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Abstract. This paper describes the design and analysis of a recursive Kalman
Filter for phasor estimation of nonstationary signals. To detect the transmission
or distribution line disturbances (or faults), it is necessary to track the amplitude
and phase of the steady state, post-fault (or post-disturbance) fundamental signal
from the distorted signal. The model developed assumes a constant-frequency, ro-
tating phasor for the sampled voltage and current signals. The filter was developed
in the Simulink environment of MATLAB, and the M Programming Language was
used to model it. The parameters of the filter and the model are input through the
S-functions. The developed filter is an extended form of the discrete Kalman fil-
ter [3] and estimates the phasors in the presence of decaying dc offsets, odd or even
harmonic distortions, and measurement noise. The model settings and parameters
are customizable depending on the input signal and the noise characteristics. The
filter assumes a white noise characteristic for the signal variance and the mea-
surement noise variance. However, in a real-time system, the signal and the noise
frequencies are band limited and are therefore they are not perfectly white. The
model can still be applied but the estimation error will be different from the test
bench created signal. The open-system solution and user-friendly nature of our
interface makes it a useful educational tool for students and engineers in under-
standing the mathematical theory and reasoning behind power system protection
and voltage restoration approaches. Performance evaluation of the algorithm on
estimation is also shown in comparison with other nonrecursive techniques. The
filter has a faster convergence time and the mean square difference between the
output and actual values is a minimum. The results of the sensitivity study on
the changes in filter parameters, signal sampling rate, and fundamental frequency
drifts reveals the effectiveness of the developed scheme.
Key-words: Recursive kalman filter, phasor estimation, state-space model, noise
variance, MATLAB, digital relay, voltage restorer.

1 Introduction

When a fault occurs in a power transmission line, the voltage and current signals
are severely distorted. These signals may contain contain dc offsets, high frequency
transients, and oscillation components. To frame the state of the power system, it
is necessary to estimate the fundamental components of the steady state post fault
currents and voltages from these corrupted voltage and current signals. Digital
Relays use algorithms for estimating the functioning parameters of a power system
and then use the selected characteristics to make right decisions to disconnect a
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failed element, such as a line, transformer or a generator.
To achieve this, the transient components are superimposed on the steady state
signals immediately after the fault, so the transients become the corrupting noise.
The problem can thus be reduced to estimating the steady state components of
the sending-end voltages and currents in the presence of transient components.
However, precise calculation of these quantities is difficult in the presence of noise
and harmonics produced by the power electronic equipments and arc furnaces.
Therefore, it is essential to seek and develop a flexible and reliable method that
can measure frequency and phasor in presence of these distorting factors.
The important classes of theoretical and statistical problems in communication
and control that overlap with that experienced above in power systems are:

• prediction of random signals

• separation of these random signals from random noise

• detection of signals of known form (like pulse or sinusoid) in the presence of
random noise.

Some of the algorithms that have been proposed in literature are essentially nonre-
cursive digital finite impulse response (FIR) filters. These filters use finite length
windows, and their outputs essentially depend on the data contained within this
window. The short window technique computes the voltage and current phasors
from sampled data and then estimates the impedance as seen from the relay lo-
cations. Short window algorithms can be adversely affected by the presence of
nonfundamental frequencies in the system voltages and currents. [8] describes the
design, implementation, and testing of an adaptive distance relay that uses data
windows of different lengths for calculating phasors and impedances from those
phasors. The conventional methods ([9]) incur leakage errors in estimating fre-
quency and phasor when there is deviation from the nominal frequency (60 Hz).
The long window algorithms, if designed properly, can adequately suppress the
effects of the presence of nonfundamental frequencies in the fault waveforms. The
earliest application of Kalman filter [3] to power system was in [6] for relaying.
The Kalman filter is a recursive filter whose output depends on the present inputs
as well as on all previous inputs. Effectively, the weight assigned to the latest
input is maximum whereas the assigned weight decreases as the input becomes
older. The Kalman filter differs from the other filtering algorithms in that its gain
coefficients vary with time (the gains are nonstationary) [1]. The recursive form of
the discrete fourier transform (DFT) on the other hand is simple and needs fewer
computations, but the presence of an exponentially decaying dc component in a
signal adversely affects the phasor estimates.
This paper consists of five sections. In section 2, the state space model for the
voltage and current phasor is developed with the recursive kalman filter. The in-
clusion of the dc and harmonic components in the model and the implementation
aspects of the algorithm is described in section 3. Section 4 describes the simula-
tion test bed and sensitivity of the changes in Kalman parameters and the model
to the estimated amplitude. In section 5 these results are compared with the DFT
based method for changes in sampling rate fs and the cut-off frequency fc of the
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low-pass butterworth filter. The various notations and conventions used, and their
associations is listed in the appendix.

2 Proposed Digital Algorithm

The procedure to implement the technique consists of the following steps.

• Select a suitable model for representing the waveform of a signal.

• Select a sampling rate

• Select the initial Kalman parameters

• Express the model in state-space form.

• Estimate the values of the elements of the vector of unknowns.

One of the roles of digital relays for protection of power systems is to estimate
voltage and current phasors from sampled data. The samples contain informa-
tion, noise, and measurement errors. A filtering technique is therefore needed to
condition the data before estimating the phasors. The signal generator is used

Figure 1: Phasor Measurement Process implemented in the prototype

to simulate the voltage or current signals of the desired frequency and amplitude.
The input dialog box is used for entering the amplitude and the frequency of the
fundamental signal and the odd and even harmonics. The data acquisition board
can be simulated to include an anti-aliasing butterworth filter, vertical resolution
tuner, amplifier, and an A/D converter. The order, coefficients, and the cutoff fre-
quency for the butterworth filter can be tuned according to the need. The vertical
resolution of the signal can be 8, 12, or 16 bit. But, from the nyquist criterion, the
sampling frequency (fs) of the A/D converter should be at least 2 times higher
than the highest frequency (fh) of the signal and its harmonics. That is,

fs ≥ 2fh (1)



Praveen Pankajakshan

2.1 Signal representation as Phasors

The analog signal to be measured is filtered, conditioned, and supplied to the data
acquisition board, which samples the analog signal into the digital signal (for-
warded as a data window of signal samples). The choices include analog filtering,
A/D vertical resolution enable/disable switches; type, order and cut-off frequency
of the analog filter; range and number of bits of the A/D converter; conditioning
gain and the length of the output data window. The digital signal (zs) is input to
the recursive Kalman filter block. The output of the block is a real number giving
the estimated amplitude and phase of the fundamental signal (60 Hz for the volt-
age signal) and the DC offset (if any) in the input signal. We note the usefulness
of the Kalman filter in the presence of harmonics, dc offset, and even measurement
noise. Both the process and measurement noise can be assumed to be a random
white noise sequence that occurs because of analog to digital converters or other
sensing devices connected to the system.
The waveform of voltage or current can be considered to be comprised of com-
ponents of the fundamental frequency, decaying dc, harmonic and nonharmonic
frequencies, and noise. A noise-free current or voltage signal can be expressed by
the real or imaginary part of

s(t) = Ae(jωot+φ) (2)

where A is the amplitude and φ is the phase angle at t = 0. Consider a Rayleigh

Figure 2: Signal as Phasor Representation

distribution for the amplitude and an uniform distribution for the phase angle, the
noise-free current or voltage following the fault event is expressible as [2]:

s(t) = C1sr + C2si (3)

where sr and si are statistically independent, zero mean, Gaussian random vari-
ables. The variance of sr or si is chosen as σ2

v for the voltage signals and σ2
i for

the current signals.
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2.2 State Space Model

The Kalman filtering is applied to a state space model of the system. The model
includes state transition and output equations. If the signal is sampled with a
frequency of fs then, the time between one sample and the other is ∆T the esti-
mation of the voltage at any time (n+1)∆T in terms of the phasors at time n∆T

are as follows:
[

xr(n + 1)
xi(n + 1)

]

=

[

P11 P12

P21 P22

] [

xr(n)
xi(n)

]

+

[

Q11 Q12

Q21 Q22

] [

∆xr(n)
∆xi(n)

]

(4)

The state transition equation can also be written in vector notation as:

x(n + 1) = Px(n) + Q∆x(n) (5)

The sampled value of the signal is related to the signal phasor. This relation is
called the output equation and is as follows:

zs(n) =
[

C11 C12

]

[

xr(n + 1)
xi(n + 1)

]

+ b(n) (6)

zs(n) = cx(n) + b(n) (7)

The definitions of the terms used and their implications are explained in the Ap-
pendix at the end of this paper.
The measurement noise b(n) and the change in voltage ∆v because of varying
loads are included in the Kalman filter using principles of statistics. They can be
considered as a white sequence with an exponentially decreasing variance [2]. It
is also assumed that there does not exist any cross relationship between the two.
This leads us to a covariance matrix having only diagonal terms. Since these are
random variables, and they obey Gaussian distribution, it is possible to estimate
reasonable values of the elements of the covariance matrices. The diagonal ele-
ments of these matrices are the variances of the matrix. The current noise signal
on the other hand would appear as a random exponential process plus a white
noise sequence with a decreasing variance. The value of the initial variance was
found nearly equal to the mean square of the sending end current.

2.3 Recursive Kalman Filter

The recursive Kalman filter block is essentially used for estimating the amplitude
of the fundamental signal. It also has Phase and DC offset estimation as added
features. The design of the Kalman filter is based on the statistical properties of
the signal that is to be processed. The time varying filter coefficients are calculated
to minimize the square of the expected errors between the values of the actual and
estimated system states. The Kalman gain can be calculated from (8) as:

k(n) = M(n)c
′

[cM(n)c
′

+ B]−1 (8)

The state estimation error covariance can be calculated as:

Z(n) = I − k(n)cM(n) (9)
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The recursive Kalman filter block invokes two S-functions, KalmanParameters and
kfamp. The KalmanParameters function computes the parameters required for the
Kalman filter algorithm, and the kfamp function estimates the phasor of the input
signal, and the DC offset.

3 Modeling DC and harmonic components

In reality, the power system signal is composed of not only the fundamental compo-
nent but also a decaying dc component, components of harmonic and nonharmonic
frequencies, and noise. There are many algorithms to estimate the DC component
parameters. Filtering (rejection) of DC component is often performed with appli-
cation of band-pass or high pass filters of FIR type or mimic filters. Least error
squares based in recursive or nonrecursive versions are also used to filter out the
DC component that is either taken or not considered as a part of the signal model.
Each frequency component can be considered as a phasor comprised of a real and
imaginary component, which should be included among the system states. As the
number of states increases the Kalman parameters gets augmented accordingly.
Decaying dc terms can be modeled as a single state in which the values of the
state are reduced to e−λ∆T times the previous value. Three specific models are
introduced in this section.

3.1 Three State Model

To include a dc term decaying according to e−λ∆T , the P and Q matrix should be
augmented as in Table 1. where, U33 is the variance of the unexpected changes in

P = Q





cos(ω∆T ) −sin(ω∆T ) 0
sin(ω∆T ) cos(ω∆T ) 0

0 0 e−λ∆T





c [1 0 1]
∆I(n) [∆Ir(n)∆Ii(n)∆Idc(n)]

U

[

U 0
0 U33

]

M(n) Initial covariance includes an added term

Table 1: Kalman Parameters for a three-state model

the decaying dc component.

3.2 Four State Model

This section discusses the inclusion of a second frequency in the model. Assume
that the pre-fault currents are of the fundamental. The parameters are given in
Table 2. U33 and U44 is the variance of the unexpected changes in the in-phase
and quadrature components.
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P = Q









cos(ω∆T ) −sin(ω∆T ) 0 0
sin(ω∆T ) cos(ω∆T ) 0 0

0 0 cos(2ω∆T ) −sin(2ω∆T )
0 0 sin(2ω∆T ) cos(2ω∆T )









c [1 0 1 0]
∆I(n) [∆Ir,1(n) ∆Ii,1(n) ∆Ir,2(n) ∆Ii,2(n)]

U





U 0 0
0 U33 0
0 0 U44





M(n) Initial covariance includes an additional term

Table 2: Kalman Parameters for a four-state model

3.3 Higher State Model

The highest frequency of a signal that can be recovered from a sampled signal
should be at least one half of the sampling frequency. The antialiasing filter re-
moves components of higher frequencies substantially lesser than the sampling
frequency. The filter model considered in this paper assumes a 11 state model.
The 10 states correspond to the in-phase and quadrature components of the fun-
damental and the higher order frequencies. The last state models the decaying dc
component.

3.4 Implementation

The developed system is tested for some typical Kalman parameters and then
changes were made to this to check the sensitivity. We assume the input signal to
have a fundamental frequency of 60 Hz and the sampling frequency used is around
720 Hz.

3.4.1 State transition and driving function

From Appendix B it is clear the state transition matrix that rotates the phasor by
an angle 30o corresponding to one sample interval is:

P = Q =

[

0.8660 −0.5000
0.5000 0.8660

]

(10)

3.4.2 Noise and Voltage Covariance

As explained in Appendix B, the covariance matrix for noise and voltage can be
written as:

B =

[

σ2
n 0
0 σ2

n

]

(11)

where, σn = 0.01p.u.

U =

[

σ2
v 0
0 σ2

v

]

(12)

where, σv = 0.005p.u.
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3.4.3 Single step transition errors covariance matrix

The matrix M(n) is comprised of the variance of the single step prediction errors.
These are the estimated errors from propagating incorrect approximations of the
states. The inverse of the initial covariance matrix reflects the degree of knowledge
of how close the initial estimate is to the unknown states to be estimated. The
matrix is initialized to the covariance matrix of the transitions from the prefault
to the postfault states. As the Kalman gain equations are recursively solved, the
numerical values of the diagonal terms converge to the steady state values.
Without further knowledge, a reasonable estimate for the ratio of the mean post-
fault magnitude to the prefault magnitude would be 0.7. As well, the standard
deviation of the transition may be assumed to be 0.24 of the prefault value, so the
estimate for the covariance matrix M(1) would be:

M(1) =

[

0.242 0
0 0.242

]

(13)

3.4.4 DC Offset Parameter λ

If the DC offset is negligible, the DC parameter (λ) should have a very low value
(λ < 0.1). A high variance would give the best result for a signal with DC offset.
Similar, rules apply for process noise and measurement noise.

4 Test Setup and Results

These simulation tools are used by the manufacturer during development to assess
the reliability and soundness of their design to voltage and current fault waveforms
obtained after real-time data acquisition or generated using softwares like the
EMTP/ATP. Once the development process is successful, the simulation software
is converted to the machine language of the relay’s microprocessor.
The prototype kalman filter block is shown in Fig. 3. This was then used to test
various conditions like fault detection (Fig. 7), and phasor measurement in the
presence of dc offsets, harmonics (Fig. 9) and nonstationary disturbances (Fig. 8).

Figure 3: Recursive Kalman Filter Block
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Figure 4: Phasor Measurement

4.1 Kalman Parameters

The parameters that are used for measuring the phasors during single phase fault
(Fig. 6) and nonstationary conditions (Fig. 8) are as shown in the Table 3. ω =

P=Q





cos(ω∆T ) − sin(ω∆T ) 0
sin(ω∆T ) cos(ω∆T ) 0
0 0 e−λ∆T





x0 [0 0 0]T

c [1 0 1]
σn 0.01
σv 0.005

M





0.242 0 0
0 0.242 0
0 0 0.242





λ 1000

Table 3: Parameters for the recursive kalman filter

2Πf , ∆T = fs.
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(a) (b)

Figure 5: (a) Amplitude Estimate (Error ǫ: 0.00) and (b) DC Offset for the generated signal
(Error ǫ: 9.921 × 10−8)

Figure 6: Test Set up for phasor measurements of fault signals

4.2 Sensitivity Studies

The sensitivity test is carried out by varying the various model parameters and
noting the effects of these on the estimated value ([4]). In the two-state Kalman
filter, the initial covariance, the initial value of the noise variance and the noise
variance rate of decrease were changed by more than ±50%. The magnitude of the
voltage estimate was got using the various parameters and compared to the exact
value. In addition, the effect of deleting the third state on the three-state Kalman
filter was examined. Finally the sampling rate was changed from 8 samples per
cycle to 128 samples per cycle and then examined. The three-state Kalman filter
model is not sensitive to ±50% changes in the noise variance parameters, or, ±50%
change in the initial covariance matrix. Deleting the third state in the three-state
Kalman filter model reduced the rate of convergence and increased the steady
state error. In the three-state Kalman filter, changing the sampling rate from 64
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(a) (b)

Figure 7: (a) Fault Voltage Amplitude Estimate (Error ǫ: 0.00) and (b) Fault DC Offset Estimate
(Error ǫ: −6.773 × 10−13)

to 32 samples per cycle did not change the estimated values noticeably. However
a change was noticed at a sampling rate of 8 samples per cycle.

5 Performance Comparison

The performance of the algorithm is compared with the conventional DFT-based
algorithm. The inputs to both the blocks were the same, and the outputs were
recorded. The sensitivity of the algorithm was studied for:

1. same input

2. changes in sampling rate

3. changes in low-pass filter cut-off frequency

5.1 Same Input

The results that are given in Table 4, compare the Kalman filter output with the
Fourier method output. All the three test examples that was explained in the
earlier section was used for the purpose.

Measured Parameter(s) Actual Value (in p.u.) Prototype output DFT Output
Fundamental Amplitude (no DC offset) 1.00 1.00 0.77

Fundamental with harmonics 1.00 1.00 0.73
Fundamental with DC offset 1.00 1.00 1.00

Table 4: Performance comparison against the Fourier algorithm

5.2 Changes in Sampling Rate

Any decrease in the sampling rate would reduce the efficiency of the filter in
estimating the actual amplitude. This test was carried out for sampling rates that
are 8, 16, 32, 64, and 128 times the dominant frequency in the signal. This is
listed in Table 5.
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Figure 8: Estimation under nonstationary conditions

Sampling Frequency fs (samples per second) Actual Value (in p.u.) Prototype output DFT Output
480 1.00 1.00 0.77
960 1.00 0.97 0.94
1920 1.00 1.00 0.77
3840 1.00 1.00 0.23
7680 1.00 1.00 0.21

Table 5: Performance comparison for changes in sampling frequency

5.3 Changes in cut-off frequency

A Butterworth low pass filter is used as an antialiasing filter. The sampling fre-
quency (fs) was kept constant at 960 Hz and the testing was carried out for various
cut-off frequencies. The results are as shown in Table 6.

6 Conclusion

A method to estimate the voltage and current phasors from the sampled signal
based on Kalman filter was developed. A method for including decaying dc and
harmonic components in the filter was described. For a sinusoidal input, a two-
state model reaches the correct estimates within two sample periods. However,
this model does not provide acceptable results if nonfundamental frequency com-
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Figure 9: Estimate in the presence of harmonics

Cut-off Frequency fc (Hz) Actual Value (in p.u.) Prototype output DFT Output
70 1.00 0.83 0.68
120 1.00 0.97 0.96
240 1.00 0.97 1.00
450 1.00 0.97 0.98

Table 6: Performance comparison for changes in cut-off frequency

ponents are present in the input. The Kalman filter theory requires that the
∆v(n) and ∆b(n) components are white sequence. For inputs that satisfy the
assumption, the Kalman gain will give the ideal result. However, in real systems
the noise are band limited and are therefore not perfectly white. However, the
Kalman filter can still be applied but the design will not be ideal. To minimize
the phasor calculation errors when the system operates at off-nominal frequencies,
the sampling should be carried out at multiples of the power system operating
frequency. The system should calculate the power system operating frequency
and uses this frequency information to obtain the sampling frequency (fs) as a
multiple of the system operating frequency. The remaining error depends only on
frequency estimation error, usually lesser than 0.01 Hz. The three state model
reaches the correct estimates within 0.42 of a cycle. If the signal is corrupted
by some random white noise, the estimate provided by the Kalman filter is more
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Error Cause Error in Degrees Error in µs

Instrument Transformers ±0.3 ±14
Phasor Estimation Device ±0.1 ±5

Table 7: Errors in Phasor Estimation and typical corresponding values

accurate (0.9907 p.u.) than that of DFT based method (0.7702 p.u.). The DC off-
set can also be measured with high accuracy. Estimation of the postfault voltage
and currents was used for fault identification and classification ([7]). The Kalman
filter is also suitable for estimating several variables other than voltage or current.
Apart from protecting the power system against overcurrent faults, the more re-
cent applications include voltage restorers for compensating against disturbances,
power quality, and stability analysis ([5]).

A Appendix A

A.1 State Space variables

The variables used in (5) are defined as:

• x(n): State vector composed of the real and imaginary components of the
signal phasor at the instant n∆T

• xr(n): Real component of the signal phasor.

• xi(n): Imaginary component of the signal phasor.

• P : State transition matrix

• Q: Driving function matrix that advances the changes ∆x(n) by one sam-
pling interval

The notations used in the output equation 7, the Kalman gain 8 and covariance 9
calculations are:

• zs(n): Measured signal at the time instant n∆T

• C: Defines the relationship between instantaneous sampled voltage and the
phasor representation

• b(n): Measurement noise modeled as a random variable

• B: Covariance of the noise model

• U : The covariance matrix for ∆x(n) inputs

• k(n): Kalman gain vector

• Z(n): State estimation error covariance

• M(n): Single step transition errors covariance matrix

• I: Identity matrix
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A.2 Covariance matrix

The covariance matrix D of [d] = [d11d21]
T is defined as:

D =

[

E[d2
11] E[d11d21]

E[d21d11] E[d2
21]

]

(14)

where, E denotes the expectation operator, and if the expected value E[d11d12] =
0, then d11 and d12 are orthogonal to each other (uncorrelated).

B Appendix B

B.1 Signal Characteristics

• Fundamental frequency (f): 60 Hz

• Sampling Frequency (fs): 720 samples/sec

• Highest Frequency (fh): < 360 Hz

• Time between samples (∆T ): ≈ 1.389 ms

• Variation of voltage to loads (σv): 0.005 p.u.

The voltage variation is statistically considered to be white sequence, uncorrelated,
with zero mean and Gaussian distribution.

B.2 Noise Characteristics

We assume a model similar to the voltage variation for the measurement noise.
These may be random noise or transducer nonlinearity errors, truncations and
other considerations. The standard deviation for the noise is (σn) 0.01 p.u.
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