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Abstract: In this paper we have developed a framework for automatic detection and
classification of disturbances in a distribution feeder. Unlike existing techniques, we
examine these disturbances based on their underlying causes. A fundamental and im-
portant part of this process is the segmentation of the disturbances from the captured
signal using either a Kalman Filter (KF) or a Multi-resolution Signal Decomposition
(MSD) technique. The segmentation process divides the quasi-stationary Root-Mean-
Square (RMS) signal into pre-disturbance, disturbance and post-disturbance regions.
The pre- and post-disturbance segments are essentially stationary while the nonsta-
tionary nature is extracted as the disturbance segment. An important facet that is
often forgotten is the morphology of the captured voltage or current signal’s RMS.
We represent each of the segmented regions as strings or sequences of predefined wave
patterns, called primitives. Any syntactically correct combination of these primitives
will define the morphology of the mother RMS signal. The grammar and the model
for each class is built from a set of positive examples (I+) or the learning set using
the Error-correcting Grammatical Inference (ECGI) learning technique. A stochastic
extension of the ECGI similar to a Viterbi-like dynamic algorithm in combination with
the k-nearest neighbor algorithm (kNN) classifier is used to recognize the captured data.
The structure of a new pattern can be learnt by updating the current grammar with
the inferred production rules.
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1 INTRODUCTION

The burgeoning need to reduce maintenance costs and to
provide for ways to improve the stability and quality has
led the utilities to focus on long-term recording and anal-
ysis of power system disturbances. These disturbances in-

clude events that are normal-low priority, abnormal -high
priority, and disturbances that have never been observed
(low or high priority). Any power line disturbance that
affects the performance of sensitive electronic equipment
is related to Power Quality (Gaouda et al. (2000);Heydt
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(1998)). Recording of a power system disturbance includes
both time and frequency domain conducted parameters,
and the disturbances may be caused due to over/under
voltages, interruptions, Capacitor, transformer energizing,
Tap Changing Under Load (TCUL), Motor/load switch-
ing, power electronic devices operating, transients, phase
imbalance, frequency aberrations, re-strikes, blown fuses,
arcing, storm and environment related damages or others.

However, analysts frequently face the situation where
they are flooded with a large amount of data. Even a
momentary interference of two seconds requires about two
hours of manual data sorting. This is not only time con-
suming but often repetitive. The research towards the au-
tomatic processing of the data is inspired by the need to
overcome this burden. Existing technologies examine the
captured data as sags, swells or harmonics, and there has
never been an effort to individually identify the underly-
ing cause of these disturbances. Identification of the cause
and defining the priority handling levels are very impor-
tant for an engineer or technician to isolate the problem
early, and to find an immediate solution. In this paper, we
solve the issue of automatic classification of disturbances
in a distribution system and also facilitate the conversion
of the large amount of data to information that will allow
immediate assessment.

A number of ideas have been introduced for simplifying
the task of users who study patterns in waveforms. The
TimeSearcher (Hochheiser and Shneiderman (2002)) is one
such approach that finds patterns in complex time-series
data based on a ROI query. Another important appli-
cation, in the lines of this paper has been discussed for
automotive fault diagnostics (Crossman et al. (2003)) and
in parsing EKG signal (Morrill (1998)).

This paper is organized in the following manner. In Sec-
tion 2, we describe briefly the experimental set up and
the disturbances that are observable on a typical distribu-
tion feeder circuit. We employ two different approaches
for the localization and detection of disturbances in the
voltage and current signal. In Section 3.2, we segment
the signal either with a recursive optimal estimator like
the Kalman Filter (KF) or using the Multi-resolution Sig-
nal Decomposition (MSD) technique. Formulating the KF
requires knowledge of the initial conditions, the process
noise, and the measurement noise. The estimated state
variables, on completion of the initialization cycle are used
as the initial state variables for the successive cycle. When
all the state variables reach steady state, under nonstation-
ary conditions, the measurement residual contains outliers
that is used for segmenting the nonstationary region. The
MSD on the other hand decomposes the original signal
into a smoothed and detailed version of the signal. We
can localize the disturbance by enhancing the squared de-
tail Daubechies’ wavelets (Daub4) (Mallat (1999)). A peak
detection algorithm detects the outliers and hence the non-
stationary regions in the signal. We provide valuable ar-
guments to support the use of MSD over the KF for signal
segmentation.

In Section 4 we use the compactness, bound and cluster-

ing ability as guidelines to define the desired features. The
generic features are inferred from time domain or statisti-
cal analysis of the signal. Other features are derived from
either the segmentation or the morphology of the signal.

A syntactic approach to recognizing disturbances in-
volves partitioning the Root-Mean-Square (RMS) of the
signal into sub-patterns or primitives and defining a struc-
tural relationship among them. We tackle the difficult
problem of assigning each piecewise linear signal segment
to the right primitives in Section 5.2. Primitive templates
are first extracted from the training data and these are
then stored as reference signatures. In Section 5.2.4, we
generate the set of rules, the grammar for connecting the
primitives. The production rules are derived from a finite
set of positive training strings I+. If the new string is not
acceptable by the grammar, a standard error-correcting
parsing (Rulot and Vidal (1988);Rulot et al. (1989);Vidal
et al. (1993)), based on similarity of patterns is used to
determine the distance measure between a sentence repre-
senting a known pattern and a sentence representing an un-
known pattern. Then, every string that cannot be parsed
is adopted to determine a string in the language of the cur-
rent grammar that is error-correcting closest to the input
string. Since each step has more than one production rules
for deriving it, probabilities are assigned to alternatives in
order to indicate likelihood of occurrence or to guide the
process of selection. This stochastic recognition algorithm
is used in combination with the k-Nearest Neighbor (kNN)
features by the classifier for recognizing the disturbances
and their cause.

Once the normal disturbances are classified, the un-
known or abnormal disturbances have to be analyzed to
detect emerging fault conditions. Classification becomes
easier if the disturbance exhibits characteristics or features
similar to a known abnormal disturbance. In Section 7, we
provide a case study that shows the complexity and diffi-
culty in concluding some disturbances as abnormal. Tem-
poral aggregation and correlation over time is proposed for
detecting emerging or existing conditions.

2
DATA COLLECTION, MANAGEMENT AND

PROCESSING

2.1 Experimental Setup and Management

Disturbance monitors are instruments designed to detect
and record data on power system variations. But only the
objective for a particular project will determine the choice
of monitoring equipment, the method of collecting data,
the triggering thresholds needed, the data analysis tech-
nique to employ, and the overall level of effort required of
the project.

The monitoring units should store the high-speed wave-
form data only when any one of the power system param-
eter crosses the configured thresholds (IEEE (1995)) that
are set for it. The thresholds are set below (more sensi-
tive) equipment susceptibility levels to ensure that all the
disturbances are recorded. There is always a trade-off be-
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tween being overly sensitive and capturing the slight fluc-
tuations, and not capturing the important disturbances.
A server coordinates the activities, manages the long-term
data storage, and communicates with the external clients.
The preliminary calculations are handled by the server,
while a more detailed and advanced analysis or classifica-
tion is carried out at the client level. In the remaining part
of this paper, our discussion will be on the analysis at the
client level that involves the integration of the recognition
algorithm.

2.2 Description of the recorded data

The power signal contains the fundamental frequency (f)
and the higher order harmonics that are an integral mul-
tiple of f . To prevent aliasing, and to satisfy the Nyquist
criterion, the sampling frequency (fs) is:

fs ≥ 2fh (1)

where, fh is the highest frequency in the signal. For our
example, fs is assumed to be 15360 samples per second
(i.e., 256 samples per cycle at f = 60 Hz). The signal that
is used by all the algorithms are either the voltage (three
phases) or current waveform (three phases and a neutral)
or the RMS of the signals (see Section 3.1.2).

2.3 Disturbances in a Distribution System

The disturbances that occur in a distribution or a trans-
mission system at a higher level could be classified into one
of the following:

• normal Disturbance, (every day observable, low prior-
ity),

• abnormal Disturbance, (requires immediate attention,
high priority), and

• unknown, (low or high priority).

The principal phenomena that causes these electromag-
netic disturbances, as classified by the IEC is listed in
(IEEE (1995)). The normal disturbances in a Power Sys-
tem constitute the majority of the data that occurs in a
Power System. It is very important that the automatic
recognition system is able to identify these disturbances
and classify them right (no false positives), so that it is
easy to isolate those which might affect the reliability of
the system. These include:

• Capacitor Energizing,

• Capacitor De-energizing,

• TCUL Up,

• TCUL Down,

• Load Variations (Increase and Decrease),

• Inrush (e.g. caused by lightning), and

• Overcurrent Faults (Normal).

The abnormal disturbances represent devices that may
have failed or is in the process of failing in which case they
would provide early warning signals about the impending
failure. Examples, are failing TCUL or equipment, a stuck
capacitor switch, etc. It is very likely that the algorithm
cannot enumerate and characterize all possible operating
modes of the power system devices. In such a case, the
algorithm categorizes these disturbances as unknown.

Each of the above disturbances exhibit a particular char-
acteristic that is useful for recognizing their sources. For
example, a capacitor switching disturbance on a distribu-
tion system would exhibit a step change on the RMS of
the current or the voltage accompanied by switching tran-
sients (Bollen et al. (2007)). Similarly, a voltage sage is
very commonly associated with a Motor coming into op-
eration. So the identification of the shape of the RMS of
the waveform is very important. Some of the commonly
observed RMS signal shapes are:

1. Step up in current (voltage),

2. Step down in current (voltage),

3. Short duration current (voltage) sag,

4. Short duration current (voltage) swell,

5. Fault induced current swell,

6. Fault induced voltage sag,

7. Impulsive current (voltage) transient, and

8. Short or long plateau of the current (voltage).

2.3.1 Transients

Transient pertains to or designates a phenomenon that
varies between two consecutive steady states during a time
interval that is short compared to the time scale of in-
terest (see Fig. 3 and Fig. 4(b)). A transient can be a
unidirectional impulse of either polarity or a damped os-
cillatory wave with the first peak occurring in either polar-
ity. Impulsive transients causes a sudden non-power fre-
quency change in the steady-state condition of voltage or
current that is unidirectional in polarity (primarily either
positive or negative). Oscillatory transient are a sudden,
non-power frequency change in the steady-state condition
of voltage or current that includes both positive and neg-
ative polarity value.

2.3.2 Short duration power disturbances

Sag/Dip: A sag/dip causes a decrease in between 0.1 pu
and 0.9 pu of the RMS voltage or current at the power fre-
quency for durations from 0.5 cycles to one minute. The
IEC definition for this phenomenon is dip. When not speci-
fied otherwise, a 20% sag will be considered an disturbance
during which the RMS voltage decreased by 20% to 0.8 pu.
Voltage sags are usually associated with system faults but
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can also be caused by heavy loads or large motors coming
into operation. Fig. 1(a) and (b) show voltage sags that
are associated with a motor coming into operation, while
Fig. 2(a) and (b) were caused by lightning and transformer
energizing respectively.

(a) (b)

Figure 1: (a) Temporary 35% voltage sag caused by motor
starting (duration 90 ms) (IEEE (1995)), (b) U-Shaped
sag in voltage signal due to Motor start.

(a) (b)

Figure 2: (a) Disturbance in current caused by lightning
(IEEE (1995)), (b) V-Shaped sag in voltage signal due to
transformer energizing.

Figure 3: Trough in voltage signal due to transients.

Swell: A swell is defined as an increase to between 1.1
pu and 1.8 pu in RMS voltage or current at the power fre-
quency for durations from 0.5 cycle to one minute. As with
sags, swells are usually associated with system fault condi-
tions. However, they are not as common as voltage sags, as
they could also be operating in a neighboring circuit. One
way that a swell can occur is from the temporary voltage

rise on the un-faulted phases during a single line-to-ground
(SLG) fault. Swells are characterized by their magnitude
(RMS value) and duration. The severity of a voltage swell
during a fault condition is a function of the fault location,
system impedance, and grounding. A 15% swell, like that
shown in the Fig. 4(c), is common on utility feeders.

(a) (b)

(c) (d)

Figure 4: (a) Step-up disturbance in voltage signal, (b)
Spike in the current signal due to transient, (c) Syn-
chronous swell in current signal due to motor start, (d)
Current transient swell from protective device operation
after a fault.

2.3.3 Long duration power disturbance

Increase in the RMS AC voltage (or decrease in RMS AC
current) greater than 110% (lesser than 90%) at the power
frequency for a duration longer than 1 min. These might
be caused by:

• Load going out of operation,

• Capacitor energizing (see Fig. 4(a)), and

• TCUL on.

Decrease in the RMS AC voltage (or increase in RMS AC
current) to less than 90% ( greater than 110%) at the power
frequency for a duration longer than 1 min. The causes
often are:

• Load coming into operation,

• Capacitor de-energizing, and

• TCUL off.

3 PROPOSED APPROACH

In this section we introduce the approach that is used in
locating the sources from the data. The following are the
steps that are involved in building the module (Fig. 5) for
such a system:
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1. Monitor the power system network and record the
data,

2. pre-process the data and extract features,

3. classify the captured current (voltage) signal into pre-
defined categories based on the underlying distur-
bance that caused them,

4. apply prior knowledge about the source, and

5. decide possible solutions.

Figure 5: Proposed architecture for detecting and classify-
ing the source of nonstationary disturbances in a distribu-
tion system.

3.1 Pre-Processing

3.1.1 High Pass Filtering

The presence of a DC voltage or current in an AC power
system is termed DC offset or bias. This phenomenon
can occur as the result of a geomagnetic disturbance or
due to the effect of half-wave rectification. Power signals
often contain DC offsets that limit the capability of the
algorithm to estimate and segment the signal. To remove
the DC offset, we transmit the raw signal through a high
pass digital filter with a cut-off frequency of 20 Hz. This
not only removes the DC bias but also the low frequency
components that are not representable with the state space
model (see Section 3.2.1).

3.1.2 RMS Calculation and Normalization

If the discrete version of the monitored power line signal is
represented z[n], n ∈ N

∗, then the RMS of the signal can

be calculated as:

zr[k] =

(
kNs∑

n=(k−1)Ns+1

z2[j + n]

Ns

) 1
2

(2)

where, Ns = (N × f)/fs is the number of samples per
cycle (256) and N is the total number of samples in the
captured signal. The RMS values are updated either at the
end of each cycle, or half cycle for reducing the memory
for storage or processing.

Once the RMS of the signal is calculated, the signal has
to be normalized before extracting the generic features.

yr[n] =
zr[n]− z̄r

szr

(3)

where, (z̄r, szr
) are the sample mean and standard devia-

tion of the RMS of the signal respectively.

3.2 Segmentation

Segmentation is the process of dividing an interval of data
into sections that are homogeneous with respect to some
statistical quality. This is important to not only detect the
disturbance but also to localize it within a capture data.
There are two methodologies preferred and in the following
paragraphs we shall introduce them in detail while also
giving valid reasons for choosing one over the other.

3.2.1 Kalman Filter

The Kalman Filtering (Kalman (1960)) provides a means
for optimally estimating the voltage and current signal and
to track the time-varying parameters. It is a recursive op-
timal estimator for estimating the 60 Hz voltage and cur-
rent components. It requires a state variable model for the
parameters to be estimated and a measurement equation
that relates the discrete measurement to the state vari-
ables (parameters). The derivations of the Kalman filter
are well described in several excellent references (Barham
and Humphries (1969);Brown and Hwang (1992)). The it-
erative algorithm is given in the Appendix B of this paper.

State Space Model for the current and voltage The
mathematical model of the states to be estimated is as-
sumed to be of the form:

x[k + 1] = φkx[k] + w[k] (4)

where, x[k + 1] is the new discrete system state that is to
be estimated at a time instant (k + 1)Ts and is a linear
combination of the previous states and some process noise
w[k] (for allowing variation of the state variables), and
1/Ts is the sampling frequency fs.

The measurement equation is given as:

z[k] = hkx[k] + ν[k] (5)

where, ν[k] is the random measurement noise, and is as-
sumed to be independent with zero mean and covariance
R.
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State Variable Representation of a Signal that in-
cludes n Harmonics Consider a signal s(t) with a fre-
quency ω, with n harmonics and a magnitude of A(t) de-
fined in the L2(R) space. These signals are bounded, i.e.

∞∫

−∞

|s(t)|2dt <∞ (6)

where,

s(t) =
n∑

i=1

Ai(t)cos(iωt+ θi), (7)

θi is the phase angle of the ith harmonic relative to a ref-
erence rotating at iω.

Since each frequency component required two state vari-
ables, in-phase and quadrature-phase components of the
harmonics with respect to a rotating reference, the total
number of state variables is 2n. The measurement equa-
tion can now be expressed as:

zk = hkxk + νk =





cos(ωk∆t)
−sin(ωk∆t)

· · ·
cos(nωk∆t)
−sin(nωk∆t)





T 



x1

x2

· · ·
x2n−1

x2n





k

+ νk

(8)
It should be indicated here that hk in this case is a time-
varying vector.

Selection of Kalman Filter Parameters To start the
Kalman filter recursive estimation, an initial process vec-
tor (x̂−

0 ) and the associated initial covariance matrix (P−
0 )

are needed. The initial covariance matrix describes, in a
statistical sense, the range of variations of the state vector
x from the initial process vector, x̂−

0 .

1. Initial process vector (x−
0 ):

As the Kalman filter model started with no past mea-
surement, the initial process vector was selected to
be zero. The first half cycle is considered to be the
“initialization cycle”.

2. Initial covariance matrix (P−
0 ):

The initial covariance matrix was selected to be a di-
agonal matrix with the diagonal values equal to 10pu2.

Once the initialization cycle is complete, the estimated
state variables are used as the initial estimate of the state
variables for the successive cycle. The Kalman gain vec-
tor kk and the covariance matrix Pk reach steady-state in
about half a cycle. When the above model is used, the
steady-state Kalman gain becomes periodic with a period
of 1/60 seconds. Its variation include harmonics of 60 Hz.
The covariance matrix in the steady-state consists of a con-
stant plus a periodic component. These time variations are
due to the time-varying vector in the measurement equa-
tion. Thus, after initialization of the model, the Kalman

gain vector of the third cycle can be repeated for succes-
sive cycles (Girgis et al. (1991)). When all the state vari-
ables reach steady state, then the measurement residual
(zk − hkx̂

−
k ) is very small. However, if the signal deviates

from the expected behavior, then the residual is very large.
This information in combination with a spike detection al-
gorithm (Section 3.2.3) is used to detect nonstationarity.

3.2.2 Multiresolution Signal Decomposition
(MSD)

Although Fourier analysis has been used in Power Sys-
tem for analyzing the voltage and current signal, it does
not provide good results for nonstationary signals. This is
because when transforming the complete signal to the fre-
quency domain, the time information gets lost. This means
that we can determine all the frequencies present in a signal
without knowing where they are present. The MSD over-
comes this deficiency by allowing a windowing technique
with variable-sized regions, i.e., it allows the use of long
time intervals where we want more precise low-frequency
information, and shorter intervals where we want high-
frequency information.

Since power disturbances are finite energy transient or
nonstationary signal, they are decomposed into an ap-
proximated and a detailed version of the original signal.
Since the detail signal contains sharp edges, transitions,
and jumps, the decomposition helps in distinguishing the
disturbance from the background signal. However, it is
also important to know the level of decomposition and the
wavelet suited to detect the slow and the rapid transitions.
From experiments it was found that it is sufficient to re-
strict the decomposition to just four levels for the segmen-
tation process.

If cl and the dl are the smoothed and detail signals of
the original signal at levels l, then

cl[n] =
∑

k

h[k − 2n]cl−1[k], (9)

dl[n] =
∑

k

g[k − 2n]cl−1[k], (10)

where, h[n] and g[n] are respectively the associated filer co-
efficients that decompose the signal into successive levels,
and c0[n] = z[n] is the original discrete captured signal.

Choice of the Mother Wavelet The choice of the
mother wavelet plays a significant role in detecting and
localizing various types of disturbances. Daubechies’ was
chosen because they are compactly supported with ex-
tremal phase and highest number of vanishing moments
for a given support width. Also the associated scaling fil-
ters are minimum-phase filters. So, from the point of views
of fast implementation and varying patterns of the signals,
Daubechies’ wavelets appeared to be the optimal choice as
the mother wavelet for this specific application.

Daubechies’ wavelets with 4, 6, 8, and 10 filter order
works well in most cases (Santoso et al. (1994)). However,
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for sag or over-voltage disturbances, Daubechies’ wavelet
with four filter coefficients (Daub4) cannot detect or lo-
calize the disturbances. From our experiments, it was ob-
served that the fast transients can be detected using the
Daub4 or the Daub6 due to their compactness. The slower
transient are marked with a smooth amplitude change, and
the Daub8 or the Daub10 are long enough to capture them.
For the Daub4 wavelet, the scaling function φ(x) has the
form:

φ(x) = c0φ(2x) + c1φ(2x− 1) + c2φ(2x− 2) + c3φ(2x− 3)
(11)

where,

c0 = (1 +
√

(3))/4,

c1 = (3 +
√

(3))/4, (12)

c2 = (3−
√

(3))/4,

c3 = (1−
√

(3))/4.

and φ(x) can be obtained iteratively from (11). The Daub4
wavelet function ψ(x) for the four scaling function is given
by:

ψ(x) = −c3φ(2x)+c2φ(2x−1)−c1φ(2x−2)+c0φ(2x−3).
(13)

3.2.3 Spike Detection

A Spike (or Trough) is a data point whose first difference
is an outlier value. And outlier is a data point whose first
difference is greater than a specified threshold (τ) that can
be determined statistically from the time series. A robust
estimate of τ should be used so that its value is not affected
by the outliers. A spike detection algorithm in combination
with the segmentation algorithm determines the location
of the disturbance within the signal. If:

r[n] = z′[n]− z̄′ (14)

where, z′[n] is the first differential of a discrete signal z[n]
that contains the spikes. The output of the spike detection
algorithm is:

p[n] =

{
0, r[n] < τ
1, r[n] ≥ τ

(15)

where, τ = 10 ∗ σr, and

σ2
r =

1

N

N∑

i=1

(r[i]− µr)
2
. (16)

The morphological filters of (Ji et al. (2008);Lu et al.
(2006)) could also be used for the spike detection. Fig. 6
shows the result of segmenting the voltage and current
signal due to an incoming load into the pre-disturbance,
disturbance and post-disturbance categories.

4
AUTOMATIC FEATURE EXTRACTION AND

SELECTION

In this section, we discuss the automatic feature extraction
and the optimal feature selection module.

(a) (b)

Figure 6: (a) V-shaped sag segmented into three sub-
categories, (b) V-shaped swell segmented into three sub-
categories (knots are shown as circles).

4.1 Feature Extraction

It is the process of transforming the classification data into
a format that highlights the class differences in the data
and also converts it to a form compatible with the classifier.
We use the heuristics guidelines of compactness, bounds
and clustering ability from (Crossman et al. (2003)) for
extracting the signal features. Accordingly, we found the
following feature families that are sufficient to characterize
the disturbance behaviors.

4.1.1 Generic Features

The basic features that are extracted from the normalized
RMS of the signal or the segmented signal are:

1. Minimum: nyr
= min(yr[i]), i ∈ [a, b]

2. Maximum: myr
= max(yr [i]), i ∈ [a, b]

3. Range: ryr
= myr

-nyr

4. Length (duration): lyr
= b− a

5. Average: azr
=

P

i∈[a,b]

zr [i]

b−a

6. Fluctuation: fzr
=

( P

i∈[a,b]

(zr[i]−z̄r)2

b−a

) 1
2

where, yr is a given length segment (3), and i is the signal
segment sample index. The minimum, maximum, range.
and average give the statistical nature of the signal and
they are self-descriptive. The fluctuation index, gives the
amount of variations in each of the segment. The other
generic features distinguish between identically shaped sig-
nals and are useful for the advanced classification process.
Table 1 gives the generic feature vector extracted for a
TCUL on operation.

4.1.2 Harmonic Features

Certain disturbances cause harmonic distortion in the volt-
age and the current signal. Harmonic Distortion is mainly
caused by the operation of nonlinear loads and devices
in the power system. Total Harmonic Distortion (THD)

7



FEATURES VALUES

Number of Spikes 0
Fluctuation Index 2.4147

RMS Signal Maximum (p.u.) 1.0928
RMS Signal Minimum (p.u.) 0.89907

Number of inflections 1
RMS Signal Range 0.1937

Transient Detected (1-Yes, 0-No) 0

Table 1: Generic feature vector for a TCUL.

(Sabin et al. (1999)) can describe the amount of harmonic
distortion by normalizing the total voltage harmonic com-
ponent content by the fundamental frequency component.
Accordingly,

THD =
1

zr,1
(

∞∑

k=2

z2
r,k)

1
2 × 100% (17)

where, zr,k is the RMS value of the kth harmonic and zr,1

is the RMS value of the fundamental.

4.1.3 Segmentation Features

For recognition of geometrically shaped signals, localiza-
tion of the disturbance is of primary importance. The fea-
tures that are extracted based on just segmentation of the
signal are: location in the captured data, number of distur-
bances, individual magnitude, separation between multiple
disturbances, and number of phases involved (synchronous
or non-synchronous). If there are multiple disturbances
that are related to each other, then they should be tem-
porally aggregated to identify or confirm the disturbance.
If they are unrelated, they should be each treated differ-
ently and the disturbance that is most likely to cause alarm
should be used to label the capture data. It is very dif-
ficult to specify when the disturbances in a capture data
are related. Usually if the time separation between them
is more than 1 minute, they should be treated as two sep-
arate disturbances. Also it was a general observation that
most disturbances that are synchronous in all the phases
are most likely to be normal power system disturbances
(load related) and most abnormal disturbances are asyn-
chronous in nature. Table 2 gives the generic feature vector
extracted for the Step-up disturbance.

FEATURES VALUES

Change Direction 1
(Up: 1, Down: -1, Plateau: 0)

Number of disturbances 1
Disturbance Separation 0,0,0

(Max, Mean, Min)
Phase Information (Exists-1, N/A-0) [1 1 1]

Table 2: Example segmentation feature vector for a step-
up disturbance.

4.1.4 Shape-based features

Concavity/Convexity This is a rough estimate of the
curvature of a discrete signal over a particular segment.
Given a function f : R 7→ R, is concave ⇐⇒

f(t) ≥
pf(t− q) + qf(t+ p)

p+ q
, ∀p, q > 0, ∀t > q. (18)

A function is f convex if (−f) is concave. For a discrete sig-
nal, the curvature is a measure of deviation from a straight
line or closeness to a circle. Both indices are calculated by
fitting a straight line curve between the two endpoint data
samples of a signal segment, and then calculating the ratio
of the number of samples in the segment that are above
(concavity) and below (convexity) this line.

Let the equation of the line be given by f = myr + b,
then from the definition of concavity and convexity:

cv =

∑
i∈[a,b]

{
1 if yr[i]− f[i] > 0
0 if yr[i]− f[i] ≤ 0

b− a
(19)

cx =

∑
i∈[a,b]

{
1 if yr[i]− f [i] < 0
0 if yr[i]− f [i] ≥ 0

b− a
. (20)

This feature gives a basic idea of the segment’s shape and
it was found to be very resistant to noise.

Signal Bends The bends in a signal are regions in the
signal where the curvature of the signal changes. The
shape of the signal can be approximated by knowing the
number of times the RMS of the signal changes its direc-
tion. The number of bends in the signal is calculated by
detecting the number of times the line f =

myr +nyr

2 inter-
sects the signal yr[n].

4.1.5 Detecting High Frequency Transients

High Frequency Transients in a signal could be detected
by a combination of a higher order difference filter and a
spike detection algorithm (Section 3.2.3). The interested
readers can refer to (Pankajakshan and Kumar (2007)) for
more details on the higher-order difference filter.

4.1.6 Wavelet and Wavelet Packet Features

Detail Wavelet Features We perform the discrete
wavelet decomposition on the signal (DWT) to the twelfth
level of resolution (9) (10). From the wavelet coefficients,
we compute the average energy content of the coefficients
at each resolution. Features are then extracted from the 13
sub-bands (12 wavelet sub-bands and one approximation
sub-band).

The ith element of a feature vector is given by

vdwt
i =

1

ni

ni∑

j=1

W 2
i,j , i = 1, 2, . . . , 13, (21)
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where, n1 = 211, n2 = 210, . . . , n12 = 20, n13 = 20; vdwt
i is

the ith feature element in a DWT feature vector; ni is the
number of samples in an individual sub-band; and W 2

i,j is

the jth coefficient of the ith sub-band. As a result, a DWT
feature vector is formed as

vdwt = [vdwt
1 , vdwt

2 , . . . , vdwt
13 ]T (22)

In the following few paragraphs, we introduce additional
features that are a useful measure of shapes and noise lev-
els.

• Wavelet Coefficient Average(WAl): This feature is the
average value of detail wavelet coefficients at level l
over the segment. When calculated for the Daub1
mother wavelet, WAl gives an indication of the slope
of the signal.

WAl =

∑
i∈[b,a]

dli

b− a
(23)

where, dl is the lth detail level of wavelet coefficients;
dli is the ith coefficient in the lth level.

• Wavelet Coefficient Energy (WEl): WEl gives the en-
ergy of the detail wavelet coefficients at level l over the
segment. For normally plateau segments, WEl can be
a good indication of the noise level and frequency over
the segment. The noise distorts the 4th level wavelet
coefficient, but not the 1st level wavelet coefficients.

WEl =

∑
i∈[b,a]

d2
li

b − a
. (24)

• Wavelet Quarters WQ: This feature consists of four
values per detail coefficient and is calculated as

WQ1
l =

∑
i∈[a,m]

dli

m− a
, if dli > 0

WQ2
l =

∑
i∈[a,m]

dli

m− a
, if dli < 0 (25)

WQ3
l =

∑
i∈[m,b]

dli

b−m
, if dli > 0

WQ4
l =

∑
i∈[m,b]

dli

b−m
, if dli < 0

where, m = (b−a)
2 . Upon careful inspection it can

be seen that the (26) defines the average wavelet
coefficient value for each of the four quadrants of
the segment. By name, the four quadrants are:
begin-positive, begin-negative, end-positive, and end-
negative respectively. By separating the segment in
half, the behavior of the signal entering into and ex-
iting a segment can be identified. By averaging posi-
tive and negative coefficients separately, we can avoid
giving signals with high fluctuation the same feature
values of a signal with very low fluctuation.

Wavelet Packet Features We perform the wavelet
packet (Mallat (1999)) multiresolution analysis to the fifth
level of resolution to obtain 32 sub-bands. Each sub-band
contains a total of 128 wavelet packet coefficients. From
each sub-band at the fifth level of resolution, we compute
the average energy content in the packet coefficients as:

vwp
i =

1

ni

ni∑

j=1

p2
i,j , i = 1, 2, . . . , 32 andni = 128 ∀i, (26)

where, vwp
i is the ith feature in a wavelet packet feature

vector, ni is the number of sample in each sub-band, and
pi,j is the jth wavelet packet coefficient in the ith sub-band.
The WP feature vector is represented as:

vwp = [vwp
1 , vwp

2 , . . . , vwp
32 ]T (27)

4.2 Optimal feature subset selection and ranking

After extracting the features, sometimes there could be
some of them that are redundant. The problem of optimal
feature selection is defined as follows:

Definition 1. Given a set of d candidate features, se-
lect a subset of size m (m ≤ d) that leads to the smallest
classification error (Pǫ).

This procedure can reduce not only the cost of recogni-
tion by reducing the number of features that need to be
collected, but in some cases it can also provide a better
classification accuracy due to finite sample size effects.

Let Fd ∈ R
n×d be the given set of features with cardi-

nality d and let m represent the cardinality of the desired
subset Fm ∈ R

n×m, Fm ⊂ Fd.

Fm = AT
mFd (28)

with AT
mAm = Im, and Im is identity. This can be viewed

as a linear transformation of Fd using a transformation
matrix:

Am =

[
Im
[0](d−m)×m

]
(29)

or any matrix that is a permutation of the rows of Am.
Without loss of generality, we consider the transformation
matrix Am and rewrite the corresponding covariance ma-
trix of Fd as:

Σ =

[
{Σ11}m×m {Σ12}m×(d−m)

{Σ21}(d−m)×d {Σ22}(d−m)×(d−m)

]
(30)

The feature ranking criterion can be identified by an eval-
uation function J : Rn×d 7→ R. Higher the value of J(Fd),
better is the set Fd. Following the above consideration, if
Pǫ (Appendix A) is the classification error, a natural choice
for the evaluation function is:

J = (1− Pǫ) (31)

If the number of known classes is C (see Table 3) for
a d dimensional problem with mean µi, covariance ma-
trix Σi and a priori probability of Πi (Table 4) of class
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i (i = 1, 2, . . . , C). Then let µ0 =
∑C

i=1 Πiµi. ΣB =∑C

i=1 Πi(µi − µ0)(µi − µ0)
T , ΣW =

∑C

i=1 ΠiΣi, and ΣT =
ΣB + ΣW are between-class, within-class and total covari-
ance matrices respectively.

Disturbance Assigned Labels

Step Down 1
Step Up 2
Trough 3
Spike 4

V-shaped Sag 5
U-shaped Sag 6

V-shaped Swell 7
U-shaped Swell 8

Table 3: Disturbances and their assigned class labels.

Disturbance Class Prior Probability

Step Down (1) 0.19174
Step Up (2) 0.15044
Trough (3) 0.11209
Spike (4) 0.064897

V-shaped sag (5) 0.19469
U-shaped sag (6) 0.10029

V-shaped swell (7) 0.047198
U-shaped swell (8) 0.13864

Table 4: Empirically calculated prior probabilities for each
disturbance.

5 CLASSIFICATION

Approaches to designing a classifier may be divided into
two principal categories:

1. the decision-theoretic approach, and

2. the syntactic approach.

The decision-theoretical approach relies on the utilization
of decision functions for classifying the pattern vectors. It
is ideally suited for applications where the patterns can be
meaningfully represented in vector form (like the features
extracted earlier).

5.1 k-nearest neighbor (kNN) algorithm

The method of Nearest Neighbor, proposed by T. M. Cover
and P. E. Hart (Cover and Hart (1967);Wagner (1971)), is
a very efficient nonparametric approach to classification.
This decision rule assigns an unclassified sample point to
the nearest of a set of previously classified points based on
the estimated density P (x). This rule is independent of
the underlying joint distribution on the sample points and
their classifications.

P (x) ∼=
k

NV
(32)

where, V is the volume surrounding x, N is the number
of samples, k is the number of samples inside V . The
unconditional density is estimated as,

P (x|ωi) =
ki

NiV
(33)

And the priors can be estimated as,

Π(ωi) =
Ni

N
(34)

The posterior probability then becomes,

P (ωi|x) =
P (x|ωi)Π(ωi)

P (x)
=

ki

NiV
· Ni

N

k
NV

=
ki

k
(35)

The discriminant function thus becomes,

gi(x) =
ki

k
(36)

For a given unlabeled example xu ∈ R
n, find the k closest

labeled examples in the training data set and assign xu to
the class that appears most frequently within the k-subset.

5.2 Stochastic recognition

5.2.1 Signal Morphology Description

The syntactic approach to pattern recognition possesses
the structure-handling capability lacked by the decision
theoretic approach. It is important that the characteristics
of the signal or patterns are best described by structural re-
lationships. Artificial Neural Networks (ANN) based shape
discriminators described in (Angrisani et al. (1998)) have
been used in the past to distinguish transient shape. How-
ever, these approaches are often tuned to the templates
that are used in the training process. Any geometric trans-
lations, scaling, stretching or others will affect the perfor-
mance of the recognition algorithm.

5.2.2 RMS Signal Structural Sampling

Each segment of the RMS current or voltage can be sam-
pled in terms of some pre-defined sub-waveform primitives.
The elementary properties used to describe the hierarchi-
cal structure of an object are called as primitives. The core
library of primitives includes the following:

• Simple-plateau and quantized-plateau, used to recog-
nize when a signal is constant, though perhaps noisy.

• Trending-up and trending-down, used to recognize
when the signal is periodically reaching new highs (or
new lows).

Each of these primitives is parameterized to help deal with
noisy data and they are assigned a symbol that forms part
of a relational structure representing a pattern. We la-
bel them with the lower case alphabets c − r and t − x
(Table 5). Each of them also have a minimum-duration
parameter that helps in avoiding trivially short segments.
We illustrate some example patterns and their associated
words in Table 6.
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PRIMITIVES DESCRIPTION

↑ Very Fast Trending Rise (c-g)
ր Fast Trending Rise (h-l)
→ Plateau (m)
ց Fast Trending Fall (n-r)
↓ Very Fast Trending Fall (t-x)

Table 5: Example of terminals and their pattern primitive
interpretations.

PATTERNS STRING REPRESENTATIONS

→↑→

mcm
→ց

→
ր→ momkm

→↓
→

mxm

→ր
→

ց→ mkmom
→ցր→ mrhm

→րց→ mhrm

Table 6: Example patterns and their representation as
strings.

5.2.3 Assigning Primitives to Segments

It is necessary that the piecewise linear signal segments,
generated by the segmentation process are assigned to the
right primitives. The task of primitive assignment is not
an easy one because the assignment should be insensitive
to noise or short term variations in the segments, and it
should not be restricted by the length of the segment. The
recursive partitioning of the segment procedure may slice
one large segment into a few smaller segments. Conse-
quently, some adjacent segments may have the same state
label. A simple search through the list of segments ex-
amines all adjacent pairs. If a pair of adjacent segments
has the same state, the two segments are combined into
one. Also if a segment labeled as a steady state is too
short to be significant, it is merged to its neighboring seg-
ment. The subsequences thus obtained is compared with
some extracted primitive templates from some test sig-
nals. Since there is a database of standard subsequence
templates, we use a fast similarity search (Agrawal et al.
(1995)) to choose the closest one.

5.2.4 Grammar Inference and Parsing

The grammar is a set of rules of syntax for the generation
of sentences from the given primitives and decides the ones
that are permissible. The grammar normally divides the
string into the grammatically correct ones and the oth-
ers. In case of ambiguity, it is necessary to resolve by
approximation, stochastic approach, similarity and error-
correcting parsing or transformation. The distance mea-
sure is defined between a sentence representing a known
pattern and a sentence representing an unknown pattern.
The distance is measured in terms of number of errors after
insertion, deletion or substitution. Grammatical Inference
aims at learning models of languages from examples of sen-

tences of these languages. It is concerned mainly with the
procedures that can be used to infer syntactic or produc-
tion rules of an unknown grammar G based on a finite set
of strings I from L(G), the language generated by G and
possibly also on a finite set of strings from the complement
of L(G) (see Appendix C).

Stochastic Grammar A stochastic system is one in
which each step has more than one production rules for
deriving it and probabilities are assigned to alternatives in
order to indicate likelihood of occurrence or to guide the
process of selection.

The Error-correcting Grammatical Inference (ECGI)
(Rulot and Vidal (1987)), is a GI heuristic similar to
a Viterbi-like dynamic algorithm (Amengual and Vidal
(1998);Forney (1973)) that was explicitly designed to cap-
ture relevant regularities of concatenation and length ex-
hibited by substructures of uni-dimensional patterns. It
relies on error-correcting parsing to build up a stochastic
regular grammar through a single incremental pass over a
positive training set I+. As each new string is presented,
the learning procedure attempts its recognition through
the current automaton. Initially, a trivial grammar is
built from the first string of I+. Then, for every new
string that cannot be parsed with the current grammar, a
standard error-correcting scheme is adopted to determine
a string in the language of the current grammar that is
error-correcting closest to the input string. From these re-
sults the current grammar is updated by adding a number
of rules and (non-terminals) that permit the new string,
along with other adequate generalizations to be accepted.
Similarly, the parsing results are also used to update fre-
quency counts from which probabilities of both non-error
and error rules are estimated.

The ECGI Inference Method Let G = (V,Σ, P, S) be
a regular grammar. The error rules of G can be defined as
follows (Chodorowski and Miclet (1998)):

Definition 2. For each rule in P , each a, b ∈ Σ, define the
error rules associated to P by:
Insertion (of a):
A→ aA, ∀(A→ bB) ∈ P, A→ ab, ∀(A→ b) ∈ P ;
Substitution (of a by b):
A→ aB,∀(A→ bB) ∈ P, A→ a, ∀(A→ b) ∈ P ;
Deletion (of b):
A→ B, ∀(A→ bB) ∈ P, A→∈, ∀(A→ b) ∈ P ;

The extended grammar G′ = (V,Σ, P ′, S) is obtained by
adding the error rules to P

Definition 3. The optimal corrective derivation of x ∈ Σ∗

is the derivation DG′(x) of x using the minimal number of
error rules in P ′.

The inner loop of the following procedure computes the
optimal corrective derivation of a sentence with respect to
a grammar. The whole procedure infers a grammar which
depends on the order of the examples.

ECGI Algorithm
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input I+
output Grammar G accepting I+

begin

a← I1
+(= a1 . . . ai . . . an);

V ← A0, . . . , An,−1;
Σ← a1 . . . ai . . . an;
P ← (Ai−1 → aiAi), i = 1, . . . , n ∪An−1 → an;
S ← A0;
G← (V,Σ, P, S);//current grammar
for i← 2 until |I+|//taking a new example
b← Ii

+;
D ← DG(b);
G ← G ∪D;// Adding the corrective rules to the current
grammar
end for

return G;
end ECGI

The Maximum Likelihood that a string x ∈ V ∗ be gen-
erated by the stochastic (error-correcting) extended gram-
mar of G, G′, is given by:

PG′(x) = max∀D
′

G
(x)Π∀ri∈D

′

G
(x)P (ri) (37)

where, DG′(x) is any error-correcting derivation of x from
G, and P (ri) is the probability of the ith rule of D

′

G(x).
For a C-class problem, with each class Ci represented by
a grammar Gi, the generation probabilities can be utilized
for classification in the usual way:

x ∈ Ci iff PG
′

i
(x)Πi > PG

′

j
(x)Πj i 6= j;

j = 1 . . . C,∀x ∈ V ∗

where, Πj , j = 1 . . . C is the a priori probability of class
Cj .

Disturbance Class Number of rules generated

1 51
2 56
3 123
4 121
5 117
6 92
7 75
8 115

Total unique rules 368

Table 7: Rule generation results for each class.

6 RESULTS

The segmentation approach that was proposed in Sec-
tion 3.2 was first tested on the simulated data and then
on the acquired data. The following are the results from
these experiments.

Rules Executed Rule Probability Rule Frequency

S→mM 0.030857 630
M→mM 0.09977 2037
M→rR 0.012734 260
R→mM 0.011559 236
M→mM 0.09977 2037
M→m 0.015575 318

Table 8: Example rules for a Class 1 disturbance.

6.1 Experiments on simulated data

A single phase model was built using Simulink R© for simu-
lating the motor start voltage disturbance (Kezunovic et al.
(1998)). The model is as shown in Fig. 7 and the sag in the
voltage signal due to the load is shown in Fig. 8. The MSD

Figure 7: Single Phase model for simulating motor start
disturbances.

Figure 8: Disturbance in Voltage Signal during Motor
Start.

segmentation algorithm was done on one such simulation
of a motor coming into operation and the 6 sub-categories
are as shown in Fig. 9.
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(a) (b)

Figure 9: Voltage signal due to a motor starting operation
is segmented into six sub-categories (knots are shown as
circle) (a) Pre-disturbance, (b) Post-disturbance voltage
signals.

6.2 Experiments on recorded data

The Fig. 10(a) shows an example of the RMS of the
voltage signal for a step-up disturbance and the the
Fig. 10(b) shows the stepping disturbance segmented using
the Kalman Filter and the output of the spike detection
algorithm. The Fig. 11-12 gives the detection and localiza-

(a) (b)

Figure 10: Using the residual sequence for detecting tran-
sition points (a) Example of step up measurement data
and, (b) disturbance segmented using the Kalman Filter
residual sequence.

tion of the disturbances on different captured power sys-
tem signals. The disturbances shown in Fig. 11(a) and
Fig. 11(b) are fast transients and can be detected using
the level 1 detail coefficients. However, the disturbance
shown in Fig. 12(a) and Fig. 12(b), the recovery of the sig-
nal are slow and can be detected only using the Daub6 or
the Daub8.

(a) (b)

Figure 11: MSD on (a) step down disturbance signal, (b)
spike swell disturbance signal.

(a) (b)

Figure 12: MSD on (a) U-shaped sag disturbance signal,
(b) V-shaped sag disturbance signal.

6.3 Validating the Classifier

The results of the classification is as given in Table 9. We
obtain a classification accuracy of about 96%. From the
Confusion Matrix in Table 10, it can be observed that the
algorithm sometimes fails to distinguish between an im-
pulse trough transient and incoming load voltage variation.
This is because of the similarity in shape between the two
disturbances. Additional knowledge on either could help
in clearly differentiating them.

Correctly Classified Test Data 331 (95.389%)
Incorrectly Classified Test Data 16 (4.611%)

Total Number of Test Data 347
Mean absolute error 0.014

Root Mean Squared Error 0.1068
Relative absolute error 6.5172%

Table 9: Classification results.

There is no definite function that evaluates the tolerance
between misclassifying a disturbance or rejecting it as un-
known. For example, the cost of classifying an overcurrent
disturbance (abnormal, possibly an emerging condition) as
motor start (normal)-FALSE NEGATIVE is higher than
the cost of classifying a motor start as an overcurrent
disturbance-FALSE POSITIVE. In evaluating the relative
performance of the various methods, the research team
uses the following general guidelines:

1. The method must produce a high percentage of
“TRUE POSITIVES,” i.e., outputs that correctly
classify the data captures that the method is designed
to recognize.

2. The method must produce very few “FALSE POS-
ITIVES,” i.e., outputs that indicate a data capture
has one cause when the real cause was something else.

3. Minimization of false positives is much more impor-
tant than maximization of true positives. In other
words, it is more acceptable to have data captures
that a method cannot classify that it is to have even
a few data captures that it classifies incorrectly.
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Table 10: Confusion matrix for the classifier
PREDICTED\ACTUAL 1 2 3 4 5 6 7 8

1 64 0 0 0 0 0 0 0
2 0 51 0 0 0 0 0 0
3 0 0 43 0 6 0 0 0
4 0 0 0 19 0 0 3 0
5 0 0 0 1 59 0 0 0
6 0 0 0 0 2 33 0 0
7 0 0 0 0 0 0 15 2
8 0 0 0 0 0 0 2 47

Class Labels True False Precision
Positive Positive

1 1 0 1
2 1 0 1
3 0.878 0 1
4 0.864 0.003 0.95
5 0.983 0.028 0.881
6 0.943 0 1
7 0.882 0.015 0.75
8 0.959 0.007 0.959

Table 11: Classification accuracy by disturbance.

7
TEMPORAL AGGREGATION FOR DETECT-

ING EXISTING CONDITIONS

7.1 Case study

Electric power distribution systems experience faults for a
variety of reasons. The majority of the distribution faults
are due to degradation of distribution devices because of
natural causes. When these devices begin to deteriorate,
intermittent emerging faults persist in the system from as
little as several days to several months. Hence, character-
izing device failure behavior is essential to allow scheduling
of distribution maintenance and execute remedial actions
aimed at replacing the failing equipment prior to the oc-
currence of faults and service interruptions. Since an ex-
act failure process of a piece of equipment or system is
not completely known, we usually monitor a large number
of parameters to relate the behavior of the parameters to
the faults. In (Kim et al. (1999)), it was demonstrated
that emerging fault conditions provide detectable signals,
thereby validating the concept of using on-line monitoring
conditions to detect them. Even though there are a va-
riety of conditions that can lead to supply interruptions
during fair weather, there are certain emerging events that
produce measurable electrical activity in advance of a fail-
ure or outage. Dynamic response to these instabilities may
involve large deviations from normal conditions or instabil-
ity. Many characteristics may not be known with absolute
certainty. The basic issue to be addressed is there are two
forms of uncertainty: small deviations from observed phe-
nomena and completely unseen phenomena. The latter

issue is almost impossible to be recognized automatically
but the former could be handled using a timed-event trend
analysis.

It was shown in (Manivannan and Pankajakshan (2003))
that capacitor banks in a distribution feeder causes mask-
ing of high frequency transients. Conversely, changes in
the observed daily cycle of the high frequency data can be
useful to obtain future forecasts for the data. By compar-
ing the forecast data with the actual data, it is possible to
know if there is any deviation from the normal behavior. In
Fig. 13(a) we see a noticeable trend in the high frequency
current (obtained by using a high pass filter on the current
data) during the month of December and absent after one
month (see Fig. 13(b)). The data is scaled to highlight the
difference. A simple Correlogram plot as shown in Fig. 14

(a) (b)

Figure 13: High frequency currents in the month of (a) De-
cember, and (b) January.

in combination with the classification algorithm helped in
identifying the trends as daily cycles of a capacitor coming
into and going out of operation. Once the cause has been
identified, the change or absence in the trends should be
a cause for alarm as it simply means the non-operation
of that particular device. The necessity for a temporal
aggregation (Kim (2000);Kim et al. (2004)) is highlighted
by this simple example. By using the first sequence of
data, one can predict cyclic variations in the subsequent
sequences. The residual sequence obtained after compari-
son of the actual data with the predicted data can give us
an indication of the level of deviation from the normal be-
havior. By using a simple Autoregressive-Moving Average
(ARMA) model, we can predict the successive states from
the previous states. The model is updated or recalculated
every time a deviation from the predicted behavior is ob-
served.

If we assume that x is the original RMS of the high
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Figure 14: Correlogram plot for lag 1000 and enlarged
version to show cycle length.

frequency current, then the series can be modeled as:

(1− l)(1− ln)

M−1∑

m=0

αmx[j −m] =

K−1∑

k=0

βk ∈ [j − k] (38)

In this specific case, n the lag was calculated to be about
100, M = 16 and K = 12. The plot of the predicted and
actual series with the bounds is as shown in Fig. 15.

Figure 15: Plot of actual, predicted, upper bound, and
lower bound for the High Frequency current data.

8 CONCLUSIONS

In this paper we presented a unified framework for au-
tomatically classifying disturbances based on their under-
lying cause. In this process, we used a combination of
a decision-theoretic and syntactic approach. The classi-
fication method starts with segmenting the current and
voltage signal into the stationary and nonstationary seg-
ments. We characterize the segments of each phase and
also compare the corresponding segments between the dif-
ferent phases. Syntactic pattern representation of the RMS
of a power signal is used to provide the necessary level of
abstraction between the raw data and the decision making
system. It is better than template matching techniques es-
pecially when the input signal is noisy, scaled or warped in
comparison to the templates. Eight types of disturbance
sources were considered here and the testing was done on
measurements acquired from a distribution network with
a classification accuracy of more than 95%. The error in
classification is mainly due to the similarity in shapes be-
tween the disturbances. A more direct way of distinguish-
ing them would be by using temporal aggregation. A case
study was provided to highlight the use of temporal aggre-
gation in detecting failing or failed devices.

It is also possible to develop the system so that it can au-
tomatically build the templates in limited cases by looking
at a set of training data (Miclet and Quinqueton (1988)).
For example, in the case of a capacitor switching operation,
by determining the reactive power changes or the presence
of transients and harmonics (Girgis et al. (1993)), it is pos-
sible to identify unsuccessful energizing, blown fuses, or
even failed capacitor banks. Future work could be based
on extending this framework to include abnormal distur-
bances that affect the distribution system immediately.

A DISTANCE METRICS

Formally a metric is a function d(·, ·) from R
d ×R

d 7→ R

that defines the degree of closeness between two vectors x,
y and satisfies the properties of non-negativity, definite-
ness, symmetry, triangle inequality and identity.

Definition 4. The statistical distance or Mahalanobis
distance between two vectors x = (x1, x2, . . . , xp)

T and
y = (y1, y2, . . . , yp)

T in the p-dimensional space R
p is de-

fined as

d(x, y) = ((x− y)T Σ−1(x− y))
1
2 (39)

and d(x, 0) = (xT Σ−1x)
1
2 is the norm of x.

Let δ(i, j)2 = (µi − µj)
T Σ−1

W (µi − µj) ∀i 6= j, i, j =
1, 2, . . . , C be the squared Mahalanobis distance between
the classes i and j.

Lemma A.1. Given the normally distributed data with
means µ1, . . . , µC, equal covariance matrices Σ1 = . . . =
ΣC , and equal a priori probabilities π1 = . . . = πC the
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error rate Pǫ is bounded by

Pǫ ≤
C − 1

C

C∑

i=1

Φ(−
1

2
min

j=1,...,C,j 6=i
δ(i, j)) (40)

where, Φ is the (cumulative) distribution function of the
standard normal distribution. The proof of this lemma is
given in the appendix of (Luebke and Weihs (2005))

B KALMAN FILTERING

The observation (measurement) of the process is assumed
to occur at discrete points in time in the form (8):

zk = hkxk + νk (41)

where, zk is a 1x1 vector measurement at step k, hk is a
1 × 2n vector giving the ideal (noiseless) connection be-
tween the measurement and the state vector, νk is 1x1
measurement noise vector assumed to be a white sequence
with known covariance structure and uncorrelated with the
wk sequence.

E[wkw
T
i ] =

{
Qk, i = k
0, i 6= k

(42)

The noise is usually described by its variance, Rk, where

E[νkν
T
i ] =

{
Rk, i = k
0, i 6= k

(43)

In general, the error covariance matrix, (P−
k ), associated

with an a priori estimate, x̂−
k , is defined to be:

P−
k = E[e−k e−T

k ] = E[(xk − x̂−
k )(xk − x̂−

k )T ] (44)

Having an a priori estimate, x̂−
k , and the associated error

covariance matrix, P−
k , we now wish to optimally improve

the estimate using the measurement zk. This is achieved
by a linear blending of the noisy measurement and the
prior estimate according to the following equation:

x̂k = x̂−
k + kk(zk − hkx̂

−
k ) (45)

where, x̂k is the updated estimate, kk is the blending fac-
tor.

The idea is to find the particular blending factor that
yields an optimal updated estimate. This is achieved by
forming first the expression for the error covariance matrix
associated with the updated estimate as:

Pk = E[eke
T
k ] = E[(xk − x̂k)(xk − x̂k)T ]. (46)

Now, we wish to find the particular kk that minimizes the
diagonal elements of the matrix Pk, because these elements
represent the estimation error variances of the state vector
components. This particular blending factor is called the
Kalman gain and is found to be:

kk = P−
k hT

k (hkP
−
k hT

k +Rk)−1. (47)

The covariance matrix associated with the optimal esti-
mate may now be computed as shown below:

Pk = (I − kkhk)P−
k . (48)

Now, there is a means of assimilating the measurement at
tk, by the use of the optimal kk, x̂−

k , and P−
k . At the next

step, we need x̂−
k+1 and P−

k+1 to make an optimal use of
zk+1. First, the updated estimate x̂k is projected ahead
via the state transition matrix (φk) to obtain the a priori
estimate x̂−

k+1. Thus,

x̂−
k+1 = φkx̂k. (49)

The error covariance matrix associated with x̂−
k+1 is then

obtained by forming the expression for the a priori error

e−k+1 = xk+1 − x̂−
k+1 = φkek + wk. (50)

Thus

P−
k+1 = E[e−k+1e

−T
k+1] = φkPkφ

T
k +Qk. (51)

It should be noted that the Kalman gain, in the usual linear
recursive Kalman filter, is independent of measurements.
The Kalman gain vector, which is the key parameter, can
be computed off-line.

C FORMAL LANGUAGE THEORY

C.1 Elements of formal language

An alphabet V , is a finite set of symbols. For any alphabet
in V , the countably infinite set of all sentences over V in-
cluding λ is the closure of V , denoted by V ∗. The positive
closure of V is the set V + = V ∗ − λ.

An empty string is denoted by λ such that for any z ∈ V ,

λz = zλ = λz. (52)

The null string nullifies when it is used in concatenation

Φx = xΦ = Φ (53)

C.2 Grammar and Language

A basic system studied in formal language theory is one
that gives a finite set of rules for generating exactly the
set of strings in a specific language. These rules of syntax
are generally embodied in a grammar defined formally as
a four-tuple G = (N,T, P, S) where:

• N is a finite set of non terminals or variables

• T is a finite set of terminals or constants

• P is a finite set of production or rewriting rules, and

• S in N is the starting symbol.
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It is required that N and T be disjoint sets; that is
N ∩ T = Φ, the null set. The alphabet V of the gram-
mar is the set N ∪ T . The set P of productions consists of
rewriting rules of the form α → β, where α is in V ∗NV ∗

and β is in V ∗, with the physical interpretation that string
α may be written as, or replaced by, β. α must contain
at least on nonterminal. The nonterminals are denoted by
capital letters. Lower case letters are used for the termi-
nals.

The language generated by G, denoted by L(G), is the
subset of T ∗ obtained by starting with the nonterminal S
and using a finite number of productions. In set notation,

L(G) = {x|x in T ∗, S
G
−→ x}

A context-free grammar is the Greibach normal form if
each of its productions is of the form A → aα for nonter-
minal A, terminal a, and α in N∗.
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