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Frames for Exact Inversion of the Rank Order Coder
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Abstract— Our goal is to revisit rank order coding by propos-
ing an original exact decoding procedure for it. Rank order
coding was proposed by Thorpe et al. who stated that the
order in which the retina cells are activated encodes for the
visual stimulus. Based on this idea, the authors proposed in [1]
a rank order coder/decoder associated to a retinal model.
Though, it appeared that the decoding procedure employed
yields reconstruction errors that limit the model bit-cost/quality
performances when used as an image codec. The attempts made
in the literature to overcome this issue are time consuming
and alter the coding procedure, or are lacking mathematical
support and feasibility for standard size images. Here we solve
this problem in an original fashion by using the frames theory,
where a frame of a vector space designates an extension for the
notion of basis. Our contribution is twofold. First, we prove that
the analyzing filter bank considered is a frame, and then we
define the corresponding dual frame that is necessary for the
exact image reconstruction. Second, to deal with the problem of
memory overhead, we design a recursive out-of-core blockwise
algorithm for the computation of this dual frame. Our work
provides a mathematical formalism for the retinal model under
study and defines a simple and exact reverse transform for it with
over than 265 dB of increase in the peak signal-to-noise ratio
quality compared to [1]. Furthermore, the framework presented
here can be extended to several models of the visual cortical
areas using redundant representations.

Index Terms— Bio-inspired image coding, frames theory,
out-of-core, rank order code, scalability.

I. INTRODUCTION

Neurophysiologists made substantial progress in better
understanding the early processing of the visual stimuli.
Especially, several efforts proved the ability of the retina to
code and transmit a huge amount of data under strong time
and bandwidth constraints [2]–[4]. Thus, our aim is to use
the computational neuroscience models that mimic the retina
behavior to design novel lossy coders for static images. In this
brief, we assume that the retina encodes the visual information
by the order in which its ganglion cells react to the stimulus -
recalling that these cells react through the emission of elec-
trical impulses (the spikes). This choice was motivated by
Thorpe et al. neurophysiologic results on ultrarapid stimulus
categorization [2], [5]. The authors showed that still image
classification can be achieved by the visual cortex within very
short latencies of about 150 ms. As an explanation, it was
stated that: There is information in the order in which the
cells fire, and thus the temporal ordering can be used as a code.
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This code, termed as rank order code (ROC), is at the origin
of a classical bio-inspired retina model [1].

However, one major limitation of the ROC coder defined
in [1] prevents its use for the design of image codecs. It is
the inaccuracy of the proposed decoding procedure. Indeed,
the retina model that generates the spikes is based on a
redundant filter bank image analysis, where the considered
filters are not strictly orthogonal. Thus, the filter overlap
yields reconstruction errors that limit the bit-cost/quality
performance [6]–[8]. Efforts to correct this issue followed
two main approaches. A first one consisted in inverting
directly the transform operator to obtain a reverse filter
bank as in [7]. The method presented is based on a pseudo-
inversion. Though interesting, we will show that this method
lacks mathematical support. Besides the procedure used
deals with a high dimension matrix and thus is infeasible, as
such, for standard size images. A second approach relies on
matching pursuit (MP) algorithms as in [6] and [7]. These
methods are time consuming and alter the coding procedure.
In addition, the MP approach depends on the order in which
the “match and update” mechanism is performed, and this
makes the coding procedure depend on the stimulus itself.

In this brief, we give an original solution relying on the
mathematical concept of “frames” [9]. Frames extend the
notion of basis for sets of filters which are linearly dependent.
Their use for redundant signal analysis and reconstruction
has been experienced in the signal processing literature.
For example, authors in [10] proved experimentally that
the filters of the classical Laplacian pyramid [11] form a
non-orthogonal frame of filters and proposed an algorithm for
partial error removal from the reconstructed signal. Also, the
authors in [12] designed a new frame of orthogonal filters for
signal analysis that is inspired from the Laplacian pyramid
too. Strong design constraints imposed on the filters enabled
errorless reconstruction.

Though the retinal model defined in [1] is based on a
different set of filters (that in addition are not orthogonal), the
cited works inspired a solution to our specific case. This brief
brings two main contributions. 1) We add to the original retinal
filter bank an adequate scaling function, and we provide an
original mathematical demonstration that we get a frame. Then
we propose an algorithm for errorless reconstruction through
the construction of a so-called “dual frame.” 2) We solve the
technical issue related to memory overhead that prevented
the use of frames for high dimension spaces, with a novel
out-of-core algorithm for the computation of the dual frame.
Thanks to our new approach, we show that the image that we
reconstruct is equal to the original stimulus.

This brief is organized as follows. In Section II, we present
the three stages of the rank order coding/decoding method.
Then in Section III, we define an exact decoding scheme
through the construction of a dual frame. Finally in Section IV,
we show the gain that we obtain in terms of bit-cost/quality
tradeoff.

II. RANK ORDER CODEC: THREE STAGES

This section summarizes the three stages of the ROC
coding/decoding procedure as defined in [1]. First we present

in Section II-A the image transform as performed by a
bio-inspired retina model. We then give the specification of
the subsequent rank ordering and decoding procedures in
Sections II-B and C.

A. Image Transform: A Bio-Inspired Retina Model

Neurophysiologic experiments have shown that, as for
classical image coders, the retina encodes the stimulus repre-
sentation in a transform domain. The retinal stimulus transform
is performed in the cells of the outer layers. Quantitative
studies have proven that the outer cells processing can be
approximated by a linear filtering. In particular, the authors
in [13] proposed the largely adopted difference of Gaussian
(DoG) filter which is a weighted difference of spatial Gaus-
sians that is defined as

DoG(x, y) = wcGσ c (x, y) − ws Gσ s (x, y)

where wc and ws are the respective positive weights of the
center and surround components of the receptive fields, σ c

and σ s are the standard deviations of the Gaussian kernels
Gσ c and Gσ s , such that σ c < σ s . The DoG cells can be
arranged in a dyadic grid � of K layers to sweep all the
stimulus spectrum as shown in Fig. 1(b) [1], [6], [8]. As in
the retina topology, the cells density and scale are inversely
proportional. This keeps the model strongly inspired from the
mammalians retina, though the authors in [1] do not claim
biological plausibility. Each layer 0 � k < K in the grid �,
is tiled with filtering cells, denoted by DoGk , having a scale
k and generating a transform subband Bk such that

DoGk(x, y) = wcGσ c
k
(x, y) − ws Gσ s

k
(x, y) (1)

where σ c
k+1 = (1/2)σ c

k and σ s
k+1 = (1/2)σ s

k . Each DoGk filter
has a size of (2Mk +1)2, with Mk = 3 σ s

k . Authors in [1] chose
the biologically plausible parameters as estimated in [13] wc =
ws = 1, σ c

k = (1/3)σ s
k ∀k, and σ c

K−1 = 0.5 pixel.
In order to measure the degree of activation cki j of a given

retina cell, such that (k, i, j) ∈ �, we compute the convolution
of the original image f by the DoGk filter. Yet each layer k
in the dyadic grid � is undersampled with a step of 2K−k−1

pixels with an original offset of 2K−k−2� pixels, where .�
is the floor operator. Having this, we define the function uk ,
such that the cki j coefficients are computed at the locations
(uk(i), uk( j)) as follows:

uk(i) = 2K−k−2� + 2K−k−1i ∀k ∈ �0, K − 1�. (2)

uk is an undersampling function. We notice that uK−1(i) = i ,
and that (uk)k∈�0,K−2� are undersampled versions of uK−1.
cki j is then computed as follows:

cki j =
x=uk(i)+Mk ,y=uk( j )+Mk∑

x=uk(i)−Mk ,y=uk( j )−Mk

DoGk(uk(i)− x, uk( j)− y) f (x, y). (3)

This transform generates a vector c of (4/3N2−1) coefficients
cki j for an N2-sized image (if N is a power of 2). This archi-
tecture is similar to a Laplacian pyramid [11]. An example of
such a transform performed on the cameraman test image is
shown in Fig. 1.
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Fig. 1. (a) Illustration of the retinal image transform applied on cameraman. Image size is 257×257 pixels. (b) Example of a dyadic grid of DoG’s used for
the image analysis (from [1]). (c) Template of the DoG transform matrix: In this brief, the transform  is represented as a matrix where blue dots correspond
to non-zero elements. (d) Transform result showing the generated subbands in log scale.

B. Sorting: The Generation of the ROC

Thorpe et al. [2], [5] proposed that the order in which the
spikes are emitted encodes for the stimulus. This yielded the
ROC which relies on the following simplifying assumptions:
1) from stimulus onset, only the first spike emitted by each cell
is considered; 2) the time to fire of each cell is proportional to
its degree of activation; and 3) only the order of firing encodes
for the stimulus.

Such a code gives a biologically plausible interpretation to
the rapidity of the visual stimuli processing in the human
visual system. Indeed, it seems that most of the processing
is based on feed-forward mechanism before any feedback
occurs [5]. So, the neurons responses (cki j )ki j ∈� defined in
(3) are sorted in the decreasing order of their amplitude |cki j |.

The final output of this stage, the ROC, is then a sorted list
of Ns couples

(
p, cp

)
such that |cp| � |cp+1|, with p being

the index of the cell defined by p(k, i, j) = k N2
k + i Nk + j

and N2
k being the number of cells in the subband Bk . Here, the

generated series
(

p, cp
)

0�p<Ns
is the only data that the coder

transmits to the decoder. Note that in some implementations
as [1] and [6], the exact values of the coefficients cp are
omitted and recovered through a look-up-table (but this is out
of the scope of this brief).

C. Decoding Procedure of the ROC

We consider the set of the first Ns highest cell responses
forming the ROC of a given image f . In [1], the authors
defined f̃Ns , the decoded estimation of f by

f̃Ns (x, y) =
Ns −1∑

p(k,i, j )=0

cp DoGk(uk(i) − x, uk( j) − y). (4)

Equation (4) defines a progressive reconstruction depending
on Ns . Indeed, one can restrict the code to the most valuable
coefficients cp , i.e., the most activated cells of the retina. This
feature makes the coder scalable [8].

An example of such a reconstruction is given in Fig. 2(a),
with all the retina cells taken into account. Fig. 2(b) also shows
that the retina model decoding procedure, though giving a
good approximation of the stimulus, is still inaccurate. In this
example, reconstruction quality is evaluated to 27 dB of peak
signal-to-noise ratio (PSNR). This is due to the fact that the
DoG filters are almost but not exactly orthonormal. We detail
in the next section our original method to reconstruct exactly
the input f .

(a) (b)

Fig. 2. Result of the decoding procedure with the original approach using
all of the retina cells responses. (a) Reconstructed image. The PSNR of f̃Ns
is 27 dB. (b) Error image in a log-scale.

III. INVERTING THE BIO-INSPIRED RETINA MODEL

In this section, we define an original and exact image
reconstruction algorithm starting from the ROC. First, we
introduce in Section III-A a low-pass scaling function in
the analyzing filter bank. This modification will be shown
to be necessary for the transform reversibility. Then, in
Section III-B, we give a matrix-based formalism for the
transform and we use it to prove that our filter bank is a frame
in Section III-C. Finally, in Section III-D, we show the exact
reconstruction results using the dual frame and introduce an
out-of-core algorithm to construct it.

A. Introduction of a Low-Pass Scaling Function

We introduce a low-pass scaling function in the filter bank
used for image analysis. This modification does not alter the
ROC coder architecture and has both a mathematical and
a biological justification. Indeed, the Fourier transform of a
Gaussian is another Gaussian, so that F (DoGk) is a DoGs.
Therefore, with wc = ws = 1 [see (1)], we have

F (DoGk) = 2π
(
σ c

k

)2
G(σ c

k )
−1 − 2π

(
σ s

k

)2
G(σ s

k )
−1 . (5)

We can easily verify that the central Fourier coefficient
F (DoGk)

(
u0(0), u0(0)

) = 0 ∀k, and that F (DoGk)(i, j) >
0 ∀(i, j) 
= (

u0(0), u0(0)
)
.

In order to cover up the center of the spectrum, we propose
to replace the DoG0 filter, with no change in the notation, by
a Gaussian low-pass scaling function consisting in its central
component, such that

DoG0(x, y) = wcGσ c
0
(x, y). (6)
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Fig. 3. (a) Spectrum of the DoG filters. The abscissa represents the
frequencies. The ordinate represents the DoGk filters gain in dB. (b) Half of
the spectrum in (a) with the abscissa having a log-step. The scaling function
DoG0 is plotted in red dashed line.

Fig. 3(a) and (b) shows the spectrum partitioning with the
different DoGk filters (k ≥ 1, in blue) and the spectrum
of the new scaling function DoG0 (in red dashed line)
which covers low frequencies. With no scaling function, all
constant images would be mapped into the null image 0
and this would make the transform be non-invertible. Here
we overcome this problem as the central Fourier coefficient
F (DoG0)

(
u0(0), u0(0)

)
> 0.

The scaling function introduction is further justified by the
actual retina behavior. Indeed, the surround Gσ s

k
in (1) appears

progressively in time driving the filter passband from low to
high frequencies. So that, DoG0 represents the very early state
of the retina cells.

In order to define an inverse for the new transform, we
demonstrate in the following that the set of DoG filters
augmented with the DoG0 scaling function is a “frame.”

B. Matrix Notations for ROC

Unlike the implementations in [1], [6], and [8], let us intro-
duce the matrix  to compute the image transform through the
retina model. The rows of  are the different DoGk filters.
This yields an “undersampled Toeplitz-block” sparse matrix
[Fig. 1(c)]. Such an implementation allows fast computation of
the multi-scale retinal transform through sparse matrix specific
algorithms. This will in addition help us to construct the dual
frame of .

With this notation, the DoG transform is rewritten

c =  f. (7)

Interestingly, the straightforward synthesis as defined in (4)
amounts to the multiplication of the vector output c by ∗ the
Hermitian transpose of . Then, the reconstruction procedure
defined in (4) is rewritten

f̃Ns = ∗ c. (8)

C. DoG Transform is a Frame Operator

Our aim is to prove that the bio-inspired image transform
presented amounts to a projection of the input f on a frame
of a vector space. The frame is a generalization of the idea of
a basis to sets which may be linearly dependent [9]. Frames
allow a redundant signal representation which, for instance,
can be employed for coding with error resilience. By proving
the frame nature of this transform, we will be able to achieve

an exact reverse transform through the construction of a dual
frame.

According to [9], to prove that our transform is a frame we
need to show that ∃ 0 < α � β < ∞, such that

α ‖ f ‖2 �
∑

ki j∈�

(
cki j

)2 � β ‖ f ‖2 ∀ f. (9)

1) Positioning With Respect to the State-of-the-Art: Pyra-
mid architectures are very common in signal processing and
involve a wide range of filters, some of which are loosely
referred to as DoG. These are of different sorts. For instance,
[1], [12], and [10] are three different implementations of
pyramids dealing with different types of DoG’s. Note that the
term “DoG” may lead to some confusion. Indeed, according
to the respective weights and standard deviations, an infinity
of filters with different properties may be implemented as the
difference of two Gaussians. For example, in [10] the authors
proved experimentally that the classical Laplacian pyramid is
a frame. However, in our case, we prove that the pyramid
introduced in [1] -which is not Laplacian- is a frame. We
showed this mathematically through an original demonstration.
Also, in [12] the authors proposed the design of a set of
orthogonal vectors inspired from the Laplacian pyramid to
conceive a new orthogonal and tight [α = β see (9)] frame.
The filter bank defined from [1] form a frame that is neither
orthogonal nor tight.

Proposition 3.1: Let �(φ) = {φki j , (k, i, j) ∈ �}
be the set of vectors φki j , such that φki j (x, y) =
DoGk (uk(i) − x, uk( j) − y) as defined in (1) for k > 0, and
in (6) for k = 0. Then �(φ) is a frame of the N×N images
vector space.

Proof:
Upper bounding: We have

∑

ki j ∈�

(
cki j

)2 =
K−1∑

k=0

‖Bk‖2 (10)

where Bk is the subband of scale k generated by the image
transform with

Bk(i, j) =
x=uk(i)+Mk ,y=uk( j )+Mk∑

x=uk(i)−Mk ,y=uk( j )−Mk

DoGk(uk(i) − x, uk( j) − y)

× f (x, y).

If we denote by Uk the undersampling operator corresponding
to the function uk [see (2)], we can write

Bk = Uk(DoGk ∗ f ). (11)

Then, we have the following inequalities:
‖Bk‖ = ‖Uk(DoGk ∗ f )‖ � ‖Uk (|DoGk| ∗ | f |)‖

� ‖|DoGk | ∗ | f |‖
� ‖DoGk‖ ‖ f ‖.

So, with (10) we infer the following bounding:
∑

ki j∈�

(
cki j

)2 =
K−1∑

k=0

‖Bk‖2 �
(

K−1∑

k=0

‖DoGk‖2

)
‖ f ‖2

= β‖ f ‖2 (12)
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(a) (b)

Fig. 4. Result of the decoding procedure with the dual DoG frame using all
of the retina cells responses. (a) Reconstructed image. The PSNR of f ∗

Ns
is

296 dB. (b) Error image in log-scale.

which shows the first inequality.
Lower bounding: We start from the fact that

K−1∑

k=0

‖Bk‖2 � ‖BK−1‖2 + ‖B0‖2 (13)

which amounts to write the following inequalities:
∑

ki j ∈�

(
cki j

)2 � ‖DoGK−1 ∗ f ‖2

+‖(DoG0 ∗ f
)(

u0(0), u0(0)
)‖2

= ‖F (DoGK−1) F ( f )‖2

+‖(F (DoG0) F ( f )
)(

u0(0), u0(0)
)‖2

=
N−1∑

i, j=0

(
F (DoGK−1)(i, j) F ( f )(i, j)

)2

+‖F (DoG0)
(
u0(0), u0(0)

)

×F ( f )
(
u0(0), u0(0)

)‖2
.

We know that F (DoGK−1)(i, j) > 0, ∀(i, j) 
= (
u0(0),

u0(0)
)

and that F (DoGK−1)
(
u0(0), u0(0)

) = 0. We also
have F (DoG0)

(
u0(0), u0(0)

)
> 0 (see Section III-A). So, if

we define a set SK−1 by SK−1 = �0, N − 1�2 \ (
u0(0), u0(0)

)

and α by

α = min
{
F (DoG0)

2(u0(0), u0(0)
)
,

{
F (DoGK−1)

2(i, j), (i, j) ∈ SK−1
}}

> 0

then we get the following:

N−1∑

i, j=0

(
F (DoGK−1)(i, j) F ( f )(i, j)

)2

+∥∥F (DoG0)
(
u0(0), u0(0)

)
F ( f )

(
u0(0), u0(0)

)∥∥2

=
∑

i, j∈SK−1

(
F (DoGK−1)(i, j) F ( f )(i, j)

)2

+∥∥F (DoG0)
(
u0(0), u0(0)

)
F ( f )

(
u0(0), u0(0)

)∥∥2

� α
∑

i, j∈�0,N−1�2

(
F ( f )(i, j)

)2 = α‖ f ‖2

so that,
∑

ki j ∈�

(
cki j

)2 � α‖ f ‖2.

D. Synthesis Using the Dual DoG Frame

Based on the previous proof, we detail in this section an
exact reconstruction procedure for the DoG transform.

The straightforward analysis/synthesis procedure can be
outlined in the relation between the input image and the recon-
struction estimate: f̃Ns = ∗ f. As we already demonstrated
that the DoG transform is a projection on a frame, ∗ is said
to be the frame operator. To have an exact reconstruction of f ,
one must construct the dual DoG vectors. A preliminary step is
to compute (∗)−1, the inverse frame operator. We then get a
corrected reconstruction f ∗

Ns
, defined by: f ∗

Ns
= (∗)−1 f̃Ns .

If Ns is the total number of the retina model cells, we have

f ∗
Ns

= (∗)−1 f̃Ns = (∗)−1∗ c

= (∗)−1∗  f = f.

As made clear through the equation above, the dual vectors
are the rows of (∗)−1∗. If we reconstruct f starting from
the ROC output c and using the dual frame vectors, we get
the results shown in Fig. 4. The reconstruction obtained is
accurate and requires only a simple matrix multiplication. In
this example, reconstruction quality is evaluated to 296 dB of
PSNR.

Dual vectors resemble the DoG analyzing filters. This is
obvious as the straightforward image reconstruction f̃Ns is
already close to f , which means that ∗ is close to identity.
However, the dual filters lose the symmetry property of the
primal ones. An example of dual vectors constructed as the
rows of (∗)−1∗ is shown in [14].

1) Recursive Out-of-Core Blockwise Inversion Algorithm:
Though the mathematical fundamentals underlying this brief
are simple, the implementation of such a process is a hard
problem. Indeed, in spite of the sparsity of  and ∗, the
frame operator ∗ is an N4-sized dense matrix for an N2-
sized image f . For instance, if N = 257, ∗ holds in
16 Gbytes, and 258 Gbytes if N = 513. The solution is to
recourse to the out-of-core algorithms [15].

The frame operator ∗ is constructed block by block, and
each block is stored separately on disk. The inversion is then
performed using a recursive algorithm that relies on the block-
wise matrix inversion formula that follows:

(
A B
C D

)−1

=
(

A−1 + A−1 B Q−1C A−1 −A−1 B Q−1

−Q−1C A−1 Q−1

)

where Q is the Schur complement of A, such that Q = D −
C A−1 B. Thus, inverting a matrix amounts to the inversion of
two matrices that are four times smaller. The inversion consists
then in subdividing the problem by a factor four at each
recursion level until we reach a single block problem. Obvi-
ously, this algorithm requires out-of-core blockwise matrix
routines for multiplication, subtraction and addition, that we
implemented in a “multi-threaded” fashion to accelerate the
computation.

2) Advantages of Our Approach: (∗)−1 is a square,
definite positive, and invertible matrix [9]. Another advantage
of our method is that (∗)−1 is well conditioned, with
a conditioning number estimated to around 16, so that its
inversion is stable. This is a crucial issue as previous work
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Ns
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Fig. 5. Reconstruction of the cameraman image f using different percentages of the highest cki j . (a) Straightforward progressive synthesis f̃Ns . (b) Corrected
reconstruction f ∗

Ns
using the dual frame. PSNR for the upper/lower image is from left to right: (19.2 dB/19.5 dB), (20.4 dB/20.8 dB), (24.08 dB/25 dB),

(25.8 dB /27.5 dB), and (27.9 dB/296 dB). The mean SSIM for the upper/lower image is from left to right: (0.49 /0.57), (0.56 /0.61), (0.72 /0.76), (0.77
/0.81), and (0.91 /1).

aimed at conceiving the DoG reverse transform tried to invert
the original filter bank with no scaling function DoG0 [7].
This is obviously mathematically incorrect as the filter bank
thus defined is not a frame and thus its pseudo inverse
(∗)−1∗ does not exist. The solution proposed in [7] gives
only a least squares solution to an ill-conditioned problem.
Our method instead is stable. Besides through the out-of-
core algorithm that we designed we can invert (∗) for
large images whereas [7] are restricted to a maximum size of
32 × 32.

Furthermore, correcting the reconstruction errors using the
adequate dual frame does not alter the coding procedure.
Indeed, methods introduced in [6] and [7] are based on MP.
MP mainly relies on the principle of progressive elimination
of the filters overlap with a “match and update” routine.
Thus MP depends on the order in which the “match and
update” mechanism is performed. This amounts to have a
specific “reconstruction basis” for each specific image. How-
ever, our algorithm provides us with a single frame of vectors
(independent of the stimulus) that guarantees the exactness
of the reconstruction for all possible images. Our decoding
scheme does not implement an a posteriori lateral inhibition
mechanism but rather supposes the cells to be independent.
Our work: 1) points out the reason that makes the retina model
in [1] non-invertible as it is and resolve it with the introduction
of a low-pass scaling function; and 2) offers an alternative to
MP that has the advantage of being mathematically exact for
all images and reproducible for other representations through
the concept of “frames.” Besides MP, though interesting,
remains time consuming. Yet our method keeps the cod-
ing procedure straightforward, order-independent, and multi-
threadable.

IV. COMPARISON TO THE ORIGINAL ROC CODEC

We experiment our new decoder in the context of scalable
image decoding. We reconstruct the cameraman test image
using an increasing number Ns of highest responses taken into
account [see (4) and (8)]. We compare the results when using
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Fig. 6. PSNR quality of the reconstruction using the DoG filters [1] (in blue
solid line) and the dual DoG filters (in red dashed line) as a function of the
percentage of cells taken into consideration. (a) Results shown for percentages
between 0% and 100%. (b) Results shown for percentages between 0% and
10%.

the original DoG filters in ∗ and the dual DoG filters in
(∗)−1∗ for the decoding procedure. Fig. 5 summarizes
the results obtained, with the upper line showing the
progressive straightforward reconstruction f̃Ns and the bottom
line showing the corrected progressive reconstruction f ∗

Ns
.

The increase in quality measured in PSNR is significant for
all bit-rates and goes up with Ns . For low bit-rates, the PSNR
increase is around 0.3 dB. For higher bit-rates, the increase of
PSNR reaches almost 270 dB (from 27 to 296 dB) when all the
retina cells have fired. Though we do not show it, the exactness
of our decoding schema is confirmed when applied on several
classical test images. For example Lena reconstruction quality
increases from 31 dB with the classical decoder to 300 dB
with ours. We also confirm these results by using other
quality metrics that are more consistent than PSNR with the
human eye perception: we show the mean structural similarity
measure (SSIM) [16] (an index between 0 and 1) which
confirms the precision of our new decoder with an increase in
quality from 0.9 to 1 when all the retina cells have fired (Fig. 5
caption).

Fig. 6 compares the bit-cost/quality curves of the two
methods and shows the high improvement we obtain. Besides,
our method does not alter the coding procedure and keeps it
straightforward, fast and order-independent.
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Abstract— This brief deals with the problem of minor compo-
nent analysis (MCA). Artificial neural networks can be exploited
to achieve the task of MCA. Recent research works show that
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convergence of neural networks based MCA algorithms can be
guaranteed if the learning rates are less than certain thresholds.
However, the computation of these thresholds needs information
about the eigenvalues of the autocorrelation matrix of data set,
which is unavailable in online extraction of minor component
from input data stream. In this correspondence, we introduce an
adaptive learning rate into the OJAn MCA algorithm, such that
its convergence condition does not depend on any unobtainable
information, and can be easily satisfied in practical applications.

Index Terms— Deterministic discrete time system, eigenvalue,
eigenvector, minor component analysis, neural networks.

I. INTRODUCTION

The eigenvector associated with the smallest eigenvalue
of the autocorrelation matrix of data set is called minor
component (MC). As an effective method for data analysis,
minor component analysis (MCA) is aimed at extracting
MC from data set and has many important applications
[1]–[3], such as curve and surface fitting, digital beamforming,
frequency estimation, moving target indication, and clutter
cancellation. Recently, neural network based MCA algorithms
have received considerable research interests [11]– [13].
Although the batch MCA methods, e.g., power algorithms,
which usually depend on the computation of the correlation
matrix of inputs, are more efficient and can achieve better
performance than the online neural networks algorithms [20],
the online algorithms do not need to compute and save the cor-
relation matrix and only deal with the computation of vectors
and scalars, which results in that the online neural networks
algorithms have the lower storage requirement than the batch
algorithms.

So far, numerous neural networks learning algorithms have
been developed to solve the MCA problem [6]–[14]. For these
MCA algorithms, convergence is essential and considerable
research has been conducted to analyze their convergence
properties. Since direct convergence analysis is rather difficult
for stochastic discrete time (SDT) systems describing the
MCA algorithms, some indirect dynamics study methods are
referable. In the existing literature, deterministic continuous
time (DCT) method and deterministic discrete time (DDT)
method are two widely-used analysis approaches for the
stochastic learning algorithms. The DCT method transforms
the original SDT systems into their corresponding DCT
systems, based on the stochastic approximation theory [4].
Then the convergence properties of MCA neural networks
algorithms are indirectly attained by studying the dynamics
of these DCT systems [5]–[9]. The DDT method exploits the
conditional expectation to transform the original SDT system
describing the learning algorithm into a corresponding DDT
system. Through studying dynamics of the obtained DDT sys-
tem, one can indirectly investigate the convergence properties
of the original SDT system. Both the DCT method and the
DDT method indirectly shed some light on the convergence
characteristics of the original stochastic algorithms.

Both the DDT method and the DCT method show that
the selection of the learning rate plays an essential role in
the dynamical behaviors of algorithms. In order to guarantee
convergence of algorithms, the learning rate is usually required
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