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Abstract

In this paper, we propose a new method to solve the problem of impulsive noise re-
duction in images. Non-linear filter like the median filter (MF) is useful for reducing
random noise and periodical patterns, but direct median filtering have undesirable
side effects such as smoothening of noise free regions, which results in loss of image
detail and distortion of signal. Impulse noise is suppressed by selectively filtering the
contaminated signal regions only, thus minimizing distortion of clean passages and
loss of high frequencies. In the first phase, Support Vector Machines (SVM) are used
to segment the set of pixels N that are likely to be contaminated by the mixed im-
pulses. In the second phase, the image is restored by employing a combination of the
best neighborhood match filter (BNM) and the modified multi-shell median filter
(MMMF) to these segmented regions. This method combines the effectiveness of the
Best Neighborhood Matching (BNM) filter in suppression of the noise components
while adapting itself to the local image structures, and the edge and finer image
detail preserving characteristics of the MMMF. To support our proposed method,
numerical results are also provided, which indicate that the filter is extremely useful
for preserving edges or monotonic changes in trend, while eliminating impulses of
short duration.
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1 Introduction

Impulse noise is a special type of noise that can come from a variety of sources.
Standard broadcast TV signals or satellite images are frequently contaminated
with this noise, arising from vehicle-engine, electrical-appliance or atmospheric
disturbances. In some other applications it can be caused by transmission er-
rors, malfunctioning pixels in camera sensors, and faulty memory locations in
hardware. “Salt and Pepper” noise can also be generated from bit errors in the
data stream and they occur as isolated impulses. The image is corrupted with
individual noisy pixels whose intensity significantly differs from the neighbor-
ing pixels. By noise, we refer to stochastic variations rather than deterministic
distortions. Modern technology has made it possible to reduce the noise levels
to almost negligible levels.
In many practical situations, the probability of spikes is low and two or more
neighboring pixels are very seldom corrupted by impulsive noise. In other
words, the spikes possess an approximately spatially invariant characteristic.
Many efficient and robust filtering algorithms have been already proposed to
remove spikes that fulfill the aforementioned model assumptions. However,
these assumptions are not valid in some practical situations. For example,
interference may occur when the data is transferred using analog signal com-
munication channel. This interference can be long term and so intensive that
it corrupts several consecutive image pixels in one or more columns following
each other (we assume that the images are transferred as rows). Such situ-
ations may happen if the receiver input and circuitry are not well protected
against intensive interference, or if there are some electromagnetic wave irra-
diation sources in the neighborhood that are overlaps with the frequency band
of the channel waveband. There are different amounts of horizontal impulse
bursts that appear in these images. This kind of bursts, appearing as line-type
noise considerably decrease the image quality.
Although it is widely known that non-linear filter like the median filter (MF)
is useful for reducing random noise and periodical patterns. However, direct
median filtering have undesirable side effects such as smoothening of noise
free regions, which results in loss of image detail and distortion of signal. The
problem of noise elimination in an image has a companion limitation which
is the distortion of image edges. The requirement of maximal preservation of
edges is especially important for images, corrupted by impulsive noise with
a low corruption rate. To avoid smoothening of the image during filtering,
all noisy pixels must be detected first, and only then, these detected pixels
must be corrected. Other nonlinear filters, proposed for impulsive noise re-
duction (for example, rank-order, weighted, relaxed median filters) preserve
image edges, but in general, the results are not good enough. A good way
to solve the preservation problem is noise detection. If the noisy pixels are
detected and they are a priori known before filtering, then the filter can be
applied only to those regions. The advantage of this method lies on its ability
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to detect the noise value and replace it with a value very close to the original
one. The philosophy of median filtering to noise reduction is not restricted
to restoration of images alone, and it has also been extended to solve scratch
noises and other distortions in speech and audio signals ([1],[2],[3]).
There are various alterations available in literature for reducing the draw-
backs of the median filter ([4],[5]). J. S. J. Li and S. Luthi, [6] proposed
a multi-shell median filter (MMF) which is genuinely effective. C. J. Juan,
[7] suggested a modification to the multi-shell median filter to decrease the
processing time and to reduce unnecessary replacements. Nevertheless, under
certain specific conditions to be discussed in the following sections, they fail
to perform the desired filtering operation. The improved 2-D median filters
developed by F. Ghani and E. Khan [8] suffers from the same drawback.
The approach used in this paper represents a substantive departure from the
conventional unbiased approach of removing impulse noise. Essentially our
contention is that the conventional filtering techniques are unsuited for dealing
with impulse noises. Impulses should be removed only by selective identifica-
tion and suppression [9]. This preserves discontinuities of sufficient duration
while eliminating local roughness in the signal.
In noise filtering, the main problem is to preserve some desired signal features
while the noise elements are removed. The optimal situation would be when
the filter designed is invariant to the desired features and the noise alone is
affected.

2 Background

In this paper we have worked with images of size 256x256 and quantized
to 256 different gray levels. The filter window size is taken to be an odd
integer (2L+ 1) × (2L+ 1) for L = 0, 1, 2, . . .. We define the following signal
characteristics [10]:

• An edge is a monotonic region between two constant neighborhoods of dif-
ferent value. The connecting monotonic region cannot contain any constant
neighborhood.

• An impulse is a constant neighborhood followed by at least one, but no more
than L points which are then followed by another constant neighborhood.
The two boundary points of these L points do not have the same value as
the two constant neighborhoods.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Original Images used for testing (a) Airfield, (b) Albert, (c) Baboon, (d)
Cameraman, (e) Dog (motion artefact), (f) Lena

2.1 Median Filtering (MF):

Median Filtering is a special class of ranked order filters very useful in many
signal processing applications. In median filtering, the input pixel is replaced
by the median of the pixels contained in a window surrounding it. That is,
v(i, j) = median {y(i− k, j− l), (k, l) ∈ W}, where W is a suitably chosen
window [11].
The algorithm for median filtering requires arranging the pixel values in the
window in increasing or decreasing order and picking the middle value. The
window size is generally chosen so that it is odd. The nine-element processing
window used for basic 2D-(3x3) median filtering is shown in Table 2.1. A
necessary condition for a signal to be invariant under median filtering is that
the extended signal should consist of only constant neighborhoods and edges.
For a filter length of (2L + 1), the nonmonotonic points of the signal within
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the window should be separated by at least (L+1) monotonic points. A more
rigorous mathematical proofs and detailed analysis of the properties of the
median filter is described in [10]. The generalized version of the median filter
is the order statistic filter described in [12].
Similarly, the efficiency of a 2-D median filter is poor when the number of
noise pixels in the window is greater than half the number of pixels in the
window [13].

W(−1,−1) W(−1,0) W(−1,1)

W(0,−1) W(0,0) W(0,1)

W(1,−1) W(1,0) W(1,1)

Table 1
A (3x3) processing window W

2.2 Noise Models

Let ai,j, for (i, j) ∈ Σ ≡ {1, . . . ,M} × {1, . . . , N}, be the gray level of a true
M ×N image A at pixel location (i, j), and [amin, amax] be the dynamic range
of A, i.e. amin ≤ ai,j ≤ amax ∀ (i, j) ∈ Σ. If a noisy image is denoted by y, for a
salt-and-pepper impulse noise model, the observed gray level at pixel location
(i, j) is given by

yi,j =






amin, with probability p,

amax, with probability q,

ai,j, with probability (1-p-q)

(1)

where, r = p+ q defines the noise level corrupting the image. The density rate
of the noise in an image is designated herein by R which is defined as:

R =
MN

n
(2)

MN is the number of total pixels while n is the number of the noisy pixels in
the image.

3 Noise Estimation

The first stage in applying a switching ([14],[15]) or decision-based filter is
mapping the noise regions in the corrupted input image. This section describes
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the procedure used to estimate and segment the corrupted pixels.
If E[X] = X̂ is the an estimation of the original image obtained after applying
the filter to the noisy image Y , the noise candidates are defined as,

Nc = {(i, j) ∈ A : x̂i,j 6= yi,j and yi,j ∈ {smin, smax}} (3)

The set of all uncorrupted pixels N = A\Nc.
There are several detectors, which are usually tuned for specific type of edge
profiles. Although these detectors are genuinely effective, they cannot be used
here because:

• They respond doubly to some noises in the image.
• They cannot distinguish between an edge and an impulse.
• They cannot be used if more than one pixel is corrupted in the same pro-

cessing window.

In this paper, we use a support vector machine-based detection filter. This
takes into account the local features in the vicinity such as the possible pres-
ence of details and edges even when the noise is high.

3.1 Local Information based Noise Features

While designing the filter for the noise detection process, there should not
be any false detection, and pixels that are genuinely affected should be easily
detected. To aid this process, we extract the essential feature vector O based
on the local information surrounding a pixel.

Definition 1 Median deviation: The median deviation am is a measure of the
amount of variation in the input from its median value.

If am denotes the absolute difference between the input a and the median
value m,

am = |a −m| (4)

am is a measure for detecting the probability whether the input am is con-
taminated. A large value of am indicates that the input a is dissimilar to the
median value m.

Definition 2 Successive gradient filter (SGF): The SGF is an enhanced mea-
sure of discontinuties and edges in an image.

The method for using the SGF for isolating the noise was inspired from the
similarity between the edge profiles of the impulse noise and that of objects
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having thin lines. Thin lines correspond to pixels where the brightness func-
tion changes abruptly. A change of the image function can be described by a
gradient (gradient-based methods) that points in the direction of the largest
growth of the image function [16].
Since the characteristics of an impulse error is a sudden fast change, one way to
form the detection signal is to observe the difference between successive sam-
ples, i.e. the discrete derivative of the signal ([2], [3]). The derivative d of the
discrete signal a can be obtained, according to the definition of the derivative,
by dividing the difference of the successive samples by the sampling interval
∆t, i.e.

dn =
an+1 − an

∆t
(5)

Extending the same principle to the two dimensional case, if a(x, y) is a contin-
uous image and a(i, j) be the discrete version of it, then the (r+1)th derivative
of a(x, y), ar+1

y (x, y + 1
2
), can be approximated by ar+1

j (i, j + 1
2
) as:

ar+1
j (i, j +

1

2
) = [ar

j(i, j + 1) − ar
j(i, j)] (6)

To further enhance the detectability, the differentiation can be applied several
times. In practice, it has been found that comparison of the central pixel with
six of its nearest neighbors is optimal enough to detect the smallest change
Table 2. Hence,

a6
j (i, j) = [a5

j (i, j +
1

2
) − a5

j (i, j −
1

2
)] (7)

a6
j (i, j) = [a(i, j − 3) − 6a(i, j − 2) + 15a(i, j − 1) − 20a(i, j) +

15a(i, j + 1) − 6a(i, j + 2) + a(i, j + 3)] (8)

The scaling factors associated with the above equations have been omitted. If

aj = [a(i, j − 3), a(i, j − 2), a(i, j − 1), a(i, j), a(i, j + 1),

a(i, j + 2), a(i, j + 3)]T , ∀i = [1,M ], j = [4, N − 3] (9)

For impulse noise detection, central difference value is given by:

∆6an = an−3 − 6an−2 + 15an−1 − 20an + 15an+1 − 6an+2 + an+3 (10)
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where an is the intensity of the pixel under study, and ai, i = (n−3) to (n+3)
are the intensity of neighboring pixels. The weights from (10) are thus:

w = [1,−6, 15,−20, 15,−6, 1]T (11)

then the output A6
H of the gradient filter is given as,

a6
j (i, j) = aj ⊗ w (12)

where, ⊗ denotes 1D convolution.

L−1∑

j=0

wj = 0 (13)

where, L is the length of the filter.
The noise enhancement can be interpreted in the frequency domain as well.
The result of the Fourier transformation is a combination of harmonic func-
tions. The derivative of the harmonic function Sin(nx) is nCos(nx), thus the
higher the frequency, the higher the magnitude of its derivatives [16]. The
magnitude response of the weights w is shown in the Fig. 2.

Window Size PSNR

3 38.37 dB

5 38.30 dB

7 37.32 dB

9 39.15 dB

Table 2
Effect of filter window size on PSNR

Definition 3 Distance Transform: The distance transform of an image, mea-
sures the relationship between the components of objects that is present in the
image.

Any two-dimensional digital image a(x, y) can be divided into two classes-the
object and the background pixels.

a(x, y) ∈ {Ob,Bg} (14)

The distance transform of an image, ad(x, y) labels each object pixel of an
image with the distance between that pixel and the nearest background pixel.
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(a)

(b)

Fig. 2. (a) Magnitude and linear phase response, (b) Pole-zero plot for the filter 11

If ||x, y|| is a two-dimensional distance metric, then the distance transform of
the input image can be defined as in (15).

ad(x, y) =






0, ∀a(x, y) ∈ Bg,

min(||x− xo, y − yo||), ∀a(xo, yo) ∈ Bg, and a(x, y) ∈ Ob
.(15)

Different distance metrics result in different distance transformations. From
our perspective the euclidean distance is the most useful and uses the L2 norm
defined as:

||x, y||L2
=

√
x2 + y2 (16)

This metric is isotropic and the distances measured are independent of the
orientation of the object.
From the above definitions, we can map the input space to the feature space
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using the observation vectors, O as,

O = {am, aH , aV , ad} (17)

where aH and aV denotes outputs from the gradient filter as a result of hor-
izontal and vertical convolution (useful when the information is transmitted
as columns instead of rows).

3.2 SVM Classifiers

3.2.1 Support Vector Machines

The Support Vector Machine algorithm [17], operates by mapping the given
training set into a possibly high-dimensional feature space and trying to locate
in that space a plane that separates the positive from the negative examples.
Having found such a plane, the SVM can then predict the classification of
an unlabeled example by mapping it into the feature space and calculating
the side on which the example lies. The SVM’s power comes from its crite-
rion for selecting a separating plane when many candidates planes exist. The
SVM chooses the plane that maintains a maximum margin from any point in
the training set. Statistical learning theory suggests that, for some classes of
well-behaved data, the choice of the maximum margin hyperplane will lead to
maximal generalization when predicting the classification of previously unseen
examples [18].
The advantage of using Support Vector Machines (SVM) for classification
problems is that it provides high generalization ability even when the dimen-
sion of the input space is very high.
If the training data set contains n examples, each of which is a vector with m
features. These vectors can be considered as points in a m-dimensional space.
In theory, a simple way to build a binary classifier is to construct a hyperplane
(a plane in a space with more than three dimensions) separating class mem-
bers (positive examples) from non-members (negative examples) in this space.
In general, this hyperplane corresponds to a nonlinear decision boundary in
the input space. However, most real-world problems involve non-separable
data where the positive examples cannot be distinguished from the negative
examples using a hyperplane. One solution to this inseparability problem is
to map the data into a higher-dimensional space and to define a separating
hyperplane there. This higher-dimensional space is called the feature space,
as opposed to the input space occupied by the training examples. With an
appropriately chosen feature space of sufficient dimensionality the training set
can be made separable. Artificially separating the data in this way sometimes
exposes the learning system to the risk of finding trivial solutions that over fit
the data. This can be avoided by choosing the maximum margin separating
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Fig. 3. Linearly separable problem with the optimum separating hyperplane

hyperplane from among the many that can separate the positive from nega-
tive examples in the feature space. The decision function for classifying points
with respect to the hyperplane involves dot product between the points in the
feature space.
For a two-class problems, the optimal separating hyperplane in canonical form
must satisfy the following constaints,

yi(wxi + b) + ηi ≥ 1 ηi ≥ 0, i = 1, . . . , l (18)

where, x ∈ ℜn is the set of training vectors, and y ∈ {−1, 1} is the target
vector.
The optimal separating hyperplane is determined by the vector w, that mini-
mizes the functional F (w, b, η),

min
w,b,η

C
l∑

i=1

ηi +
1

2
||w||2 (19)

where C is a suitably chosen parameter. A large C corresponds to assigning a
larger penality to errors. Introducing positive Lagrange multipliers αi, to the
inequality constraints in model given by (18), we obtain the following dual
formulation:

min
α

1

2

l∑

i=1

l∑

j=1

yiyjαiαj〈xixj〉 −
l∑

i=1

αi (20)

st
l∑

i=1

yiαi = 0, 0 ≤ αi ≤ C, i = 1, . . . , l (21)

The minimum with respect to w, b, η of the functional, F , is given by,

∂F

∂b
= 0 ⇒

l∑

i=1

αiyi = 0 (22)
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∂F

∂w
= 0 ⇒ w =

l∑

i=1

αiyixi (23)

∂F

∂η
= 0 ⇒ αi + βi = C (24)

The solution is then given by w =
l∑
i
αiyixi. The free coefficient b can be found

from αi(yi(w · xi + b) − 1) = 0, ∀i, αi 6= 0.

Theorem 1 (Mercer’s Theorem) Let K be a continuous, real-valued, positive
definite, and symmetric kernel, then (xi, xj) in the dual problem (21) can be
replaced by a kernel function K(x, y). There also exists a mapping, φ, such
that

K(x, y) = 〈φ(x), φ(y)〉, x, y ∈ ℜ0, (25)

The convergence is uniform in x and y. ℜ0 is the input space

The use of a kernel function allows the support vector machine to operate
efficiently in a nonlinear high-dimensional feature spaces without being ad-
versely affected by the dimensionality of that space. Indeed, it is possible to
work with feature spaces of infinite dimension. Moreover, Mercer’s theorem
makes it possible to learn in the feature space without even knowing the map-
ping φ and the feature space F . The matrix κij = 〈φ(xi), φ(xj)〉 is called the
kernel matrix.
Kernels are real-valued function κ : χ × χ → ℜ, that can be written in the
form

κ(X, Y ) = 〈ψ(X), ψ(Y )〉 (26)

for some mapping ψ from χ to a Hilbert space [17].
There are three kernel function usually used in the SVM:

• linear: xT
i xj ,

• polynomial: (γ〈xT
i xj〉 + r)p, γ > 0, r 6= 0

• radial basis function (RBF): e(−
||xi−xj ||

2

2σ2
)

• tangent hyperbolic (sigmoid): tanh(β0x
T
i xj + β1)

When we use SVM for each selection of kernel function, there are some pa-
rameters whose values can be altered. These parameters are: trade off cost
constant-C, spread-σ (for RBF kernel function), degree of polynomial-p (for
polynomial function) or parameters β0 and β1 (for sigmoid). The choice of the

12



non-linear mapping function or kernel is very important in the performance
of the SVM. It was found that, for our application, polynomial kernels, with
the C, γ, p and r parameters defined in Table 3, gives the best classification
performance in comparison to the sigmoid and the RBF kernels. The value of
r avoids problems with the hessian becoming zero. The nonlinear discriminant

Parameters Value

C 1000

γ 0.001

p 1

r 1

Table 3
Polynomial Kernel Parameters

function is of the form,

f(x) = sign(
l∑

i=1

αiyiκ(xi,x) + b) (27)

The final output vector from the discriminant function, is used to map the
construct the binary image Ab, where

ab(i, j) =






1, if (i, j) ∈ Nc

0, if (i, j) ∈ N
(28)

and A = {a(i, j)|(i, j) ∈ Nc ∪N}.
If the input pixel is determined to be a corrupted pixel, it is replaced by its
estimated value. The algorithm for this replacement or restoration procedure
is discussed in the subsequent sections.

4 Filtering

4.1 Center Weighted Median (CWM) Filter [4]:

The output from a CWM filter, is the median of the window W (Table 2.1)
obtained after a weighted adjustment to the central or the original pixel a(i, j).
Before understanding the properties of the CWM, it is necessary to define the
Weighted Median (WM) Filter.
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Definition 4 Weighted Median (WM) Filter: The weighted median output for
any input image A is,

â(i, j) = med{h(k, l) ⋄ a(i− k, j − l)|(k, l) ∈W2L+1} (29)

med{·} denotes the median operation defined in Section 2 and ⋄ denotes du-
plication operator and h(k, l) is defined as,

{h(k, l)|(k, l) ∈W2L+1,
∑

(k,l)∈W2L+1

h(k, l) = c} (30)

c ≥ (2L+ 1) is an odd integer.

In obtaining the output â(i, j), the WM filter generates h(k, l) copies of a(i−
k, j − l) for each (k, l) ∈ W2L+1, a total of c sample values. Then the median
value of the c samples is taken.
The WM filter with central weight h(0, 0) = 2K + 1 and h(k, l) = 1 for each
(k, l) 6= (0, 0) is called the CWM filter. K > 0 and is an integer.
The output â(i, j) from the CWM filter is given as,

â(i, j) = med{a(i− k, j − l), 2K ⋄ a(i, j)|(k, l) ∈W2L+1} (31)

â(i, j) = med{a(i− k, j − l), a(i, j)
︸ ︷︷ ︸
2Ktimes

|(k, l) ∈W2L+1} (32)

when K = 0, (32) becomes the median filter (MF), and when (2K + 1) ≥
(2L + 1), then it becomes the identity filter (no filtering). The value of the
central weight is a trade-off between the choice of detail preservation and noise
suppression. Obviously, the CWM with large central weights performs better
in detail preservation but worse in noise suppression in comparison to the one
with a smaller central weight. The proofs for the noise suppression and detail
preserving capability of the CWM was shown in [4]. Even though there are
other modifications to the CWM, like the multi-stage adaptive CWM filter [5],
we prefer the CWM for its computational simplicity and equally efficient per-
formance.
It was numerically shown in [19] that the weighted mean filter with a large

center weight ({h(0,0)
h(k,l)

≈ 100|(k, l) ∈ W2L+1, (k, l) 6= (0, 0)}), is useful in de-
tecting impulse noise among background image regions with similar frequency
levels. Similarly, it was also shown that the successive gradient filter (SGF)
(11), as an extension to the weighted average (WA) filter, is useful for salt and
pepper noise detection among lower and higher background signal frequency
levels respectively.
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4.2 Long Range Correlation Filter [20]:

The long range correlation method [20] for image restoration assumes that
there exists abundant long-range correlation within natural images, and the
human visual system (HVS) can sufficiently utilize this information to process
the information.
The best neighborhood matching (BNM) filter implementation of these fea-
tures of the HVS involves five steps:

(1) Fetching : Extract a window W with L2 pixels from the image which
is called a local window. This window may be of any shape, the only
restriction is that all the pixels are contiguously connected. For each
pixel in this local window, we can get its corresponding flag value ab,W .
The set of pixels with ab,W = 1 is shown as the damaged information in
the local window.

(2) Searching : Search for another window W ′ (remote) in the image which is
of exactly the same shape and size as the local window W . The flag value
of each pixel in window W ′ is denoted as AW ′

b . Since the windows W and
W ′ are of the same shape and size, we can find an indexing method that
makes every pixel in correspond to a unique pixel at the same position
in and vice versa. Sometimes, we restrict the searching procedure to be
conducted in a region search range not very far from the local window.

(3) Matching : Try to match the remote window W ′ to the local window
W . The matching method is determined by a luminance transformation
function v that transforms every pixel in W ′.
The pixel pairs in the two windows can be classified into three categories.
In the first category, the corresponding pixels in W ′ and W are good
(ab,W ′ = 0 and ab,W = 0). In the second category, the pixel in W ′ is
good, but its corresponding pixel in W is bad (ab,W ′ = 0 and ab,W = 1).
In the last category, the pixel in W is bad irrespective of whether its
corresponding pixel in W is good or not (ab,W ′ = 1, ab,W = 0 or ab,W = 1).
The pixels in the first category compose the matching part of the window.
The number of pixels in this category is

nM =
L∑

j=

L∑

i=1

[1 − ab,W (i, j)][1 − ab,W ′(i, j)] (33)

The matching result is evaluated by the mean-squared error of the match-
ing part between the transformed window and the window.

MSEM =
1

nM

L∑

i=1

L∑

j=1

[1 − ab,W (i, j)][1 − ab,W ′(i, j)][li,j − v(W ′(i, j))]2(34)

The MSEM (34) is to be as small as possible.
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(4) Competing : Each candidate remote window in the search range will re-
sult in its corresponding MSEM . An obvious effective standard for the
selection of remote windows is to choose the one with the least MSEM .

(5) Recovering : Recover the damaged pixels in the local window using the
good pixels in the transformed remote window. Suppose we have the
winning remote window and its related matching transformation function.
Because the remote window and the local window are very well matched,
some bad pixels in W can be recovered by using their corresponding
good pixels in W ′. The renewed local window is copied back into its
corresponding position in the recovered image and modify the flag values
of the recovered pixels from 1 to 0.

By applying the five steps above, some bad pixels (ab,W = 1 and ab,W ′ = 0)
in the contaminated image are recovered. These steps have to be followed
recursively for restoration of the image until the flags of all the pixels in the
image are all 0.

4.3 Modified Multi-shell median filter (MMMF) [7]:

Definition 5 The output from the MMMF filter

â(i, j) =






Max(a−1,0, a1,0), if a0,0 − max[S] ≥ β

Min(a−1,0, a1,0), if min[S] − a0,0 > β

a5, otherwise

(35)

where, β = 16 is a fixed threshold ([21]), and
S = {ak,l| − 1 ≤ k ≤ 1,−1 ≤ l ≤ 1; (k, l) 6= (0, 0)}.

The MMMF [7] suffers from a serious limitation, for regions in the image cor-
responding to low frequency signal and corrupted with a similar type of noise
(negative impulse), (35) is not satisfied. Under such conditions, this sort of
noise is not eliminated as shown in Fig. 4(a). The switching filter on the other
hand does not suffer from this drawback and can eliminate this type of noise
successfully as shown in Fig. 4(b).
While the implementation of both CWM and MMMF is computationally less
intensive, it is important to realize that the performance of the CWM de-
teriorates rapidly as the noise density increases beyond 30% (Fig. 9). Thus,
the switching is preferred between the BNM and the MMMF rather than a
combination of CWM and MMMF.

16



(a) (b)

Fig. 4. (a) White circle shows the noise left behind by a 3*3 MMMF [7], (b) The cir-
cles now indicate the position where the noise was removed after using the proposed
scheme.

5 Numerical Results

5.1 Training the SVM classifier

The optimal separating hyperplane for distinction between the two classes
is obtained by using a set of supervised class labels for each of the training
images (corrupted by 40% impulse noise) in Fig. 5. The inputs to the training
model will be the set of unsupervised features O extracted by the procedure
discussed in section 3. The algorithm for isolation of the noise was tested and

(a) (b)

(c) (d)

Fig. 5. Example training images for 40% noise

Fig. 6 shows an enlarged view of the image before filtering, after isolation
of noise, and finally after removing the noise. The final output image, after
filtering the cameraman image (Fig. 1(d)) corrupted with 4% noise density is
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given in Fig. 7(d). The noise segmentation statistics for the airfield (worst

(a) (b) (c)

Fig. 6. (a) The original image corrupted with impulse noise, (b) After isolating the
noise, (c) After filtering the noisy image.

(a) (b)

(c) (d)

Fig. 7. Restoration of the Cameraman (256x256 scanned at 72 dpi &
8 bits/pixel) corrupted with with 4% noise (a) After MF (SSIM=0.8711,
PSNR=13.55dB), (b) After MMMF (SSIM=0.9117, PSNR=29.12dB), (c) After
CWM (SSIM=0.92744, PSNR=29.53dB), (d) After filtering using our method
(SSIM=0.9931, PSNR=37.32dB)

case scenario) test image are:

• Accuracy: 0.9827
• Precision: 0.9665
• Specificity: 0.9653
• Sensitivity: 1.0000
• F-score: 0.9830

It was observed that among the images shown in Fig. 5, the training image
Fig. 5(b) gives the best classification rate.
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Fig. 8. Intensity slice plot for the cameraman image before and after restoration

Actual\Predicted Noise Non-noise

Noisy pixels 0.8663 0.1337

Non-noisy pixels 0.1214 0.8786

Table 4
Confusion Matrix for noise recognition in cameraman using the method proposed
in [21]

Actual\Predicted Noise Non-noise

Noisy pixels 1.0000 0

Non-noisy pixels 0.0000 1.0000

Table 5
Confusion Matrix for noise recognition (in albert, baboon, cameraman, dog, lena)
using our method

5.2 Evidence of functional improvement:

The performance improvement of the propounded method over the existing
one is presented here. The evaluation of the performance can be based on
‘Subjective Fidelity Criterion’, PSNR (36), or the structural similarity based
quality measure (SSIM index [22]).
The suggested scheme is found to remove noises even from the edges of an
image and preserve the detail regions Fig. 4. The Fig. 4(a), shows a portion of
the Cameraman image that was affected by impulse noise, and after admin-
istering the MMMF. The white circles highlight is used for highlighting the
negative impulses left behind after MMMF filtering. While Fig. 4(b) shows
the same region after using our method. It should be known that it may not
be possible to remove some noise even by repeated filtering if the root sig-
nal also has added noise [10]. Fig. 9 shows the different Peak Signal to Noise
Ratio (PSNR) for different noise densities, calculated using (36) and Table 6
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compares the PSNRs for the different test images.

PSNR = 20



log10




MN max(Â)
√

M−1∑
i=0

N−1∑
j=0

[â(i, j) − a(i, j)]2







(36)

Fig. 9. The improvement in PSNR in the proposed approach as against the original
noisy image.

Natural image signals are highly structured: their pixels exhibit strong depen-
dencies, especially when they are spatially proximate, and these dependencies
carry important information about the structure of the objects in the visual
scene. Most error metrics are based on pointwise signal differences, which are
independent of the underlying signal structure. There are some others that
are based on error sensitivity decompose image signals using linear transfor-
mations, these do not remove the strong dependencies. However, the method
referenced below is a more direct way to compare the structures of the ref-
erence and the distorted signals. This will give us a measure of the level of
structural information preservation (or perceivable distortion) after filtering.
The SSIM index that was described above, is a function of three factors: the
luminance, contrast and structural similarity. Thus,

SSIM(A, Â) = f(l(A, Â), c(A, Â), s(A, Â)) (37)

The SSIM index in specific form can be written down as (38):

SSIM(A, Â) =
(2µAµÂ + C1)(2σAÂ + C2)

(µ2
A + µ2

Â
+ C1)(σ2

Aσ
2
Â

+ C2)
(38)

where, C1 = (K1L)2, C2 = (K2L)2, L is the dynamic range of the pixel
intensities (255 for 8-bit grayscale images), K1 ≪ 1 and K2 ≪ 1 is a small
constant. For our case, we use the following parameter settings: K1 = 0.01;
K2 = 0.03.
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In practice, one only requires a single overall integrity measure for the entire
image. The Mean SSIM (MSSIM) index is thus used as a measure to evaluate
the overall consistency:

MSSIM(A, Â) =
1

M

M∑

j=1

SSIM(aj , âj) (39)

where A, Â are the original and restored images, respectively; aj and âj are
the image contents at the jth local window; and M is the total number of local
windows of the image.

Filtering Algorithm Airfield Albert Baboon Cameraman Dog Lena

Original 9.134 9.555 9.577 9.111 9.427 9.183

MF (3 × 3) 17.90 18.93 17.41 17.67 18.91 18.75

MF (5 × 5) 22.08 26.11 20.30 21.92 26.30 26.67

ROM (3 × 3) [23] 13.21 14.81 16.1 15.98 13.55 17.87

RM (L = 3, U = 9) [24] 18.07 19.10 17.50 17.89 19.07 18.94

RCRS (L = 4, U = 6) [25] 17.97 24.54 19.61 20.28 23.32 24.55

MMMF (3 × 3) [6] 12.77 13.27 13.03 12.73 13.25 12.95

Proposed 23.40 30.22 24.68 28.15 30.54 33.17

Table 6
Comparative Restoration results in PSNR (in dB) for the test images corrupted
with 40% impulse noise.

Filtering Algorithm Airfield Albert Baboon Cameraman Dog Lena

Original 0.080 0.041 0.095 0.067 0.037 0.041

MF (3 × 3) 0.4451 0.370 0.400 0.440 0.454 0.458

MF (5 × 5) 0.580 0.571 0.441 0.729 0.697 0.766

ROM (3 × 3) [23] 0.318 0.276 0.270 0.389 0.258 0.398

RM (L = 3, U = 9) [24] 0.455 0.379 0.406 0.460 0.466 0.470

RCRS (L = 4, U = 6) [25] 0.461 0.508 0.327 0.654 0.574 0.690

MMMF (3 × 3) [6] 0.203 0.122 0.207 0.163 0.143 0.137

Proposed 0.824 0.829 0.831 0.912 0.908 0.920

Table 7
Comparative Restoration results in SSIM Index [22] for the test images corrupted
with 40% impulse noise.
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6 Conclusions

A new SVM based algorithm for noise detection is presented in this paper
and a multi-shell median approach to filtering the data was developed. The
effectiveness of the proposed approach relies on the filter capability to detect
the true noise configurations. The real power of the noise segmentation can
be realized from the fact that the noise detection rate was 100% for (0 −
90%) noise density for the cameraman test image (training images corrupted
with 40% noise). The developed filter is adaptive and preserves edges in the
image. The optimal goal of the filter modeled is to improve the quality of the
image by noise reduction. However, as the complexity of the system increases,
our ability to make precise and yet significant statements about its behavior
diminishes until a threshold is reached beyond which precision and significance
(or relevance) become almost exclusive characteristics.
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