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Monteiro3 and Stéphane Perennes1

1Project MASCOTTE, I3S (CNRS/Univ. of Nice)/INRIA, Sophia Antipolis, France
2IIT Delhi, New Delhi, India

3Department of Computer Science, IME, University of São Paulo, Brazil

Abstract. In this paper, we analyze a highly distributed backup stor-
age system realized by means of nano datacenters (NaDa). NaDa have
been recently proposed as a way to mitigate the growing energy, band-
width and device costs of traditional data centers, following the popu-
larity of cloud computing. These service provider-controlled peer-to-peer
systems take advantage of resources already committed to always-on set
top boxes, the fact they do not generate heat dissipation costs and their
proximity to users.

In this kind of systems redundancy is introduced to preserve the data in
case of peer failures or departures. To ensure long-term fault tolerance,
the storage system must have a self-repairing service that continuously
reconstructs the fragments of redundancy that are lost. The speed of
this reconstruction process is crucial for the data survival. This speed
is mainly determined by how much bandwidth, which is a critical re-
source of such systems, is available. In the literature, the reconstruc-
tion times are modeled as independent (e.g., poissonian, deterministic,
or more generally following any distribution). In practice, however, nu-
merous reconstructions start at the same time (when the system detects
that a peer has failed). Consequently, they are correlated to each other
because concurrent reconstructions do compete for the same bandwidth.
This correlation negatively impacts the efficiency of the bandwidth uti-
lization and henceforth the repair time.

We propose a new analytical framework that takes into account this
correlation when estimating the repair time and the probability of data
loss. Mainly, we introduce a queuing model in which reconstructions are
served by peers at a rate that depends on the available bandwidth. We
show that the load is unbalanced among peers (young peers inherently
store less data than the old ones). This leads us to introduce a correcting
factor on the repair rate of the system. The models and schemes proposed
are validated by mathematical analysis, extensive set of simulations, and
experimentation using the GRID5000 test-bed platform. This new model
allows system designers to operate a more accurate choice of system
parameters in function of their targeted data durability.

? The research leading to these results has received funding from the European Project
FP7 EULER, ANR CEDRE, ANR AGAPE, Associated Team AlDyNet, project
ECOS-Sud Chile and région PACA.
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1 Introduction

Nano datacenters (NaDa) are highly distributed systems owned and controlled
by the service provider. This alleviates the need of incentives and mitigates the
risk of malicious users, but otherwise they face the same challenges as peer-to-
peer systems. The set-top boxes realizing them are connected using consumer
links, which can be relatively slow, unreliable and congested. The devices them-
selves, compared to servers in a traditional datacenter, are prone to failures and
temporary disconnections, e.g. if the user cuts the power supply when not in
home. When originally proposed in [1], they were assumed to be available no
more than 85% of the time, with values as low as 7% possible.

In this paper we concentrate on application of NaDa, or any similar peer-to-
peer system, for backup storage. In this application, users want to store massive
amounts of data indefinitely, accessing them very rarely, i.e. only when original
copies are lost. Due to risk of peer failures or departures, redundancy data is
introduced to ensure long term data survival. To this end, most of the proposed
storage systems use either the simple replication or the space efficient erasure
codes [2], such as the Reed-Solomon or Regenerating Codes [3]. The redundancy
needs to be maintained by a self-repair process. Its speed is crucial to determine
the system reliability, as long repairs exponentially increase the probability of
losing data. The limiting factor, in this setting, is the upload link capacity.

Imagine a scenario where the system is realized using home connections, out
of which an average 128kbps are allocated to the backup application. Further-
more, each device is limited to 300GB, while average data stored is 100GB,
redundancy is double, 100 devices take part in each repair and the algorithms
are as described in the following sections. A naive back-of-envelope computa-
tion gives that the time needed to repair contents of a failed device is 17 hours
(= 100 · 8 · 106kb/(100 · 128kbps)). This translates, by our model, to a probabil-
ity of data loss per year (PDLPY) of 10−8. But, taking into account all findings
presented in this work, the actual time can reach 9 days. This gives a PDLPY
of 0.2, many orders of magnitude more than the naive computation. Hence, it is
important to have models that estimate accurately the repair time for limited
bandwidth.

Our contribution

We propose a new analytical model that precisely estimates the repair time
and the probability of losing data in distributed storage systems. This model
takes into account the bandwidth constraints and inherent workload imbalance
(young peers inherently store less data than the old ones, thus they contribute
asymmetrically to the reconstruction process) effect on the efficiency. It allows
system designers to obtain an accurate choice of system parameters to obtain a
desired data durability.

We discuss how far the distribution of the reconstruction time given by the
model is from the exponential, classically used in the literature. We exhibit the
different possible shapes of this distribution in function of the system parameters.
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This distribution impacts the durability of the system. We also show a somewhat
counter-intuitive result that we can reduce the reconstruction time by using a
less bandwidth efficient Regenerating Code. This is due to a degree of freedom
given by erasure codes to choose which peers participate in the repair process.

To the best of our knowledge, this is the first detailed model proposed to
estimate the distribution of the reconstruction time under limited bandwidth
constraints. We validate our model by an extensive set of simulations and by test-
bed experimentation using the Grid’5000 platform, see [4] for its description.

Related Work

Several works related to highly distributed storage systems have been done, and
a large number of systems have been proposed [5–8], but few theoretical studies
exist. In [9–11] the authors use a Markov chain model to derive the lifetime
of the system. In these works, the reconstruction times are independent for
each fragment. They follow an exponential or geometric distribution, which is a
tunable parameter of the models. However, in practice, a large number of repairs
start at the same time when a disk is lost, corresponding to tens or hundreds
of GBs of data. Hence, the reconstructions are not independent of each other.
Furthermore, in these models, only the average analysis are studied and the
impact of congestion is not taken into account.

Dandoush et al. in [12] perform a simulation study of the download and the
repairing process. They use the NS2 simulator to measure the distribution of
the repair time. They state that a hypo-exponential distribution is a good fit
for the block reconstruction time. However, again, concurrent reconstructions
are not considered. Picconi et al. in [13] study the durability of storage sys-
tems. Using simulations they characterize a function to express the repair rate
of systems based on replication. However, they do not study the distribution of
the reconstruction time and the case of erasure coding. Venkatesan et al. in [14]
study placement strategies for replicated data, deriving a simple approximation
for mean time to data loss by studying the expected behaviour of most dam-
aged data block. The closest to our work is [15] by Ford et al., where authors
study reliability of distributed storage in Google, what constitutes a datacen-
ter setting. However, they do not look into load imbalance, their model tracks
only one representative data fragment and is not concerned by competition for
bandwidth.

Organization

The remainder of this paper is organized as follows: in the next section we give
some details about the studied system, then in Section 3 we discuss the impact
of load imbalance. The queuing model is presented in the Section 4, followed by
its mathematical analysis. The estimations are then validated via an extensive
set of simulations in Section 5. Lastly, in Section 6, we compare the results of
the simulations to the ones obtained by experimentation.
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2 System Description

This section outlines the mechanisms of the studied system and our modelling
assumptions.

Storage. In this work we assume usage of the Regenerating Codes, as described
in [3], due to their high storage and bandwidth efficiency. More discussion of
them follows later in this section. All data stored in the system is divided into
blocks of uniform size. Each block is further subdivided into s fragments of size
Lf , with r additional fragments of redundancy. All these n = s+r fragments are
distributed among random devices. We assume that in practice this distribution
is performed with a Distributed Hash Table overlay like Pastry [16]. This, due to
practical reasons, divides devices into subsets called neighbourhoods or leaf sets.

Our model does not assume ownership of data. The device originally introduc-
ing a block into the system is not responsible for its storage or maintenance. We
simply deal with a total number of B blocks of data, which results in F = n ·B
fragments stored in N cooperating devices. As a measure of fairness, or load
balancing, each device can store up to the same amount of data equal to C frag-
ments. Note that C can not be less than average number of fragments per device
D̄ = F/N.

In the following we treat a device and its disk as synonyms.

Bandwidth. Devices of NaDa are connected using consumer connections. These,
in practice, tend to be asymmetric with relatively low upload rates. Furthermore,
as the backup application occasionally uploads at maximum throughput for pro-
longed times, while the consumer expects the application to not interfere with
his network usage, we assume it is allocated only a fraction of the actual link
capacity. Each device has a maximum upload and download bandwidth, respec-
tively BWup and BWdown. We set BWdown = 10BWup (in real offerings, this
value is often between 4 and 20). The bottleneck of the system is considered to
be the access links (e.g. between a DSLAM and an ADSL modem) and not the
network internal links.

Availability and failures. Mirroring requirements of practical systems, we as-
sume devices to stay connected at least a few hours per day. Following the work
by Dimakis [3] on network coding, we use values of availability and failure rate
from the PlanetLab [17] and Microsoft PCs traces [6]. To distinguish transient
unavailability, which for some consumers is expected on a daily basis, from per-
manent failures, a timeout is introduced. Hence, a device is considered as failed
if it leaves the network for more than 24 hours. In that case, all data stored by
it is assumed to be lost.

The Mean Time To Failure (MTTF) in the Microsoft PCs and the PlanetLab
scenarios are respectively 30 and 60 days. The device failures are then considered
as independent, like in [9], and Poissonian with mean value given by the traces
explained above. We consider a discrete time in the following and the probability
to fail at any given time step is denoted as α = 1/MTTF .
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Repair process. When a failure is detected, neighbours of the failed device
start a reconstruction process, to maintain desired redundancy level. For each
fragment stored at the failed disk, a random device from the neighbourhood is
chosen to be the reconstructor. It is responsible for downloading necessary data
from remaining fragments of the block, reconstructing and storing the fragment.

Redundancy schemes. Minimum Bandwidth Regenerating Codes, assumed
in this paper, are very efficient due to not reconstructing the exact same lost
fragment, but creating a new one instead, in the spirit of Network Coding. The
reconstructor downloads, combines and stores small subfragments from d devices
having other fragments of the repaired block. We call d the repair degree, s ≤
d ≤ n. Construction of the code requires some additional redundancy for each
fragment. In other words Lr, the total amount of data transferred for a repair of a
fragment, is greater than Lf by some overhead factor. This factor, the efficiency
of the code, has been given for MBR in [3] as:

δMBR(d) =
2d

2d− s+ 1
.

The most bandwidth efficient case is clearly when d = n−1. However, as we will
show in following sections, it may be beneficial to set it to a lower value to give
the reconstruction an additional degree of freedom.

The model presented in this work was also successfully applied to other re-
dundancy schemes. Minimum Storage Regenerating Codes, also given in [3], are
more space efficient at the cost of additional transfer overhead. Reed-Solomon
codes, more popular in practice, are reconstructed by recreating the input data
and then coding again the lost fragment. In both cases the only difference for
the model are different values of Lr. In practical systems, it may be interesting
for RS-based systems to reconstruct at one device, but store the new fragment
on some other one. This is especially true for saddle-based systems, where we
wait until a few fragments of a block are lost, to repair them all at once. The
model gives good results also for these more complicated cases. We omit them
due to lack of space, and because this only brings slightly longer analysis with
little new insight.

3 Preliminary: Impact of Disk Asymmetry

Disk occupancy follows a truncated geometric distribution. Denote by x the
average disk size divided by the average amount of data stored per device. Let ρ
be the factor of efficiency : the average bandwidth actually used during a repair
process divided by the total bandwidth available to all devices taking part in it.
It has been observed in simulations that ρ ≈ 1/x. This has been further confirmed
both by experiments and by theoretical analysis, which has to be omitted here
due to lack of space, but can be found in the research report [18]. What follows
is a brief intuition of the analysis.

First, notice that a new device joins the system empty and is gradually filled
throughout its lifetime. Thus, we have disks with heterogeneous occupancy. For
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x < 2 almost all disks in the system are full. Most blocks have a fragment on a
full disk. Even for x = 3, when only 6% of disks are full, probability of a block
having a fragment on a full disk is 92%. Thus the average repair time depends
on the time the full disks take, which is in turn x times the average disks take.
This shows that load balancing is crucial and for practical systems x should be
kept below two.

4 The Queuing Model

We introduce here a Markov Chain Model that allows us to estimate the re-
construction time under bandwidth constraints. The model makes an important
assumption: the limiting resource is always the upload bandwidth. It is rea-
sonable because download and upload bandwidths are strongly asymmetric in
systems built on consumer connections. Using this assumption, we model the
storage system with a queue tracking the upload load of the global system.

4.1 Model Definition

We model the storage system with a Markovian queuing model storing the upload
needs of the global system. The model has one server, Poissonian batch arrivals
and deterministic time service (Mβ/D/1, where β is the batch size function).
We use a discrete time model, all values are accounted in time steps. The devices
in charge of repairs process blocks in a FIFO order.

Chain States. The state of the chain at a time t is the current number of
fragments in reconstruction, denoted by Q(t).

Transitions. At each time step, the system reconstructs blocks as fast as its
bandwidth allows. The upload bandwidth of the system, BWupN , is the limiting
resource. Then, the service provided by the server is

µ = ρ
BWupN

Lr
,

which corresponds to the number of fragments that can be reconstructed at each
time step. The factor ρ is the bandwidth efficiency as calculated in the previous
section, and Lr is the number of bytes transferred to repair one fragment. Hence,
the number of fragments repaired during a time step t is µ(t) = min(µ,Q(t)).

The arrival process of the model corresponds to device failures. When a
failure occurs, all the fragments stored in the failed device are lost. Hence, a
large number of block repairs start at the same time. We model this with batch
inputs (sometimes also called bulk arrival in the literature). The size of an arrival
is given by the number of fragments that were stored on the disk. As stated in
Section 3, it follows a truncated geometric distribution.

We define β as a random variable taking values β ∈ {0, v, 2v, . . . , Tmaxv},
which represents the number of fragments inside a failed disk Recall that v is
the speed at which empty disks get filled, and that Tmax = C/v is the expected
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time to fill a disk. Further on, β/v is the expected time to have a disk with β
fragments.

The arrival process of the model is Poissonian. A batch arrives during a time
step with probability f , with f ≈ αN . For the simplicity of the exposition, we
consider here that only one failure can happen during a time step (note that to
ensure this, it is sufficient to choose a small enough time step). Formally, the
transitions of the chain are, for ∀i ≥ µ,

Qi → Qi−µ with prob. 1− f
Qi → Qi−µ+β ,∀β with prob. f(1− α)

β
v−1α

Qi → Qi−µ+C with prob. f(1− (1− α)Tmax)

When 0 ≤ i < µ, the i blocks in the queue at the beginning of the time step are
reconstructed at the end. Hence, we have transitions without the term i− µ:

Qi → Q0 with prob. 1− f
Qi → Qβ ,∀β with prob. f(1− α)

β
v−1α

Qi → QC with prob. f(1− (1− α)Tmax)

Figure 1 presents the transitions for a state i.

Fig. 1: Transition around state i of the Markovian queuing model.

4.2 Analysis

Expressions to estimate the values of the bandwidth usage, the distribution of
block reconstruction time and the probability of data loss can be derived from
the stationary distribution of the Markovian model. We omit here the analysis
due to lack of space, but it can be found in the research report [18].

5 Results

To validate our model, we compare its results with the ones produced by simu-
lations, and test-bed experimentation. We use a custom cycle-based simulator.
The simulator models the evolution of the states of blocks during time (number
of available fragments and where they are stored) and the reconstructions being
processed. When a disk failure occurs, the simulator updates the state of all
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blocks that have lost a fragment, and starts the reconstruction if necessary. The
bandwidth is implemented as a queue for each device, respecting both BWup

and BWdown constraints. The reconstructions are processed in FIFO order.
We study the distribution of the reconstruction time and compare it with the

exponential distribution, which is often used in the literature. We then discuss
the cause of the data losses. Finally, we present an important practical imple-
mentation point: when choosing the parameters of the Regenerating Code, it is
important to give to the device in charge of the repair a choice between several
devices to retrieve the data.

5.1 Distribution of Reconstruction Time

Figure 2 shows the distribution of the reconstruction time and the impact of
device asymmetry on the reconstruction time for the following scenario: N =
100, s = 7, r = 7, Lr=2 MB, B = 50000, MTTF = 60 days, BWup = 128 kpbs.
All parameters are kept constant, except the disk size factor x (recall that x is
the ratio of the maximum capacity over the average amount of data per device).

First, we see that the model (dark solid line) closely matches the simulations
(blue dashed line). For example, when x = 1.1 (top plot), the curves are almost
merged. Their shape is explained in the next paragraph. The average reconstruc-
tion times are 3.1 time steps for the model vs 3.2 for the simulation. We see that
there is a small gap when x = 3. As a matter of fact, as we saw in Section 3,
model’s assumptions do not hold in this case: only 92% of the blocks have a
fragment on a full disk. Recall that, for the sake of load balancing, higher values
of x are impractical.

Second, we confirm the strong impact of the disk capacity. We see that for
the four considered values of x, the shape of distributions of the reconstruction
times are very different. When the disk capacity is close to the average number of
fragments stored per disk (values of x close to 1), almost all disks store the same
number of fragments (83% of full disks). Hence, each time there is a disk failure
in the system, the reconstruction times span between 1 and C/µ, explaining
the rectangle shape. The tail is explained by multiple failures happening when
the queue is not empty. When x is larger, disks also are larger, explaining that
it takes a longer time to reconstruct when there is a disk failure (the average
reconstruction time raises from 3.2 to 9.6 and 21 when x goes from 1.1 to 2 and 3).
As the number of fragments per disk follows a truncated geometric distribution,
we see the rectangle shape is replaced by a trapezoidal shape, explained by the
large range of disk fillings for big values of x.

Third, we compare the distributions obtained with the exponential distribu-
tion that is classically used in the literature. We see that the distributions are
far from the exponential when 1.1 ≤ x ≤ 2, but get closer for x = 3. Hence, as
we will confirm in the next section, the exponential distribution is only a good
choice for some given sets of parameters. Note that the tails of the distributions
are close to exponential.

Figure 3 presents the distribution of a distributed storage system experienc-
ing three different rates of failures: MTTF of 90, 180 and 360 days. We clearly
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Fig. 2: Distribution of reconstruction time for different disk capacities x of 1.1, 2,
and 3 times the average amount. The average reconstruction times of simulations
are respectively 3.2, 9.6, and 21 hours (Note that some axis scales are different).

see the evolution of the shape of the distribution due to the larger probability to
experience failures when the device queues are still loaded. The average recon-
struction time increases from 5 hours when the MTTF is 360 days to 12 hours
when the MTTF is 90 days.

We ran simulations for different sets of parameters. We present in Table 1 a
small subset of these experiments.

5.2 Where the Dead Come From?

In this section, we discuss in which circumstances the system has more probabil-
ity to lose some data. First a preliminary remark: backup systems are conceived
to experience basically no data loss. Thus, for realistic sets of parameters, it
would be necessary to simulate the system for a prohibitive time to see any data
loss. We hence present here results for scenarios where the redundancy of the
data is lowered (r = 3 and r = 5).
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Table 1: Reconstruction time T (in hours) for different system parameters

(a) Disk capacity c.

c 1.1 1.5 2.0 3.0

Tsim 3.26 5.50 9.63 21.12
Tmodel 3.06 5.34 9.41 21

(b) Peer Lifetime (MTTF).

MTTF 60 120 180 365

Tsim 3.26 2.90 2.75 2.65
Tmodel 2.68 2.60 2.49 2.46

(c) Peer Upload Band-
width (kbps).

upBW 64 128 256 512

Tsim 8.9 3.30 1.70 1.07
Tmodel 8.3 3.10 1.61 1.03

In Figure 4 we plot the cumulative number of dead blocks that the system
experiences for different reconstruction times. We give this fraction in function of
the time the block spent in the system before dying. For the queuing model, we
derive the expected number of blocks that died at time T from the distribution
of the reconstruction time. A block dies at time T if its reconstruction process
lasts a time θ ≥ T and that it loses r fragments during time T with at least one
exactly at time T . This can be expressed as

N [die at time T ] = Pr[die at time T ]
∑
θ≥T

NP [W = θ]

with

Pr[die at time T ] =
(
s+r−1
r−1

)
(1− (1− α)T )r((1− α)T )s−1 −

(
s+r−1
r−1

)
(1− (1− α)T−1)r((1− α)T )s−1.

We give the distribution of the reconstruction times as a reference (vertical lines).
The model (black solid line) and the simulation results (blue dashed line) are
compared for two scenarios with different number of blocks: there is twice more
data in Scenario B.

The first observation is that the queuing models predict well the number of
dead experienced in the simulation, for example, in the scenario A the values
are 21,555 versus 20,879. The results for an exponential reconstruction time with
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Fig. 4: Distribution of dead blocks reconstruction time for two different scenarios.
Scenario A: N = 200, s = 8, r = 3, b = 1000,MTTF = 60 days. Scenario B:
N = 200, s = 8, r = 5, b = 2000,MTTF = 90 days.

the same mean value are also plotted (queue avg.). We see that this model is not
close to the simulation for both scenarios (almost the double for Scenario A).
We also test a second exponential model (queue tail): we choose it so that its
tail is as close as possible to the tail than the queuing model (see Figures 4b).
We see that it gives a perfect estimation of the dead for Scenario B, but not for
Scenario A.

In fact, two different phenomena appear in these two scenarios. In Scenario B
(higher redundancy), the lost blocks are mainly coming from long reconstructions,
from 41 to 87 cycles (tail of the gray histogram). Hence, a good exponential
model can be found by fitting the parameters to the tail of the queuing model.
On the contrary, in Scenario A (lower redundancy), the data loss comes from
the majority of short reconstructions, from 5.8 to 16.2 cycles (the right side of
the rectangular shape). Hence, in Scenario A, having a good estimate of the tail
of the distribution is not at all sufficient to be able to predict the failure rate of
the system. It is necessary to have a good model of the complete distribution!

5.3 Discussion of Parameters of Regenerating Codes

As presented in Section 2, when the redundancy is added using regenerating
codes, n = s + r devices store a fragment of the block, while just s are enough
to retrieve the block. When a fragment is lost d devices, where s ≤ d ≤ n − 1,
cooperate to restore it. The larger d is, the smaller is the bandwidth needed
for the repair. Figures 5 and 6 show the reconstruction time for different values
of the degree d. We observe an interesting phenomena: at the opposite of the
common intuition, the average reconstruction time decreases when the degree
decreases: 10 cycles for d = 13, and only 6 cycles for d = 12. The bandwidth
usage increases though (because the δMBR is higher when d is smaller). The
explanation is that the decrease of the degree introduces a degree of freedom in
the choice of devices that send a sub-fragment to the device that will store the
repaired fragment. Hence, the system is able to decrease the load of the more
loaded disks and to balance more evenly the load between devices.
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In fact, we can estimate for which degree of freedom, the reconstruction time
is minimum. It happens when the load of the full disks is the same as the load
of the other disks. We define δ = n − 1 − d the allowed degree of freedom for
the choice of which devices upload the sub-fragments. The full disks store a
proportion ϕx of the fragments of the system, with ϕ being the fraction of full
disks. We simply look at how much work we must do on the full disks. The
probability to have i fragments (among the n − 1 fragments) on full disks is(
n−1
i

)
(ϕx)i(1 − ϕx)n−1−i. Those blocks send i − δ fragments (whenever i ≥ δ).

So the load of the full disks is:

n−1∑
i=δ

(i− δ)
(
n− 1

i

)
(ϕx)i(1− ϕx)n−1−i.

When the load of the full disks becomes equal to the load of the other disks
(
∑n−1
i=δ (d − i + δ)

(
n−1
i

)
(ϕx)i(1 − ϕx)n−1−i), it is no more useful to decrease d.

We see that the average reconstruction time increases when d is too small, as
the increased usage of bandwidth is no more compensated by a better balance
of the load.

We presented here a cut argument for only two classes of devices (full disks
and non full disks). This argument can be generalized to any number of device
classes.

Note that this phenomena exists for other codes like Reed Solomon where
the device in charge of the reconstruction has to retrieve s fragments among the
s+ r − 1 remaining fragments.

6 Experimentation

Aiming at validating the simulation and the model results, we performed a batch
of real experimentation using the Grid’5000 platform [4]. It is an experimen-
tal platform for the study of large scale distributed systems. It provides over
5000 computing cores in multiple sites in France, Luxembourg and Brazil. We
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used a prototype of storage system implemented by a private company (Ubis-
torage [19]).

Our goal is to validate the main behavior of the reconstruction time in a real
environment with shared and constrained bandwidth, and measure how close
they are to our results.

6.1 Storage System Description

In few words, the system is made of a storage layer (upper layer) built on top of
the DHT layer (lower layer) running Pastry [16]. The lower layer is in charge of
managing the logical topology: finding devices, routing, alerting of device arrivals
or departures. The upper layer is in charge of storing and monitoring the data.

Storing the data. The system uses Reed-Solomon erasure codes [20] to intro-
duce redundancy. Each data block has a device responsible of monitoring it. This
device keeps a list of the devices storing a fragment of the block. The fragments
of the blocks are stored locally on the Pastry leafset of the device in charge [21].

Monitoring the system. The storage system uses the information given by the
lower level to discover device failures. In Pastry, a device checks periodically if
the members of its leafset are still up and running. When the upper layer receives
a message that a device left, the device in charge updates its block status.

Monitored metrics. The application monitors and keep statistics on the amount
of data stored on its disks, the number of performed reconstructions along with
their duration, the number of dead blocks that cannot be reconstructed. The
upload and download bandwidth of devices can be adjusted.

6.2 Results

There exist a lot of different storage systems with different parameters and dif-
ferent reconstruction processes. The goal of the paper is not to precisely tune a
model to a specific one, but to provide a general analytical framework to be able
to predict any storage system behavior. Hence, we are more interested here by
the global behavior of the metrics than by their absolute values.

Studied Scenario. By using simulations we can easily evaluate several years
of a system, however it is not the case for experimentation. Time available for a
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simple experiment is constrained to a few hours. Hence, we define an acceleration
factor, as the ratio between experiment duration and the time of real system
we want to imitate. Our goal is to check the bandwidth congestion in a real
environment. Thus, we decided to shrink the disk size (e.g., from 10 GB to 100
MB, a reduction of 100×), inducing a much smaller time to repair a failed disk.
Then, the device failure rate is increased (from months to a few hours) to keep
the ratio between disk failures and repair time proportional. The bandwidth
limit value, however, is kept close to the one of a “real” system. The idea is to
avoid inducing strange behaviors due to very small packets being transmitted in
the network.
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Figure 7 presents the distribution of the reconstruction times for two differ-
ent experimentation involving 64 nodes on 2 different sites of Grid’5000. The
amount of data per node is 100 MB (disk capacity 120MB), the upload band-
width 128 KBps, s = 4, r = 4, LF = 128 KB. We confirm that the simulator
gives results very close to the one obtained by experimentation. The average
value of reconstruction time differs by a few seconds.

Moreover, to have an intuition of the system dynamics over time, in Figure 8
we present a time series of the number of blocks in the queues (top plot) and
the total upload bandwidth consumption (bottom plot). We note that the rate
of reconstructions (the descending lines on the top plot) follows an almost linear
shape. Comforting our claim that a deterministic processing time of blocks could
be assumed. In these experiments the disk size factor is x = 1.2, which gives
a theoretical efficiency of 0.83. We can observe that in practice, the factor of
bandwidth utilization, ρ, is very close to this value (value of ρ = 0.78 in the
bottom plot).

7 Conclusions and take-aways

In this paper, we propose and analyze a new Markovian analytical model to
model the repair process of distributed storage systems. This model takes into
account competition for bandwidth between correlated failures. We bring to
light the impact of device heterogeneity on the system efficiency. The model is
validated by simulation and by real experiments on the Grid’5000 platform.

We show that load balancing in storage is crucial for reconstruction time. We
introduce a simple linear factor of efficiency, where throughput of the system is
divided by the ratio of maximum allowed disk size to the average occupancy.
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We show that the exponential distribution, classically taken to model the
reconstruction time, is valid for certain sets of parameters, but introduction of
load balancing causes different shapes to appear. We show that it is not enough
to be able to estimate the tail of the repair time distribution to obtain a good
estimate of the data loss rate.

The results provided are for systems using Regenerating Codes that are the
best codes known for bandwidth efficiency, but the model is general and can be
adapted to other codes. We exhibit an interesting phenomena to keep in mind
when choosing the code parameter: it is useful to keep a degree of freedom on the
choice of the users participating in the repair process so that loaded or deficient
users do not slow down the repair process, even if it means less efficient codes.
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