
Getting things done in Python

Remigiusz Modrzejewski
February 28, 2012

1 / 18
N

Why bother?

Comparing to Java:
Easier setup

No compilation

Programs are shorter

Code resembles mathematical
formulation

Comparing to Sage:
Does not require Sage

Easier to run remotely

Easier to run distributed

Easier to integrate with
things, that Sage authors did
not include yet

2 / 18
N

Classic problem of LP

My diet requires that all the food I eat come from one of
the four "basic food groups": chocolate cake, ice cream,
soda, and cheesecake. At present, the following four
foods are available for consumption: brownies, chocolate
ice cream, cola, and pineapple cheesecake. Each
brownie costs $0.50, each scoop of chocolate ice cream
costs $0.20, each bottle of cola costs $0.30, and each
piece of pineapple cheesecake $0.80. Each day, I must
ingest at least 500 calories, 6 oz of chocolate, 10 oz of
sugar, and 8 oz of fat. The nutrition content per unit of
each food is shown in the table below. Satisfy my daily
nutritional requirements at minimum cost.

Operations Research: Applications and Algorithms, 4th Edition,
by Wayne L. Winston

3 / 18
N

Classic LP

A linear program formulation for the crazy diet problem:

min 0.5b+ 0.2i+ 0.3s+ 0.8c

400b+ 200i+ 150s+ 500c >= 500
3b+ 2i >= 6
2b+ 2i+ 4s+ 4c >= 10
2b+ 4i+ s+ 5c >= 8

4 / 18
N

Classic LP in Python

An implementation of the linear program:
model = LpProblem(’Crazy diet’, LpMinimize)
model += 0.5*b + 0.2*i + 0.3*s + 0.8*c, "Total cost"

model += 400*b + 200*i + 150*s + 500*c >= 500, "Calories"
model += 3*b + 2*i >= 6, "Chocolate"
model += 2*b + 2*i + 4*s + 4*c >= 10, "Sugar"
model += 2*b + 4*i + s + 5*c >= 8, "Fat"

5 / 18
N

Boilerplate code

from pulp import *

b = LpVariable(’Brownies’, lowBound = 0)
i = LpVariable(’Ice cream’, 0)
s = LpVariable(’Soda’, 0)
c = LpVariable(’Cheesecake’, 0)

MODEL GOES HERE

model.writeLP(’nutrition.lp’)
pulp.CPLEX_CMD().solve(model)
print "I need to spend at least %.2f" % \

model.objective.value()
print "Menu:", b, b.value(), i, i.value(), \

s, s.value(), c, c.value()

6 / 18
N

Set up

Prerequisites: standard CPLEX (or Gurobi, or GLPK, or Coin)
and Python installations. Then run:
$ easy_install pulp
Some installation progress reports
$ python nutrition.py
Some CPLEX progress reports
I need to spend at least 0.90
Menu: Brownies 0.0 Ice_cream 3.0 Soda 1.0 Cheesecake 0.0

Some more useful packages to install: ipython, numpy, networkx
and matplotlib.

7 / 18
N

Set cover

Given a set of elements E = {e1, e2, · · · , em} and a family of sets
F = {s1, s2, · · · sn} s.t.

⋃
F = E , find a subset X of F

s.t.
⋃
X = E and |X | is as small as possible.

min
m∑

i=1

xi∑
{i |ej∈si}

xi ≥ 1 ,∀ej ∈ E

xi ∈ {0, 1} ,∀i ∈ {1, 2, · · · n}

8 / 18
N

Set Cover ILP in Python

model = LpProblem(’Set cover’, LpMinimize)

chosen = LpVariable.dicts(’Set chosen’, sets,
0, 1, LpInteger)

model += lpSum(chosen), "Chosen sets"
for j in elements:

model += lpSum(chosen[i] for i in sets
if j in setcontents[i]) >= 1, \

"Element %s" % j

9 / 18
N

Running the Set Cover script

$ cat sets
a b d
a b c

b d e
$ python setcover.py sets
Some CPLEX progress reports
Need to use at least 2 sets:
[’a’, ’b’, ’c’]
[’b’, ’d’, ’e’]

10 / 18
N

Set Cover I/O code
import sys, itertools
from pulp import *

setcontents = [line.split() for line in
open(sys.argv[1]).readlines()]

sets = range(len(setcontents))
elements = set(itertools.chain(*setcontents))

MODEL GOES HERE

pulp.CPLEX_CMD().solve(model)
print "Need to use at least %d sets: " % \

model.objective.value()
for i in sets:

if chosen[i].value() == 1:
print setcontents[i]

11 / 18
N

Integer Multiflow

Given a graph G = (V ,E) with edge capacities and a set of
demands D ⊂ V × V , determine if it is possible to find a path for
each d t

s ∈ D, from s to t , with no more than ce leading through
any e ∈ E .
We will use graph given by a capacity matrix. Demands will also
be given by a matrix stating the numbers of demands between the
vertices.

12 / 18
N

Integer Multiflow ILP

∑
v∈Nu

f s,t
v ,u −

∑
z∈Nu

f s,t
u,z =

−d t

s u = s
d t
s u = t

0 otherwise
, ∀s, t, u ∈ V

∑
s,t∈V

(f s,t
u,v + f s,t

v ,u) ≤ cuv , ∀u ∈ V , v ∈ Nu

f s,t
u,v ∈ Z+ , ∀s, t, u ∈ V , v ∈ Nu

13 / 18
N

Integer Multiflow ILP in Python: variables

model = LpProblem(’Integer multi-flow’)
flow = LpVariable.dicts(’Flow’, [(s, t, u, v)

for s in xrange(n) for t in xrange(n)
for u in xrange(n) for v in neighbours[u]],
lowBound = 0, cat = LpInteger)

14 / 18
N

Integer Multiflow ILP in Python: constraints

for s in xrange(n):
for t in xrange(n):
for u in xrange(n):
model += lpSum(flow[s, t, v, u] for v in neighbours[u])\

-lpSum(flow[s, t, u, z] for z in neighbours[u])\
== (-demands[s, t] if u == s \

else demands[s, t] if u == t \
else 0)

for u in xrange(n):
for v in neighbours[u]:
if v < u: # Constrain each edge only once

model += lpSum(flow[s, t, v, u] + flow[s, t, u, v]
for s in xrange(n)
for t in xrange(n)) <= capacities[v, u]

15 / 18
N

Integer Multiflow ILP in Python: I/O
import sys, numpy
from pulp import *

capacities = numpy.loadtxt(sys.argv[1])
demands = numpy.loadtxt(sys.argv[2])
n = len(capacities)
neighbours = [[v for v in xrange(n)

if capacities[u, v] > 0]
for u in xrange(n)]

MODEL GOES HERE

pulp.CPLEX_CMD().solve(model)
print "Routing is%s feasible" % \

(’’ if LpStatus[model.status] ==
’Optimal’ else ’ not’)

16 / 18
N

Integer Multiflow ILP in Python: visualization
import networkx as nx, matplotlib.pyplot as plt
from time import sleep

net = nx.Graph(capacities)
pos = nx.spring_layout(net)
nx.draw(net, pos = pos); plt.draw(); sleep(5)
for s in xrange(n):

for t in xrange(n):
if demands[s, t] > 0:

nx.draw(net, pos = pos)
route = nx.Graph([(u, v) for u in xrange(n)

for v in neighbours[u]
if flow[s, t, u, v].value() > 0])

nx.draw(route, pos = pos,
edge_color = ’green’, width = 3)

plt.clf(); plt.draw(); sleep(2)

17 / 18
N

Homework

If you want to play with the scripts, they can be downloaded from:
http://www-sop.inria.fr/members/Remigiusz.
Modrzejewski/LPSeminar (or http://u.42.pl/2I37).
Note that the easy_install command in most distributions of Linux requires root
priveleges by default. This can be circumvented in a dirty way by two lines in
.bashrc (look out when copying, ’ sign must be the one on your keyboard):

echo >>~/.bashrc ’export PYTHONPATH=${HOME}/.pylibs’
echo >>~/.bashrc ’alias easy_install="easy_install -d ${PYTHONPATH}"’
source ~/.bashrc
mkdir ${PYTHONPATH}

Or in a proper way with virtualenv, what needs some reading.

18 / 18
N

http://www-sop.inria.fr/members/Remigiusz.Modrzejewski/LPSeminar
http://www-sop.inria.fr/members/Remigiusz.Modrzejewski/LPSeminar
http://u.42.pl/2I37

