, we obtain that N23 and N33 are both coloured 2 and we have a
contradiction to Fact 5.

ii. Suppose now that c(N55) = 2. Observe that N50 cannot be coloured 2, by
Fact 5.
If c(N50) = 1, V0 is saturated and as N44 is saturated we conclude that N33

is coloured 3. But then N3 and N4 are saturated and we have a contradiction
to Fact 5, because all the vertices N334, N344, N444, N445 and N455 must be
coloured 1.
So N50 is coloured 3 and N4, N5, N44 and N45 are saturated. Consequently,
we find a contradiction to Fact 5 as N344, N444, N445, N455 and N555 are all
coloured 1.
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iii. We conclude that c(N55) = 1 and V0 is saturated. N23 and N33 can neither be
both coloured 2, nor 3, due to Facts 5 and 3, respectively. If N23 is coloured
3 and N33 is coloured 2, we have that N4, N34 and N44 are saturated. Thus,
N334, N344, N444, N445 and N455 must be all coloured 1, contradicting Fact 5.
Consequently, c(N23) = 2 and c(N33) = 3. But then we are in Case 2d with
vertex N3 replacing V0.

3. Subcase c(N3) = 1.

Observe that the vertices N01, N23, N34 and N50 cannot be coloured 1, other-
wise we would be in Case 2. Up to symmetries, we study the possible colourings
of N1, N2, N4 and N5: four of the same colour (Case 3a), three of the same
colour (Case 3b) or two of the same colour (Cases 3c and 3d).

(a) Let us consider first the case c(N1) = c(N2) = c(N4) = c(N5) = 2. In this case,
N01, N23, N34 and N50 must be coloured 3, due to interference constraints in
N1, N2, N4 and N5, respectively. By symmetry, we consider that if there exists
a vertex coloured 1 in Γ2, then it is in the set {N33, N44, N45, N55}. Thus, the
vertices N11 and N12 must be coloured 3 and we are in Case 2 with respect to
N11.

(b) Now let c(N1) = c(N2) = c(N4) = 2 and c(N5) = 3. Observe that the vertices
N11, N12 and N22 cannot be coloured 2, otherwise we would be in the previous
Cases 1 or 2. If these vertices are all coloured 3, N01 and N23 cannot receive
colour 3 as we would be in Case 2. So N01 and N23 must be both coloured 2
and we reach a contradiction as IN2(T2, w2, c) ≥ 3. So one of the vertices N11,
N12 and N22 is coloured 1 and V0 is saturated.

i. If c(N11) = 1, N12 and N22 must be coloured 3. So N23 is coloured 2 (it
cannot be coloured 3 as we would be in Case 2) and then N2 is saturated.
Consequently, N33 and N34 are coloured 3. Observe that N44 and N45 can
neither be both coloured 2 (Fact 4 with N4) nor 3 (Fact 5). So N4 is saturated
and N55 and N50 are both coloured 3. Then we find a contradiction as we are
in Case 1 with vertex N5.

ii. In case N22 is coloured 1 and c(N11) = c(N12) = 3, we have that N01 is
coloured 2. So N1 is saturated, N00 and N50 must be coloured 3 and we are
in Case 2 with N50.

iii. So we have that c(N12) = 1 and c(N11) = c(N22) = 3. If c(N23) = 2, we
have that N2 is saturated, N33 and N34 must be coloured 3 and among the
vertices N44 and N45 we have one vertex coloured 2 and the other is coloured
3. Consequently, N55 and N50 must be coloured 3 and we are in Case 1. So
c(N23) = 3.
Observe that among N34, N44 and N45 we have at most one vertex coloured 2,
otherwise we would be in one of the Cases 1 or 2. Similarly, at most one of the
vertices N45, N55 and N50 is coloured 3. In case there is a vertex coloured 2
among N34 and N44, due to two vertices coloured 2 in the set {N45, N55, N50},
we have a contradiction as IN4

(T2, w2, c) ≥ 3. Observe that we cannot have
all the vertices N34, N44 and N45 coloured 3 as we would be in Case 2. So,
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N34 and N44 are coloured 3 and N45 is coloured 2. Since that there is a vertex
in N55 and N50 coloured 2, we conclude that N4 is saturated and then N33 is
coloured 3. This is a contradiction to Fact 5.

(c) We now study the case c(N1) = c(N2) = 2 and c(N4) = c(N5) = 3. By
symmetry, we consider that the vertices N00, N01, N11, N12, N22 and N23

are not coloured 1. Then, the vertices N11, N12 and N22 must coloured 3,
otherwise we would be in Cases 1 or 2. By the same reason, N01 and N12 must
be coloured 2. As N1 is saturated, N00 is coloured 3. Consequently, we can
neither colour N50 with colours 1 or 3, because we would be in Case 2, nor
colour it with colour 2, due to the interference in N1.

(d) Let us consider now that c(N1) = 2, c(N2) = 3 and that among N4 and N5 we
have one vertex coloured 2 and the other is coloured 3. By symmetry, we can
once more consider that the vertices N00, N01, N11, N12, N22 and N23 are not
coloured 1.

i. In case N12 is coloured 3, all the vertices N11, N22 and N23 must be coloured
2, otherwise we would be in Cases 1 or 2. So N1 is saturated and N00 and
N01 must be coloured 3. Then, as in Case 3c no feasible colour remains to
colour N50.

ii. Thus N12 is coloured 2. It implies that c(N01) = c(N11) = c(N22) = 3,
otherwise we would be in Cases 1 or 2. Consequently, N2 is saturated, N23

and N34 are coloured 2, and thus N33 must be coloured 1. So N3 is also
saturated and N223 and N233 must be coloured 2. Then we are in Case 1 with
N23.

Case: V0 has exactly one neighbour coloured 1.

We also consider that no vertex v has two neighbours with its own colour,
otherwise we can consider that v is V0 and we are in the previous case. This
fact is extensively used in this proof and many times it is omitted. W.l.o.g, let
N0 be the only neighbour of V0 coloured 1 and let c(N1) = 2.

1. Suppose first that c(N2) = 2. Consequently, c(N3) = 3, otherwise N2 would
have two neighbours coloured 2. We have three cases to analyse:

(a) In case c(N4) = c(N5) = 2, we claim that c(N01) = c(N50) = 3. In fact, if not,
one of the vertices N0, N1 or N5 would have two neighbours with their colours.
By the same reason, we conclude N00 = 2. At this point, observe that N1 and
N5 are saturated, thanks to the set {N1, N2, N4, N5, N00}. Consequently, the
vertices N11 and N12 cannot receive colour 2 and they cannot be both coloured
3 as N11 would have two neighbours with its colour. Similarly, we can conclude
that at least one vertex of N22 and N33 is coloured 1 and also one of N34 and
N44 and one of N45 and N55. This is a contradiction because IV0(T2, w2, c) ≥ 3.

(b) Suppose now that c(N4) = 2 and c(N5) = 3. Observe that c(N01) = 3. By
the hypothesis that no vertex has two neighbours with the same colour, we
conclude that among the vertices N11 and N12 at least one of them is coloured
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1, none of them can receive colour 2 and they cannot be both coloured 3.
The same is valid for the vertices N22 and N23. Observe also that these four
vertices cannot be all coloured 1, otherwise IV0

(T2, w2, c) ≥ 3. Then consider
that three of these vertices are coloured 1. Thus, since V0 is saturated, we
must be able colour the remaining vertices of Γ2 with colours 2 and 3. If
we consider that c(N33) = 2, then all the other colours of vertices in Γ2 are
fixed by the hypothesis that each vertex has no two neighbours with its colour.
One may check that, in this case, c(N44) = c(N55) = c(N50) = 2. Thus,
IN4

(T2, w2, c) ≥ 3, a contradiction. In case we colour N33 with colour 3, one
can check that there is no feasible colour for N45. Consequently, we conclude
that amongN11 andN12 there is one vertex coloured 1 and the other is coloured
3; and the same holds for vertices N22 and N23.

We now show by contradiction that no colour is feasible to N55.

i. First suppose that N55 = 1. Thus, we already know that V0 is saturated
and we can no longer use colour 1 to colour vertices in Γ2. If we suppose
that c(N45) = 2, we observe that we cannot colour the vertices N34 and
N44 with colours 2 and 3. Thus, let c(N45) = 3. In this case, c(N50) =
c(N44) = 2, c(N34) = 3 and c(N33) = 2. We observe that IN4

(T2, w2, c) ≥ 3,
a contradiction.

ii. Suppose now that c(N55) = 2. Observe that N45 cannot be coloured 2.
Suppose then that c(N45) = 1. Again V0 is saturated and we cannot have
colour 1 in the remaining vertices of Γ2. If c(N44) = 2, then c(N33) = 2
and IN4

(T2, w2, c) ≥ 3, a contradiction. Thus, let c(N44) = 3. In this case
c(N34) = 2 and c(N33) = 3. Consequently, N3 and N4 are saturated. It im-
plies that c(N334) = c(N344) = 1. As a consequence, c(N444) = 3, c(N445) = 1
and, since N4 is saturated, no colour is feasible to colour N455.
We must consider then the case in which c(N45) = 3. As a consequence we
have c(N50) = 2. Since IN4

(T2, w2, c) ≥ 2, we conclude that c(N44) = 1,
c(N34) = 3 and c(N33) = 2. We obtain that N3 and N4 are saturated.
Consequently, c(N334) = c(N344) = 1, but then N444 has two neighbours
coloured 1, a contradiction.

iii. The last subcase to consider is the one in which c(N55) = 3. Observe that it
implies c(N50) = 2 and that N45 cannot be coloured 3. In case c(N45) = 1, V0

is saturated and then N44 cannot be coloured 1. Suppose first that c(N44) = 2.
Observe that N4 is saturated and that c(N34) = 3. Consequently, no feasible
colour remains to colour N33. Then consider that c(N44) = 3. Consequently,
c(N34) = 2 and N4 and N5 are saturated. This is a contradiction as the
vertices N445 and N455 should be both coloured 1, as they are at distance
two from N4 and N5, but then N45 would have two neighbours with the same
colour. Thus, c(N45) = 2 and N4 is saturated. If N44 is coloured 1, then N33

andN34 should be both coloured 3, a contradiction. Consequently, c(N44) = 3.
In this case, we get c(N33) = 3, c(N34) = 1 and N3 is saturated. However,
N334 and N344 should be both coloured 1, a contradiction since c(N34) = 1.

(c) Now suppose that c(N4) = 3 and c(N5) = 2. First observe that c(N01) = 3 and
c(N23) = 1, thanks to the hypothesis that no vertex has two neighbours with
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the same colour. By the same hypothesis, we can conclude that N11 and N12

cannot receive colour 2 and at most one of them is coloured 3. By the same
reasoning, we can conclude that at least one of the vertices N44 and N45 is
coloured 1. Thus, V0 is saturated and no other vertex at distance two from V0

can receive colour 1. Consequently, by using this information combined with
the hypothesis that no vertex has two neighbours with its colour we conclude
that c(N33) = c(N34) = 2. Thus, we conclude that c(N44) = 1 and c(N45) = 2.
Since c(N45) = c(N5) = 2, we obtain that c(N55) = c(N50) = 3. This implies
that c(N00) = 2. However, IN5

(T2, w2, c) ≥ 3, thanks to the vertices N1, N2,
N00, N34 and N45.

(d) Finally, if c(N4) = c(N5) = 3, then N4 has two neighbours with its own colour
and we are in the previous case.

2. Suppose then that c(N2) = 3. We consider the possible colourings of N3, N4

and N5:

(a) First, it is not possible to have c(N3) = c(N4) = c(N5) = 2 as N4 would have
two neighbours with its colour.

(b) Then, consider the case in which c(N3) = c(N4) = 2 and c(N5) = 3. Once
more we know that N50, N00 and N01 cannot be coloured 1, otherwise N0

would have two neighbours with its own colour. Similarly, none of the vertices
N23, N33, N34, N44 and N45 can receive colour 2, otherwise N3 or N4 would
have two neighbours coloured 2. We prove now that no colour is feasible for
N55.

i. First, consider that c(N55) = 1.

• Suppose also that c(N45) = 1. Consequently, we get c(N44) = 3, otherwise
N45 has two neighbours with colour 1. In case N34 is coloured 1, V0 is sat-
urated and we reach a contradiction, because c(N23) = c(N33) = 3 and N23

would have two neighbours coloured 3. Thus, suppose that c(N34) = 3. It im-
plies that c(N33) = 1 and c(N23) = 3. As a consequence, c(N12) = c(N22) =
2, because V0 is saturated and c(N23) = 3. We then get a contradiction since
N12 has two neighbours coloured 2.

• We conclude then that N45 is coloured 3. Since c(N5) = 3, we obtain that
c(N44) = 1. In case c(N34) = 1, we have that V0 is saturated and both
N23 and N33 should be coloured 3. This would be a contradiction as N23

would have two neighbours coloured 3. Consequently, c(N34) = 3. If N33 is
coloured 1, we have c(N23) = 3. Once more c(N12) = c(N22) = 2 and we
have a contradiction as N12 has two neighbours coloured 2. So c(N33) = 3
and, consequently, c(N23) = 1. Since V0 is saturated and no vertex has two
neighbours with its own colour, either we have c(N11) = c(N22) = 2 and
c(N12) = 3 or we have c(N11) = c(N22) = 3 and c(N12) = 2. In the first case,
we have a contradiction as IN1

(T2, w2, c) ≥ 3 and in the latter case we also
have a contradiction as IN2

(T2, w2, c) ≥ 3 (recall that c(N50) = 2 and in the
set {N00, N01} we have one vertex coloured 2 and the other coloured 3).

ii. Suppose then that c(N55) = 2. We distinguish three cases.
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• c(N44) = c(N45) = 1, we have that c(N34) = 3. In case c(N33) = 1, we
have that c(N23) = 3 and V0 is saturated. This is a contradiction as N12 and
N22 have no feasible colouring. Then consider the case c(N33) = 3. Observe
that c(N344) = 2, otherwise N34 or N44 have two neighbours with their colour.
Consequently, N4 is saturated and all the vertices N444, N445 and N455 should
be coloured 3, as they all have two adjacent neighbours coloured 1 and they
are all at distance two from N4. This is a contradiction as N455 would have
two neighbours with its own colour.

• c(N45) = 1 and c(N44) = 3. Suppose that c(N33) = c(N34) = 1. Thus, V0

is saturated and c(N23) = 3. Once more we get a contradiction as N12 and
N22 should be both coloured 2. Thus, consider now that c(N33) = 3 and
c(N34) = 1. Observe that c(N23) = 1 and V0 is saturated. If c(N22) = 2, we
get that c(N12) = 3 and c(N11) = 2. Since at least one of the vertices N50

and N00 must be coloured 2, we reach a contradiction as IN1
(T2, w2, c) ≥ 3.

In case c(N22) = 3, we get that c(N12) = 2 and c(N11) = 3. Since N2 is
saturated, we conclude that c(N01) = 2. Once more we obtain a contradiction
as IN1(T2, w2, c) ≥ 3. Let us now study the case c(N33) = 1 and c(N34) = 3.
In case c(N50) = 2, N4 is saturated and we obtain a contradiction as all
the vertices N334, N344 and N444 should be coloured 1. Thus, consider that
c(N50) = 3. In this case, N5 is saturated and we get a contradiction as N00

and N01 should be both coloured 2. Since we do not have the case c(N33) = 3
and c(N34) = 3 asN34 would have two neighbours with its colour, we conclude
that c(N45) = 3.

• So c(N45) = 3, then we get that c(N44) = 1 (otherwiseN45 has two neighbours
of the same colour), c(N50) = 2 and c(N00) = 3. In this case, we easily obtain
a contradiction as N4 is saturated and the vertices N445 and N455 have no
feasible colouring.

iii. We conclude that c(N55) = 3. As a consequence, we get c(N45) = 1 and
c(N50) = 2. If c(N44) = 1, then c(N455) = 2 and N4 is saturated. But then all
the vertices N34, N344, N444 and N445 should be coloured 3. This would be a
contradiction. Consequently, c(N44) = 3. In this case, in the set {N00, N01}
there is exactly one vertex coloured 2 and the other is coloured 3, thanks to the
interference constraint in vertex N5 and to the hypothesis that no vertex has
two neighbours with its own colour. Similarly, we can conclude that in the set
{N445, N455} there is exactly one vertex coloured 1 and the other is coloured
2. Since N5 is saturated, we get c(N34) = 1. So, N45 is saturated and both
vertices N555 and N550 should be coloured 2. This would be a contradiction
as N550 would have two neighbours coloured 2.

(c) Now let c(N3) = c(N5) = 2 and c(N4) = 3. We show now that no colour is
feasible to N55.

i. Suppose first that c(N55) = 1.

• First consider that c(N45) = 1. Then N44 cannot be coloured 1 because we
would have IN45

(T2, w2, c) ≥ 3.

– Then, suppose that N44 is coloured 2 and N34 is coloured 1. Since V0 is
saturated, all the remaining vertices in Γ2 are not coloured 1. In case N33
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is coloured 2, we have that N3 is saturated and thus c(N22) = c(N23) = 3.
This is a contradiction to the hypothesis that no vertex has two neighbours
with its colour as c(N2) = 3. In case N33 is coloured 3, we have that
c(N23) = 2, then c(N22) = 3 and c(N12) = 2. But then, IN3

(T2, w2, c) ≥ 3,
a contradiction.

– Consequently, if N44 is coloured 2, N34 must be coloured 3 (observe it cannot
be coloured 2 as it would have two neighbours N3 and N44 coloured 2). If
N50 is coloured 2, N5 is saturated and the vertices N445, N455 and N555

should be all coloured 3 (as N45 and N55 are both coloured 1). This is a
contradiction as N455 has two neighbours with its own colour. Consequently,
we have c(N50) = 3. Observe that among the vertices N445 and N455 at least
one of them is coloured 3. Thus, N4 is saturated and in the set {N23, N33}
we have exactly one vertex coloured 1 (due to the interference constraint in
V0) and the other is coloured 2. Since V0 and N3 are saturated, the vertices
N12 and N22 should be both coloured 3. This is a contradiction as c(N2) = 3.

– Thus, c(N44) = 3 and N34 can be either coloured 1 or 2. If c(N34) = 1, we
get that V0 is saturated. If N33 is coloured 2, N23 is necessarily coloured 3
and N12 and N22 should be both coloured 2. This is a contradiction as N12

would have two neighbours coloured 2. Thus N33 is coloured 3. It implies
that c(N23) = 2, then c(N22) = 3, c(N12) = 2 and c(N01) = c(N11) = 3.
This is a contradiction as IN2(T2, w2, c) ≥ 3.

– We conclude that c(N44) = 3 and c(N34) = 2. Observe that c(N344) = 1 and
c(N445) = 2, thanks to the hypothesis that no vertex has two neighbours
with its colour. Since we get that N45 is saturated, we have c(N444) = 2
and, consequently, c(N455) = 3. Observe now that N34 and N4 are saturated
(because among N33 and N334 we have exactly one vertex coloured 1 and the
other is coloured 3). As a consequence, c(N23) = 1 and c(N50) = 2. At this
point the colours of the remaining vertices in Γ2 are fixed as V0 is saturated.
We have c(N00) = c(N01) = c(N12) = 3 and c(N11) = c(N22) = 2. Thus we
observe that IN1

(T2, w2, c) ≥ 3, a contradiction.

• Then, consider now that N45 is coloured 2. It implies that c(N50) = 3 and
that among N00 and N01 we have exactly one vertex coloured 2 and the other
is coloured 3. Consequently, N5 is saturated and among N555 and N550 we
have exactly one vertex coloured 1 and one vertex coloured 3. In case N44

is coloured 1, N55 is saturated. Thus, N445, N455 and N500 are all coloured
3. This is a contradiction as IN50(T2, w2, c) ≥ 3. If c(N44) = 3, we obtain
that c(N445) = 1 and that c(N455) = 3. Consequently, N55 is saturated and
c(N500) = 3. Once more we have a contradiction as IN50

(T2, w2, c) ≥ 3.

• Suppose then that c(N45) = 3.

– If c(N50) = 2, we have that c(N00) = 3. Since IN5(T2, w2, c) ≥ 2 and
c(N4) = c(N45) = 3, we conclude that among N34, N44 and N445 we have
exactly two vertices coloured 1 and the other is coloured 2. Consequently, we
get N5 is saturated and thus c(N01) = 3. This implies that c(N500) = 1 and
then N55 is saturated. Thus, we get a contradiction as we have no feasible
colouring for the vertices N455 and N555.
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– So c(N50) = 3. If c(N34) = c(N44) = 1, we observe that V0 is saturated
and that among N23 and N33 we have exactly one vertex coloured 2 and one
coloured 3. Consequently, N4 is saturated and we reach a contradiction as
no colouring is feasible to the vertices N334, N344 and N444.
In case N44 is coloured 1, then N34 is coloured 2, we observe that among
N23 and N33 we have one vertex coloured 1 and the other is coloured 3. As
a consequence, we get that V0 and N4 are saturated. Since c(N334) = 1,
no colouring is feasible for the vertex N344. If N44 is coloured 2 (and so
N34 is coloured 1), observe that N5 is saturated, since there is a vertex
coloured 2 and another coloured 3 in the set {N00, N01} and we also find
a vertex coloured 1 and another coloured 2 among vertices N445 and N455.
Consequently, the vertices N555 and N550 receive colours 1 and 3 (in some
order). Thus, N55 is saturated and then c(N500) = 3. This is a contradiction
as IN50

(T2, w2, c) ≥ 3. Since no other colouring is feasible for N34 and N44

as we cannot assign them the colour 3, we conclude that the colour of N55

cannot be 1.

ii. Let us consider now the case c(N55) = 2. It implies that c(N50) = 3 and,
consequently, the vertices N00 and N01 receive colours 2 and 3 in some or-
der. Thus, N5 is saturated. In case N44 and N45 are both coloured 1, the
vertices N34, N445 and N455 must be all coloured 3. This is a contradiction as
IN4(T2, w2, c) ≥ 3. In case c(N44) = 1 and c(N45) = 3, no colouring is feasible
to the vertices N445 and N455. If c(N44) = 3 and c(N45) = 1, observe that
c(N34) = c(N445) = 1 and that one vertex among N555 and N550 is coloured
1. Thus, IN45

(T2, w2, c) ≥ 3, a contradiction.

iii. We then conclude that the only possible colour for N55 is the colour 3. Recall
N50 cannot be coloured 1 as N0 would have two neighbours with its own
colour.

• Let us first consider the case in which c(N50) = 2. As a consequence, we
obtain c(N00) = 3 and c(N45) = 1.

– If c(N01) = 2, we can easily check that N1 and N5 are saturated. Observe
also that N0 is saturated as N0 has a neighbour, the vertex V0, coloured 1
and 3 other vertices at distance two also coloured 1 which are N45, one vertex
in the set {N11, N12} and another in the set {N550, N500}. Consequently, we
reach a contradiction as N001 and N011 should be both coloured 3, but then
N001 would have two neighbours with colour 3.

– Thus, c(N01) = 3 in this case. It implies that c(N500) = 1 and that the colour
3 does not appear in the vertices N000, N001 and N011. These three vertices
can also not be all coloured 1 or 2, as N001 would have two neighbours of the
same colour. We cannot have two of these vertices coloured 1 as we would
have IN0

(T2, w2, c) ≥ 3. Consequently, in the set {N000, N001, N011} we have
one vertex coloured 1 and two vertices coloured 2. This implies that N0

and N1 are saturated. We then reach a contradiction as no feasible colour
remains to assign to N11.

• Then, we conclude that N50 must be coloured 3 and then we get c(N00) = 2
and c(N01) = 3. Observe that if c(N45) = 2, we have a contradiction as N5 is
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saturated and all the vertices N555, N550 and N500 should be coloured 1. Thus
we have that c(N45) = 1. Observe that the vertices N11 and N12 cannot be
both coloured the same, as we would either violate the interference constraint
in N0 (recall that there is one vertex coloured 1 in the set {N550, N500}) or
we would have a vertex with two neighbours of the same colour. In case N11

and N12 are coloured 1 and 2, in any order, observe that since N0 and N1 are
saturated, no colouring is feasible for the vertices N001 and N011. We also
have no feasible colouring for these vertices in case N12 is coloured 1 (and
then N0 is saturated) or 2 (in this case N1 is saturated) and the vertex N11

is coloured 3.
Thus, c(N12) = 3 and suppose first that c(N11) = 1. Since N0 is saturated,
the verticesN000, N001 andN011 can be just coloured 2 or 3. In case c(N000) =
2, we obtain that c(N001) = 3 and c(N011) = 2. We reach a contradiction as
IN00

(T2, w2, c) ≥ 3 (observe that one vertex among N550 and N500 is coloured
2). If c(N000) = 3, we have that c(N001) = 2 and c(N011) = 3. Then, we also
find a contradiction as IN01

(T2, w2, c) ≥ 3.
Consequently, c(N11) = 2 and N1 is saturated. In this case, no colouring is
feasible for the vertices N122, N22 and N23 and we complete the proof of this
case as no colour is feasible for the vertex N55.

(d) In case we have c(N3) = 2 and c(N4) = c(N5) = 3, we are in a symmetric case
to 1b.

(e) If c(N3) = 3 and c(N4) = c(N5) = 2, we obtain a symmetric case to 1c.

(f) The case c(N3) = c(N5) = 3 and c(N4) = 2 is symmetric to 2a.

(g) Finally, it is not possible to have c(N3) = c(N4) = 3 as N3 would have two
neighbours, N2 and N4, with its own colour.

Case: V0 has no neighbour coloured 1.

Now we consider that no vertex has a neighbour with its own colour, oth-
erwise we are in the previous case. W.l.o.g, we may conclude that c(N0) =
c(N2) = c(N4) = 2 and c(N1) = c(N3) = c(N5) = 3. Thus, we obtain
c(N01) = c(N12) = c(N23) = c(N34) = c(N45) = c(N50) = 1. This is a contra-
diction as IV0

(T2, w2, c) ≥ 3.
Now we present the colouring providing the corresponding upper bound.
For a weighted 3-improper 3-colouring of (T2, w2) set, for 0 ≤ j ≤ 2, Ej =

{(j, 0) + a(3f1) + b(f2) | ∀a, b ∈ Z}. Then, for 0 ≤ j ≤ 2, assign the colour j+ 1
to all the vertices in Ej . See Figure 7(e).

Now we prove that (T2, w2) does not admit a weighted 4.5-improper 2-
colouring. Again, by contradiction, suppose that there exists a weighted 4.5-
improper 2-colouring c of (T2, w2) with the interference function w2. A vertex
can have at most four neighbours of the same colour as it. We analyse some
cases:

1. There exists a vertex V0 with four of its neighbours coloured with its own colour,
say 1. Therefore among the vertices of Γ2 at most one is coloured 1. Consider
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the two neighbours of V0 coloured 2. First, consider the case in which they
are adjacent and let them be N0 and N1. In Γ2, N0 has three neighbours and
four vertices at distance two; since at most one being of colour 1, these vertices
produce in N0 an interference equal to 4 and as N1 is also of colour 2, then
IN0

(T2, w2, c) ≥ 5, a contradiction. In case the two neighbours of V0 coloured
2 are non adjacent, let them be Ni and Nj . At least one of them, say Ni has
its three neighbours in Γ2 coloured 2 and it has also at least three vertices at
distance two in Γ2 coloured 2; taking into account that Nj is coloured 2 and at
distance two from Ni, we get INi

(T2, w2, c) ≥ 5, a contradiction.

2. No vertex has four neighbours with its colour and there exists at least one
vertex V0 coloured 1 that has three neighbours of the same colour 1.

(a) The three other neighbours of V0 coloured 2 are consecutive and let them be
N0, N1 and N2. N34, N44 and N45 are all coloured 2, otherwise N4 would have
four neighbours coloured 1 and we would be in Case 1. At most one of N01,
N11 and N12 has colour 2, otherwise N1 would have four neighbours coloured
2 and we would be again in Case 1.

i. N11 is coloured 2. Then c(N01) = c(N12) = 1. As already IV0(T2, w2, c) ≥ 4,
there is at most another vertex in Γ2 coloured 1. So either the three vertices
N22, N23 and N33 or the three vertices N00, N50 and N55 are all coloured 2
and then IN2

(T2, w2, c) ≥ 5 or IN5
(T2, w2, c) ≥ 5, a contradiction.

ii. N01 is coloured 2 (the case N12 is symmetric). Then, c(N11) = c(N12) = 1.
One of N00 and N50 is of colour 1 otherwise, N0 has four neighbours of colour
2. But then IV0

(T2, w2, c) ≥ 4.5 so all the other vertices of Γ2 are coloured 2.
Therefore, IN2

(T2, w2, c) ≥ 5, a contradiction.

iii. N01, N11 and N12 all have colour 1. In that case IV0
(T2, w2, c) ≥ 4.5. There-

fore all the other vertices of Γ2 are coloured 2 and IN0
(T2, w2, c) ≥ 4.5. So the

other vertices at distance two of N0 are coloured 1 and then IN01
(T2, w2, c) ≥

5, a contradiction.

(b) Among the three vertices of colour 2, only two are consecutive. W.l.o.g., let
the three vertices of colour 2 be N0, N1 and N3. At least one vertex of N50,
N00, N01 is coloured 1, otherwise N0 has four neighbours of the same colour
as it and we would be in the previous case. Similarly at least one vertex
of N01, N11, N12 is coloured 1, otherwise N1 has four neighbours with its
colour and we would be in the previous case. At least one vertex of N23,
N33, N34 is coloured 1, otherwise N3 has three consecutive neighbours of the
same colour as it and we are in the previous case. Suppose N01 is coloured 2,
then IV0

(T2, w2, c) ≥ 4.5 and exactly one of N50, N00 and one of N11, N12 is
coloured 1 and N45, N55 are coloured 2, otherwise IV0(T2, w2, c) ≥ 5. Then
IN0(T2, w2, c) ≥ 5, a contradiction. So, c(N01) = 1. If both N50, N00 are
coloured 2, then IN0

(T2, w2, c) ≥ 5 with three neighbours coloured 2 and at
least four vertices at distance two coloured 2, namely N3 and three vertices
among N45, N55, N11, N12 (at most one vertex of these could be of colour 1,
otherwise IV0

(T2, w2, c) ≥ 5). So, one of N50, N00 is coloured 1 and all the
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other vertices in {N11, N12, N22, N44, N45, N55} are coloured 2 implying that
IN3(T2, w2, c) ≥ 5, a contradiction.

(c) No two vertices of colour 2 are consecutive. W.l.o.g, let these vertices be
N0, N2, N4. The three neighbours ofN0 (resp. N1, N2) in Γ2 that are not neigh-
bours of V0 cannot be all coloured 2, otherwise we are in Case (a). So exactly
one neighbour of N0, N1, N2 in Γ2 is coloured 1, otherwise IV0(T2, w2, c) ≥ 5.
Furthermore all the other vertices of Γ2 are coloured 2. Then, if c(N12) =
c(N45) = 2, we conclude that IN0

(T2, w2, c) ≥ 5, a contradiction. Conse-
quently, w.l.o.g., suppose that c(N12) = 1. In this case, N23 has at least three
neighbours coloured 2 and we are in some previous case.

3. No vertex has three neighbours coloured with its own colour, but there exists
at least one vertex, say V0, of colour 1 that has two neighbours coloured 1.

(a) These two neighbours are consecutive say N0 and N1. The neighbours of N3

and N4 in Γ2 are all coloured 1, otherwise they would have at least three
neighbours with the same colour. Similarly, at least one of N12 and N22 is
coloured 1, otherwise N2 would have at least three neighbours also coloured 2.
Then, IV0(T2, w2, c) ≥ 5, a contradiction.

(b) These two neighbours are of the form Ni and Ni+2, for some 0 ≤ i ≤ 3.
W.l.o.g., let these neighbours be N0 and N2. Thus, the three neighbours of
N4 in Γ2, N34, N44 and N45 are coloured 1 and at least one vertex of N23 and
N33 (resp. N55 and N50) is coloured 1. Moreover, at least one vertex of N01,
N11 and N12 must be coloured 1, otherwise N1 would have three neighbours
with its colour. Consequently, IV0

(T2, w2, c) ≥ 5, a contradiction.

(c) These two neighbours are of the form Ni and Ni+3, for some 0 ≤ i ≤ 2.
W.l.o.g., let these neighbours be N0 and N3. Again, at least three vertices
among N01, N11, N12, N22 and N23 and at least three other vertices among
N34, N44, N45, N55 and N50 are coloured 1. Consequently, IV0(T2, w2, c) ≥ 5,
a contradiction.

4. No vertex has two neighbours of the same colour. Suppose V0 is coloured 1
and has only one neighbour N0 coloured 1. Then, its other five neighbours are
coloured 2 and N2 has two neighbours of the colour 2, a contradiction.

A weighted 5-improper 2-colouring of (T2, w2) is obtained as follows: for
0 ≤ j ≤ 1, let Fj = {(j, 0) + a(2f1) + b(f1 + 2f2) | ∀a, b ∈ Z} and F ′j =
{(j − 1, 1) + a(2f1) + b(f1 + 2f2) | ∀a, b ∈ Z}. Then, for 0 ≤ j ≤ 1, assign the
colour j + 1 to all the vertices in Fj and in F ′j . See Figure 7(f).

Since each vertex has six neighbours and twelve vertices at distance two
in T, there is no weighted t-improper 1-colouring of (T2, w2), for any t < 12.
Obviously, there is a weighted 12-improper 1-colouring of T2.
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4. Integer Linear Programming Formulations, Algorithms and Re-
sults

In this section, we look at how to solve the Weighted Improper colour-
ing and Threshold Improper colouring for general instances inspired by
the practical motivation. We present integer linear programming models for
both problems. These models can be solved exactly for small sized instances us-
ing solvers like CPLEX1. For larger instances, the solvers can take a prohibitive
time to provide exact solutions. It is usually possible to obtain a sub-optimal
solution stopping the solver after a limited time. If the time is too short, the
quality of the solution may be unsatisfactory. Thus, we introduce two algo-
rithmic approaches to find good solutions for Threshold Improper colour-
ing in a short time: a simple polynomial-time greedy heuristic and an exact
Branch-and-Bound algorithm. We compare the three methods on different sets
of instances, among them Poisson-Voronoi tessellations as they are good models
of antenna networks [5, 13, 14].

4.1. Integer Linear Programming Models

Given an edge-weighted graph G = (V,E,w), w : E → R∗+, and a positive
real threshold t, we model Weighted Improper Colouring by using two
kinds of binary variables. Variable xip indicates if vertex i is coloured p and
variable cp indicates if colour p is used, for every 1 ≤ i ≤ n and 1 ≤ p ≤ l, where
l is an upper bound for the number of colours needed in an optimal weighted
t-improper colouring of G. l can be trivially chosen of value n, but a better
value may be given by the results of Section 2. The model follows:

min
∑l
p=1 cp

subject to ∑
ij∈E and j 6=i w(i, j)xjp ≤ t+M(1− xip) ∀i ∈ V, 1 ≤ p ≤ l

cp ≥ xip ∀i ∈ V, 1 ≤ p ≤ l∑l
p=1 xip = 1 ∀i ∈ V
xip ∈ {0, 1} ∀i ∈ V, 1 ≤ p ≤ l
cp ∈ {0, 1} 1 ≤ p ≤ l

where M is a large integer. For instance, it is sufficient to choose M >∑
uv∈E w(u, v).
For Threshold Improper Colouring, given an edge-weighted graph G =

(V,E,w), w : E → R∗+, and a number of possible colours k ∈ N∗, the model we
consider is:

1http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
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min t
subject to ∑

ij∈E and j 6=i w(i, j)xjp ≤ t+M(1− xip) ∀i ∈ V, 1 ≤ p ≤ l∑k
p=1 xip = 1 ∀i ∈ V
xip ∈ {0, 1} ∀i ∈ V, 1 ≤ p ≤ l

We give directly these models to the ILP solver CPLEX without using any
preprocessing or any other technique to speed the search for an optimal solution.

4.2. Algorithmic approach

In this section, we show a Branch-and-Bound algorithm and a randomised
greedy heuristic to tackle Threshold Improper colouring. Both are based
on common procedures to determine the order in which vertices are coloured
and colours are tried for a single vertex. Although, the Branch-and-Bound needs
an ordering of the vertices to be coloured as input while the heuristic colours
the vertices at the same time the order is being processed.

4.2.1. Order of vertices and colours

The order in which the vertices are chosen to be coloured follows essentially
the same idea as the DSATUR algorithm, created by Daniel Brélaz [6].

Consider a graph G = (V,E,w), w : E → R∗+ and a partial colouring
c : U → {1, . . . , k}, where U ⊆ V . We say that vertex v is coloured if v ∈ U ,
otherwise it is uncoloured. We define the total potential interference in vertex v
to be:

Itotc,v =
∑

{u∈V |uv∈E and v/∈U}

w(u, v),

which is the sum of interferences for all colours induced in v by all its already
coloured neighbours.

The idea for both algorithms is to first colour vertices with highest total
potential interference. Whenever more than one vertex has the highest total
potential interference, one of them is chosen at random. At the beginning,
when all vertices have Itotc,v = 0, one of the highest weighted degree is chosen
instead.

Consider the following steps:

1. Colour a random vertex with maximal sum of incoming weights.
2. Colour a random vertex with maximal total potential interference.
3. If all vertices all coloured, stop. Otherwise, repeat step 2.

Note that the total potential interference does not depend on the actual
colours assigned to the vertices. Thus, in order to decide which is the next
vertex to be coloured, both algorithms, Branch-and-Bound and heuristic, use
these three steps. However, the Branch-and-Bound algorithm needs an order to
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colour the vertices as input. So, we decide which order to give to the Branch-
and-Bound algorithm as input by running these three steps and using a single
colour.

The procedure above specifies the order of vertices. For the order of colours
to try, we define the potential interference in vertex v for colour x as:

Ic,v,x =
∑

{u∈V |uv∈E and c(v)=x}

w(u, v)

Anytime one of our algorithms colours a vertex, it tries the colours in order of
increasing potential interference.

4.2.2. Branch-and-Bound Algorithm

Having an ordering procedure for both vertices and colours, we construct a
simple Branch-and-Bound algorithm using them. The order of vertices to colour
is fixed before running the algorithm, following the procedure in Section 4.2.1.
Then, the ordered vertices are coloured by a recursive function that tries all the
possible colours for each vertex as far as no interference constraint is violated.
The order in which the colours are tried is also presented in the previous section.
Our algorithm outputs all the feasible colourings it finds and, as all the possible
colours are tried, the one using the minimum number of colours is an optimal
one.

Here you have a pseudo code for the algorithm:

Algorithm 1: Branch&Bound

input : edge-weighted graph (G,w), number of colours k, partial
colouring c, upper bound t and corresponding colouring c̃, order
in which vertices should be coloured O

output: new upper bound t’ and corresponding colouring c̃’

if maxv∈V Iv(G,w, c) ≥ t then
return t and c̃

if all vertices are coloured in c then
return (maxv∈V Iv(G,w, c) and c)

v = next vertex uncoloured in c according to O
for x ∈ possible colours in order of increasing Ic,v,x do

(t and c̃) = Branch&Bound(G, k, c ∩ (v ← x), t, c̃, O)

return t and c̃

Where by c ∩ (v ← x) we mean a partial colouring where colour of vertex v
(which was uncoloured in c) is set to x, and colours of all other vertices are as
in c. The algorithm is first called with all vertices uncoloured and t =∞.

This algorithm displays a problematic behaviour. Imagine the partial colour-
ing of the first few vertices yields good results locally, but implies a suboptimal
interference at a more distant part of the graph. As the solution search takes ex-
ponential time in number of vertices, it is easy to envision that the time required
to change the colouring of first vertices can be prohibitively long.
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4.2.3. Greedy Heuristic

Here we propose a randomised greedy heuristic that, repeated multiple, but
not exponentially many times, finds similar solutions to the above Branch-and-
Bound without the mentioned problem. On the other hand, there are some
solutions that are impossible to find with it, no matter the number of tries. An
example of such an unobtainable solution is the optimal colouring of infinite
square grid with 2 colours.

Algorithm 2: Levelling Heuristic

input : edge-weighted graph (G,w), number of colours k, upper bound t
output: failed or a colouring c

c(v) = ∅ ∀v ∈ V
for i ∈ {1, . . . , |V |} do

v = next, in order of increasing Itotc,v , vertex uncoloured in c

for x ∈ possible colours in order of increasing Ic,v,x do
if colouring v with x does not cause maxv∈V Iv(G,w, c) ≥ t then

c(v) = x
break the inner loop

if c(v) = ∅ then
return failed

return c

Note that there is substantial randomness in this algorithm. The first ver-
tex is the one of the ones with highest weighted degree. In the extreme case
of regular graphs, this already means any vertex at random. If we use the
simple interference function defined in Section 3, then the second vertex is a
random neighbour of the first vertex. Any time there are multiple vertices with
maximum total potential interference, we choose one at random. Similarly, the
choice of colours is also random in case of equal potential interference.

Above algorithm is first called with t = ∞. Whenever it returns a colour-
ing, we set t = maxv∈V Iv(G,w, c) for further iterations. It is repeated for a
given number of times, or until a time limit is reached. In all instances in the
following sections the program is constrained by a time limit. This means that
the algorithm is called for an unknown, but probably big number of times (e.g.
for a 6-regular grid of 1024 vertices the program performs on average over 500
runs of the algorithm per second).

As a randomised greedy colouring heuristic, it has to be ran multiple times
to achieve satisfactory results. This is not a practical issue due to low compu-
tational cost of each run. The local immutable colouring decision is taken in
time O(k∆). Then, after each such decision, the interference has to be propa-
gated, which takes linear time in the vertex degree. This gives a computational
complexity bound O(kn∆)-time.
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(a) Example Delaunay graph, dotted lines de-
limit corresponding Voronoi diagram cells
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Delaunay graph, n=2000 vertices, k=5 colors
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(b) Over time
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Figure 9: Results comparison for Levelling heuristic, Branch-and-Bound algorithm and Integer
Linear Programming Formulation.

4.3. Validation

In this section we validate our algorithmic approaches at Threshold Im-
proper colouring, by examining performance of their implementations. Tests
cover a wide range of parameters, mostly on Delaunay graphs (see section 4.3.2).

4.3.1. Implementation

The ILP model is constructed out of the input graph and given directly
to the CPLEX ILP solver. Branch-and-Bound algorithm is implemented in a
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straightforward way in the Python programming language. The greedy heuristic
has a highly optimised implementation in the Cython programming language2.

In results displayed below, all programs are run simultaneously on the same
quad-core enterprise-grade CPU. Both the Branch-and-Bound and greedy heuris-
tic are limited to a single core. CPLEX is allowed to both the remaining cores.

4.3.2. Graphs

We consider random Delaunay graphs (dual of Voronoi diagram). This kind
of graphs is an intuitive approximation of a network of irregular cells. To obtain
a graph in this class, take a set of random points uniformly distributed over a
square. These represent the vertices of the graph. To obtain the edges, compute
a Delaunay triangulation. This can be done e.g. with Fortune’s algorithm
described in [12] in O(n log n) time.

See Figure 9(a) for a depiction of a fragment of such graph. Vertices are
arranged according to the positions of original random points. Dotted lines
delimit corresponding Voronoi diagram cells. Only edges between vertices visible
on the illustration are displayed.

Note that, to follow the model of the physical motivation, we are dealing
with very sparse graphs. The average degree in Delaunay graph G converges to
six (this results follows from the observation that G is planar and triangulated,
thus |E(G)| = 3|V (G)| − 6 by Euler’s formula). To get an idea about the
proposed algorithms’ performance in denser graphs, we also run some tests on
Erdös-Rényi graphs with expected degree equal to 50.

The interference model we consider in all experiments is the one described
in Section 3: adjacent nodes interfere by 1 and nodes at distance two interfere
by 1/2.

4.3.3. Results

Figure 9 shows a performance comparison of the above-mentioned algo-
rithms. For all the plots, each data point represents an average over a number
(between 24 and 100) of different graphs. The experiment procedure is as fol-
lows. For each graph size considered in an experiment, a number of graphs is
generated. Each of those graphs is transformed into a set of instances, one for
each desired number of allowed colours. All the programs are run on each in-
stance, once for each desired value of time limit. Finally, a data point is created
with results and all the parameters, averaged over the number of graphs.

Figures 9(b) and 9(c) plot how results for a problem instance get enhanced
with increasing time limits. Plot 9(d) shows how well all the programmes scale
with increasing graph sizes. Plots 9(e) and 9(f) show decreasing interference
along increasing the number of colours allowed.

One immediate observation about both the heuristic and Branch-and-Bound
algorithm is that they provide good solutions in relatively short time. On the

2This is the faster implementation envisioned in [3].
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other hand, with limited time, they fail to improve up to optimal results, espe-
cially with a low number of allowed colours. An example near-optimal solution
found in around three minutes was not improved by Branch-and-Bound in over
six days.

The heuristic, is able to provide good results in sub-second times and scales
better with increasing graph sizes than the Branch-and-Bound. It is also not
prone to spending a lot time exploring a sub-optimal branch of a decision tree.
Still, in many cases it is unable to obtain optimal results and displays a worse
end result than an integer linear program, given enough time.

Solving the ILP does not scale with increasing graph sizes as well as our
simple algorithms. Furthermore, Figure 9(e) reveals one problem specific to ILP.
When increasing the number of allowed colours, obtaining small interferences
gets easier. But this introduces additional constraints in the formulation, thus
increasing the complexity for a solver.

Proposed algorithms also work well for denser graphs. Figure 9(f) plots
interferences for different numbers of colours allowed found by the programs for
an Erdös-Rényi graph with n = 500 and p = 0.1. This gives us an average
degree equal to 50. Both Branch-and-Bound and heuristic programs achieve
acceptable, and nearly identical, results. But the large number of constraints
makes the integer linear programming formulation very inefficient.

5. Conclusion, Open Problems and Future Directions

In this paper, we introduced and studied a new colouring problem, Weighted
Improper Colouring. This problem is motivated by the design of telecom-
munication antenna networks in which the interference between two vertices
depends on different factors and can take various values. For each vertex, the
sum of the interferences it receives should be less than a given threshold value.

We first give general bounds on the weighted-improper chromatic number.
We then study the particular case of infinite paths, trees and grids: square,
hexagonal and triangular. For these graphs, we provide their weighted-improper
chromatic number for all possible values of t. Finally, we propose a heuristic
and a Branch-and-Bound algorithm to find good solutions of the problem. We
compare their results with the one of an integer linear programming formulation
on cell-like networks, Poisson-Voronoi tessellations.

Many problems remain to be solved:

• The study of the grid graphs, we considered a specific function where
vertices at distance one interfere by 1 and vertices at distance two by 1/2.
Other weight functions should be considered. e.g. 1/d2 or 1/(2d−1), where
d is the distance between vertices.

• Other families of graphs could be considered, for example hypercubes.

• We showed that the Threshold Improper Colouring problem can be
transformed into a problem with only two possible weights on the edges
1 and ∞, that is a mix of proper and improper colouring. This simplify
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the nature of the graph interferences but at the cost of an important
increase of instance sizes. We want to further study this. In particular, let
G = (V,E,w) be an edge-weighted graph where the weights are all equal to
1 or M . Let GM be the subgraph of G induced by the edges of weight M ;

is it true that if ∆(GM ) << ∆(G), then χt(G,w) ≤ χt(G) ≤
⌈

∆(G,w)+1
t+1

⌉
?

A similar result for L(p, 1)-labelling [15] suggests it could be true.

Note that the problem can also be solved algorithmically for other classes
of graphs and for other functions of interference. We started looking in this
direction in [4]. The problem can be expressed as a linear program and then
be solved exactly using solvers such as CPLEX or Glpk3 for small instances
of graphs. For larger instances, we propose a heuristic algorithm inspired by
DSATUR [6] but adapted to the specifics of our colouring problem. We used
it to derive colouring with few colours for Poisson-Voronoi tessellations as they
are good models of antenna networks [5, 13, 14]. We plan to further investigate
the algorithmic side of our colouring problem.
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