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Motion is a key feature for a wide class of computer vision approaches to recognize actions. In this article,
we show how to define bio-inspired features for action recognition. To do so, we start from a well-estab-
lished bio-inspired motion model of cortical areas V1 and MT. The primary visual cortex, designated as
V1, is the first cortical area encountered in the visual stream processing and early responses of V1 cells
consist in tiled sets of selective spatiotemporal filters. The second cortical area of interest in this article is
area MT where MT cells pool incoming information from V1 according to the shape and characteristic of
their receptive field. To go beyond the classical models and following the observations from Xiao et al.
[61], we propose here to model different surround geometries for MT cells receptive fields. Then, we
define the so-called bio-inspired features associated to an input video, based on the average activity of
MT cells. Finally, we show how these features can be used in a standard classification method to perform
action recognition. Results are given for the Weizmann and KTH databases. Interestingly, we show that
the diversity of motion representation at the MT level (different surround geometries), is a major advan-
tage for action recognition. On the Weizmann database, the inclusion of different MT surround geome-
tries improved the recognition rate from 63.01 ± 2.07% up to 99.26 ± 1.66% in the best case. Similarly,
on the KTH database, the recognition rate was significantly improved with the inclusion of MT different
surround geometries (from 47.82 ± 2.71% up to 92.44 ± 0.01% in the best case). We also discussed the lim-
itations of the current approach which are closely related to the input video duration. These promising
results encourage us to further develop bio-inspired models incorporating other brain mechanisms
and cortical areas in order to deal with more complex videos.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Motion is a key feature for a wide class of computer vision ap-
proaches to recognize actions: Existing approaches consider a vari-
ety of motion representations and motion-based features (see, e.g.,
[45,56,46] for recent surveys). The question is how to define mo-
tion features containing sufficient information to perform action
recognition? Let us mention some recent examples from the liter-
ature. In Efros et al. [18], the authors defined a spatiotemporal
descriptor for low resolution videos which is based on optical flow
measurements inside a small window. In Zelnik-Manor and Irani
[64], the authors defined spatiotemporal features from the local
intensity gradients extracted at different temporal scales. Actions
were then characterized by the global histograms of image gradi-
ll rights reserved.

by J.K. Tsotsos.

J. Escobar), pierre.kornprob-
ents at multiple time scales. In Dollar et al. [17], the authors de-
fined spatiotemporal features based on the generalized Harris
detector, which extracts spatiotemporal corners represented by
cuboids (see also [28]). The spatiotemporal corners are quite rare
and therefore a sparse representation of the motion activity in a vi-
deo sequence. Similarly to Dollar et al. [17], in Jhuang et al. [24],
the authors also proposed the concept of 3D cuboids for the spatio-
temporal feature extraction, relating their algorithm to a neurobio-
logical model of motion-form processing in the visual cortex
(essentially at the level of the V1-cortical area with simple and
complex cells).

As far as the visual system is concerned, one can make a similar
observation asking whether motion is also essential to recognize
actions (though other features such as form are also useful). This
was observed in psychophysics and confirmed in fMRI. In psycho-
physics, Casile and Giese [13] showed that biological motion recog-
nition can be performed with a coarse spatial location of the
mid-level optic flow features. Using fMRI, in Michels et al. [35],
the authors located human brain areas involved in biological
motion recognition identifying the activation of both motion-
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processing (dorsal) and form-processing (ventral) pathways of the
visual system.

In this article our goal is to propose new motion-based features
for action recognition, inspired by visual system processing. To do
so, we propose modeling the motion-processing pathway, focusing
on cortical areas V1 and MT. The primary visual cortex, designated
as V1, is the first cortical area encountered in the visual stream
processing. The purpose of V1 can be thought of as similar to many
spatially local and complex Fourier transforms. The second cortical
area of interest in this article is area MT. MT cells pool incoming
information from V1 according to the shape and characteristic of
their receptive field and a large portion of the cells are tuned to
the speed and direction of moving visual stimuli, so that MT plays
a significant role in the processing of visual motion.

The basis of our model will be mostly classical and it will rely on
well-established results. Indeed, several bio-inspired motion pro-
cessing models have been proposed in the computational neurosci-
ence literature, and they can be a useful source of inspiration. Some
examples include Nowlan and Sejnowski [36], Rust et al. [49],
Simoncelli and Heeger [52], Grzywacz and Yuille [21]. However,
the goal of these models was essentially to reproduce certain prop-
erties of primate visual systems and to make predictions for neuro-
science. Recently, more elaborated models were also proposed,
combining several motion-related areas with other cortical areas
(see, e.g., [5,3,8,54]. These model can handle more complex stimuli
and tend to bridge the gap between computational neuroscience
and computer vision. Considering all this past work, our goal is
provide a simple model capturing important biological properties
and applicable for action recognition.

The bio-inspired features proposed in this article will be directly
defined from MT cells’ characteristics. Focusing on MT cells, an
important observation is that most cells in MT are sensitive to mo-
tion contrasts: Different kinds of surrounding geometries of MT
receptive fields are observed in the computation of motion struc-
ture (see [32,4]), introducing anisotropies in the processing of spa-
tial information. More precisely, in Xiao et al. [61] the authors
examined a population of MT cells, revealing that 50% of MT cells
have asymmetric receptive fields, and the other 50% is divided into
circular symmetric surrounds (20%) and bilaterally symmetric sur-
rounds (25%).

This article is organized as follows. Section 2 presents a classical
functional bio-inspired model of the motion-processing pathway,
based on existing literature. This model has two main stages: (i) fo-
cus on the action; and (ii) motion estimation through the modeling
of V1 and MT cortical areas. Main justifications will be given in
terms of general biological findings regarding V1 and MT neuron
properties. Exact matching of these models with neurophysiologi-
cal recordings is beyond the scope of this article. Note that an
open-source C++ library to simulate V1 cells is proposed. Section 3
focuses on the variety of the MT receptive fields modeled in this
article. Section 4 addresses the problem of action recognition. We
show how MT cell responses can be used to define bio-inspired
features and how these features are relevant in the context of
action recognition. Comparisons with state-of-the-art methods
and databases are provided. Section 5 summarizes the contribution
and propose perspectives of this work. Finally, for those interested,
technical details about the model are included in Appendix A.
2. A bio-inspired vision architecture

2.1. Focus on the action

Recognizing human action in real life requires that, if a person is
moving across the visual field, our eyes follow the motion. The
importance of smooth eye pursuit has been studied in biological
motion recognition. Specifically, Orban de Xivry et al. [38] found
a strong correlation between the action recognition rate and the
level of smooth eye velocity measured after 100 ms stimulus onset.
In fact, to follow moving persons with the eyes is absolutely neces-
sary for recognition if the motion is performed in cluttered back-
grounds or crowded scenarios. To focus on the action, attentional
mechanisms are important to select a part of the sensory informa-
tion, and thus, to process only a bounded area of the visual scene.
Recently, Safford et al. [50] reported that the action recognition
performance in biological motion is highly modulated by atten-
tion: the best performance is reached when the moving subject
is in the focus of attention.

Following these ideas, we preprocess videos containing human
motion in order to obtain a self-centered representation of the
action, as illustrated in Fig. 1a and b. In practice, focusing on the
action can be done in different ways: For example, one can use
models of visual attention where salient events are extracted based
on combinations of image features and given a certain context (see,
e.g., [23,9,10]).

The main consequence of this preprocessing stage is that the
overall system will naturally be invariant to position (in the sense
‘‘where does the action take place in the scene?’’) but of course the
problem of invariance with respect to viewing angles is still open.
Concerning scale-invariance, since actions are rescaled to the same
dimension, an action at a distance will be zoomed in but with a
degraded resolution. However, the benefit of having all actions
represented in the same size is that it will allow us to compare
features between nearby and distant actions.

2.2. V1 layer: local motion detectors

The primary visual cortex, designated as V1, is the first cortical
area encountered in the visual stream processing. It is probably the
most studied visual area but its complexity still makes it very hard
to accurately model [37]. However, the current consensus is that
early responses of V1 cells consist in tiled sets of selective spatio-
temporal filters. The purpose of V1 can be thought of as similar to
many spatially local, complex Fourier transforms. For example, in
Grzywacz and Yuille [21], the authors showed that several proper-
ties of simple/complex cells in V1 can be described by energy
filters and in particular by Gabor patches. More recently, Mante
and Carandini [33] showed which properties of V1 cells can be
explained using an energy model. Theoretically, these filters
together can carry out neuronal processing of spatial frequency,
orientation, motion, direction, speed (thus temporal frequency),
and many other spatiotemporal features.

In this article, we implemented a classical model for V1
complex cells (Fig. 1c). So, let us consider the ith V1 complex cell,
located at xi = (xi,yi), tuned to the spatial orientation hi and spatio-
temporal orientation fi ¼ ð�ni; �xiÞ. Its mean firing rate, denoted by
rV1

i ðtÞ, is estimated in two stages:

(i) Motion energy detectors: Motion computation is performed
by energy motion detectors according to Adelson and Bergen
[1]. Each motion energy detector emulates a V1 complex cell,
in the sense that it is invariant to contrast polarity, and it is
built as a nonlinear combination of linear V1 simple cells
(see [12] for V1 cells classification). Each complex cell is thus
selective to a certain motion direction inside a spatiotemporal
frequency bandwidth. We refer the interested reader to
Appendix A where more details are given on the estimation
of the V1 complex cells activation, denoted by Ci(t).

(ii) Nonlinearity: Passing from activation to mean firing rate is
classically modeled by a nonlinearity, since the mean firing
rate shows several nonlinearities due to response saturation,
response rectification or contrast gain control mechanism
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Fig. 1. Block diagram of the proposed approach to estimate our bio-inspired features. (a) Input is a real video sequence. (b) Videos are preprocessed in order to have a focus on
the action to be labeled. (c) V1 cortical map is modeled via directional-selective filters (c.1 and c.2) applied to each frame of the input sequence. Cells are organized in a log-
polar distribution (c.3). (d) MT cortical map is pooling the information coming from the V1 cortical map (d.1 and d.2). MT cells receptive fields are also organized in a log-polar
distribution with different receptive field configurations (d.3). (e) The resulting bio-inspired feature corresponds to a motion map which is defined by the average activation of
MT cells in time. The motion map has a length of NL � Nc elements, where NL is the number of MT layers and Nc is the number of MT cells per layer. It is this feature which is
then used to label videos containing human motion.
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([2]). So, it is classical to define the mean firing rate rV1
i ðtÞ by

rV1
i ¼ SðCiðtÞÞ, where S is a nonlinear function (e.g., a Sigmoid

or a Heaviside function).

Although this is a classical model, implementing motion energy
detectors is not straightforward and requires some attention, in
particular for proper cell tuning. For this reason, we propose the
open-source library called ABfilters to simulate V1 complex cells
(see Appendix A.3).

2.3. MT layer: higher order motion analysis

The second cortical area of interest in this article is MT area. MT
cells pool incoming information from V1 according to the shape
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and characteristic of their receptive field. Every V1 cell within the
MT receptive field contributes to the MT cell activation, either
incrementing or decreasing its activity. As far as modeling is
concerned, for a given MT cell, each connected V1 cell has a respec-
tive connection weight; the set of all connection weights define the
shape of the MT cell receptive field (Fig. 1d.1 and d.2).

As a general neuron model to describe MT cells, we chose the
simplified conductance-based neuron model described by Dest-
exhe et al. [16] for in vivo cell recordings. This conductance-based
neuron model estimates the contribution of excitatory and inhibi-
tory conductances in non-anesthetized animal cortical cells.
Following this model, the membrane potential of the ith MT cell,
denoted by uMT

i ðtÞ, is defined by

uMT
i ðtÞ ¼

Gexc
i ðtÞE

exc þ Ginh
i ðtÞE

inh þ gLEL

Gexc
i ðtÞ þ Ginh

i ðtÞ þ gL
; ð1Þ

where Eexc, Einh and EL are constants with typical values of 70 mV,
�10 mV and 0 mV, respectively; gL is the leak reversal potential
here considered as a constant; Gexc

i ðtÞ and Ginh
i ðtÞ are the excitatory

and inhibitory conductances which will directly depend on V1 cells
firing rate.

More precisely, the conductances Gexc
i ðtÞ and Ginh

i ðtÞ are obtained
by pooling the activity of all the pre-synaptic cells connected to it.
Each MT cell has a receptive field built from the convergence of
pre-synaptic afferent V1 complex cells (Fig. 1c.1). The excitatory
conductance Gexc

i ðtÞ is related to the activation of V1 cells lying
inside the center region of the MT cell (also called classical recep-
tive field, denoted by CRF). The inhibitory conductance Ginh

i ðtÞ is
related to the activation of V1 cells lying inside the surround region
of the MT cell (Fig. 1c.2). Note that an important difference
between the center and surround areas is that V1 cells in the
surround cannot elicit a response to the MT cell if the V1 cells in
the center are not activated: V1 cells in the surround can only
modulate the activation of the MT cell when V1 cells in the center
are activated. So, the input conductances Gexc

i ðtÞ and Ginh
i ðtÞ of the

post-synaptic MT neuron i can be defined by

Gexc
i ðtÞ ¼max 0;

X
j2Xi

wijrV1
j ðtÞ þ

X
j2X0i

wijrV1
j ðtÞ

0
@

1
A; ð2Þ

and

Ginh
i ðtÞ ¼

X
j2Ui

wijrV1
j ðtÞ; ð3Þ

where

Xi ¼ fj 2 CRFjuij < p=2g;
X0i ¼ fj 2 CRFjuij > p=2g;
Ui ¼ fj 2 Surroundjuij < p=2g;

8><
>:
and where uij is the absolute angle between the preferred cell direc-
tion of the MT cell i and the preferred cell direction of the V1 cell j;
wij is the efficacy of the synapse from neuron j to neuron i which
depends on uij and the relative positions (centers of the receptive
fields) between cells. The precise definitions of wij will be given in
Section 3. Finally, note that the values of the conductances will be
always greater or equal to zero so that their positive or negative
contribution to uMT

i ðtÞ is due to the signs of Eexc and Einh.

2.4. Retinotopic organization

In the V1–MT cortical maps, cells form a map of the visual field,
also called a retinotopic map: This means that adjacent cells have
receptive fields that include slightly different but overlapping
portions of the visual field. Also, cell density and receptive fields
vary according to their eccentricity (distance to the center of fixa-
tion). In this article, we reproduced these biological properties of
the visual system: The centers of the receptive fields of both V1
and MT cells are arranged along a radial retinotopic scheme includ-
ing a foveal uniform zone. More precisely, the density of cells,
denoted by d, is defined by

dðrÞ ¼
d0 if r 6 R0;

d0R0=r if R0 < r 6 Rmax;

�
ð4Þ

where r is the eccentricity. Cells with an eccentricity r less than R0

belong to the fovea and have small receptive fields. Cells with an
eccentricity greater than R0 are outside the fovea and have receptive
fields with a size increasing with r. This retinotopic organization of
the V1–MT cells is illustrated in Fig. 1c.3 and d.3.
3. Modeling the richness of surround modulations

3.1. What biology tells us

The activation of a MT neuron inside its classical receptive field
can be modulated by the activation of a surround area. This has
been widely studied in the neuroscience community but is usually
ignored in most MT-like models. Interestingly, in Born [7] the
authors found two different types of MT cells:

(i) Cells purely integrative where only the response to the
classical receptive field (CRF) stimulation is considered.
These neurons without surround interactions strongly
respond to wide-field motion.

(ii) Neurons with antagonistic surrounds modulate the response
to CRF stimulation, normally suppressing it. These neurons
are unresponsive to wide-field motion but they strongly
respond to local motion contrasts.

Regarding direction selectivity, the direction tuning of the MT
surround is broader than that of the center and it tends to be either
the same or opposite, but rarely orthogonal [7]. This characteristic
was modeled and implemented by Beck et al. [4] for an object seg-
mentation application. In Beck et al. [4] the authors implemented
symmetric MT surrounds with different direction selectivities to
detect motion boundaries, combining them with temporal occlu-
sion, and thus, to improve the detection of kinetic boundaries in
artificial and real scenarios. Apparently, inhibitory surrounds
contain key information about motion characterization, such as
motion contrasts.

But the geometries of MT surrounds are far from just being
symmetric. Half of MT neurons have asymmetric receptive fields
introducing anisotropies in the processing of spatial information
[61,32]. Within the half of MT neurons with symmetric surrounds,
Xiao et al. [61] reported two types of interactions: circular sym-
metric surrounds (20% of the whole population) and bilaterally
symmetric surrounds. The latter is formed by a pair of surrounding
regions on opposite sides (25% of the whole population). Neurons
with asymmetric receptive fields seem to be involved in the encod-
ing of important surface features, such as slant and tilt or curva-
ture. Different surround geometries could be the main actor of
dynamic effects observed in MT neuron response, such as, compo-
nent-to-pattern behavior [53] or changes in motion direction
selectivity [41,40]. Finally, note that in most of the cases MT
surround suppresses the response of the MT classical receptive
field. But the surround could also facilitate neuron response
depending on the input stimulus [22] and contrast [7].

Considering all this information, and more specifically the work
by Xiao et al. [61], we propose to model four types of MT cells as
shown in Fig. 2: One basic type of cell only activated by its CRF,
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and three other types with inhibitory surrounds. The tuning direc-
tion of the surround is always the same as the CRFs, but their
spatial geometry changes, from symmetric-isotropic to symmet-
ric-anisotropic and asymmetric-anisotropic surround interactions.
In the next section, we present the analytical expression of the
connection weights corresponding to these geometries.

3.2. Connecting V1 to MT

From Eqs. (2) and (3), it remains to define the weights wij for
both excitatory and inhibitory conductances. Let us consider an
MT cell i with a classical receptive field of radius q, located at xi,
with a motion direction selectivity of ai radians. According to the
biological properties mentioned above, we define

wij ¼
kcwdðxi � xjÞ cosðuijÞ if j 2 Xi or j 2 Ui;

�kcwdðxi � xjÞ cosðuijÞ if j 2 X0i
0 otherwise;

8><
>: ð5Þ

where kc is an amplification factor and wd is a function of the differ-
ence between the positions (centers of the receptive fields) of the
cells i and j. The specification of the function wd will then com-
pletely define the connection weights, and it is the term defining
the geometries described in Section 3.1. Note that negative weights
in Eq. (5) are included in order to improve the direction selectivity
of MT cells eliminating the two-blob shape that characterizes V1
cells [43]. The result of this pooling mechanism (without any other
interaction or dynamic) improves the direction selectivity of MT
cells, obtaining strong motion direction selectivity.

The analytical expression of the function wd will depend on the
type of MT cell that is considered. The four kinds of center–
surround interactions treated in this article are represented in
Fig. 2. Analytically, if we denote dx = xj � xi, the function wd can
be decomposed as

wdðdxÞ ¼ wcðdxÞ �wsðdxÞ: ð6Þ

In case (a) where no surround modulation occurs, we have:

wcðdxÞ ¼
exp �dx2=2r2

c

� �
rc

ffiffiffiffiffiffiffi
2p
p and wsðdxÞ ¼ 0:

In case (b) with a symmetric and isotropic surround, we have

wcðdxÞ ¼
exp �dx2=2r2

c

� �
rc

ffiffiffiffiffiffiffi
2p
p and wsðdxÞ ¼

exp �dx2=2r2
s

� �
rs

ffiffiffiffiffiffiffi
2p
p

In case (c) with a symmetric and anisotropic surround, we have

wcðdxÞ ¼
exp �dx2=2r2

c

� �
rc

ffiffiffiffiffiffiffi
2p
p and

wsðdxÞ ¼
exp �ðdx� lÞðdx� lÞT=2r2

ss

� �
rss

ffiffiffiffiffiffiffi
2p
p

þ
exp �ðdx� mÞðdx� mÞT=2r2

ss

� �
rss

ffiffiffiffiffiffiffi
2p
p

Fig. 2. MT center–surround interactions modeled in our approach. In (a) no surround mo
symmetric and anisotropic. In (d) the surround is asymmetric and anisotropic.
In case (d) with a asymmetric and anisotropic surround, we have

wcðxÞ ¼
exp �dx2=2r2

c

� �
rc

ffiffiffiffiffiffiffi
2p
p and

wsðxÞ ¼
exp �ðdx� lÞðdx� lÞT=2r2

ss

� �
rss

ffiffiffiffiffiffiffi
2p
p :

For all these expressions, we chose

l ¼
q=2þ 3rss cosðaÞ
q=2þ 3rss sinðaÞ

� 	
and m ¼

q=2þ 3rss cosðaþ pÞ
q=2þ 3rss sinðaþ pÞ

� 	
;

where the values of rc, rs and rss are set as q/3, 2.2q/3 and q/3,
respectively. Details about parameter settings are described in
Section 4.1.

4. Action recognition via bio-inspired features

4.1. Specification of the bio-inspired architecture

4.1.1. Focus on the action
Based on what we mentioned in Section 2.1, the goal of the pre-

processing stage is to focus on the action. To do so, we used the
approach developed by Kornprobst et al. [25]. In Kornprobst
et al. [25], the authors proposed a variational approach to restore
and segment in coupled way noisy videos with a static background
(i.e., no camera motion and no change of focus). Using this
approach to detect the foreground, the videos can be easily
cropped leaving the action at the center. After cropping the actions
in the original videos, all images were resized to be 210 � 210
pixels.

4.1.2. V1 and MT cortical maps
The parameters used for the V1 and MT cortical maps and

neurons are shown in Table 1. They were defined following func-
tional properties reported in the neurophysiology literature. This
was done qualitatively because: (i) most of the neurophysiological
data available in the literature is obtained using artificial input
stimulus, such as, gratings, plaids or random dots; and (ii) neurons
do not respond equally when the sensory visual system is stimu-
lated by natural images instead of artificial stimuli [34,59].

The functional properties of interest for this article are the
following:

� Connection weights between V1 and MT neurons were chosen
in order to reproduce two main properties: (i) MT neurons are
selective to motion direction independently of the motion
speed [27,47,39]; (ii) MT neurons have a strong inhibition in
the anti-preferred direction [27,43].
� MT surround characterization was chosen in order to reproduce

three main properties: (i) Half of MT neurons have asymmetric
surrounds [32,60,61,11]; (ii) The motion direction selectivity of
the surround, with respect to that of the center, tends to be
dulation occurs. In (b) the surround is symmetric and isotropic. In (c) the surround is



Table 1
Parameters used for V1 and MT cortical maps and neurons.

Weizmann KTH

V1 MT V1 MT

Fovea radius (R0) 80 (pixels) 40 (pixels) 80 (pixels) 40 (pixels)
Layer radius (Rmax) 100 (pixels) 100 (pixels) 100 (pixels) 100 (pixels)
Cell density in fovea (d0) 0.3 (cells/pixel) 0.08 (cells/pixel) 0.2 (cells/pixel) 0.08 (cells/pixel)
Receptive field size (£) [fovea] 8, 17, 34 (pixels) 20 (pixels) 8, 17, 34 (pixels) 24 (pixels)
Number of motion directions 8 8 8 8
Number of layers (Nl) 72 8, 16, 32 72 8, 16, 32
Number of cells per layer (Nc) 2604 106 1147 106
Leak (gL) – 0.1 – 0.1
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either the same or opposite but rarely orthogonal [7]; (iii) The
extent of the MT surrounds has a characteristic size two times
bigger than the classical receptive field [61].

In our model, V1 neurons are arranged into layers. Each V1 layer
contains V1 complex cells sharing the same motion direction selec-
tivity and the same spatiotemporal frequency tuning (see
Section 2.2). V1 layers are distributed in the frequency space in or-
der to pave the spatiotemporal frequency space of interest in a
homogeneous manner. Following the work done by Mante and
Carandini [33], the frequency space of interest is limited to a spa-
tial frequency range of 0.05–0.2 cycles/pixel, and temporal fre-
quency range of 2–8 cycles/s (in a digitalized version, 0.08 and
0.32 cycles/frame, respectively). Within this frequency space we
considered three different spatial frequencies (0.05, 0.1 and 0.2
cycles/pixel) and three temporal frequencies (2, 4, and 8 cycles/
s). So, with eight possible motion directions, there is a total of
Nl = 72 V1 layers. Using these values, the power spectrum for a
given motion direction h is shown in Fig. 3.

Similarly, MT neurons are also arranged into layers but here,
each layer contains MT neurons sharing the same center–surround
interaction and motion direction selectivity. So, with eight possible
directions, we will have Nl = 8, 16 or 32 layers depending on the MT
center–surround interactions chosen in the model (Fig. 2).

Concerning the size of receptive fields (£), there are two cases.
Inside the fovea, the size of receptive fields for V1 neurons is given
by £ = 3r where r depends on the spatial frequency (Appendix A,
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Fig. 3. Power spectrum of all V1 complex cells used in this article. This image was
obtained combining nine V1 complex cells with spatial frequency tuning
n0 = {0.05,0.1,0.2} (cycles/pixel) and temporal frequency tuning x0 = {2,4,8} (Hz).
Eq. (A.3)). In Table 1, the three possible values are given. For MT
neurons, the size was chosen to be fixed. Outside the fovea, the
receptive field sizes, for both V1 and MT neurons, are scaled by a
factor equal to the inverse of the density d(r) (Eq. (4)).

Using this configuration, Fig. 4 shows the 20 most activated MT
cells, considering only the interaction of its classical receptive field,
for a video from the Weizmann database (jumping-jack denis).
Receptive fields are represented with a color code corresponding
to the motion direction-tuning of the cells. This example illustrates
the behavior of our system to properly detect motion direction.
4.2. Classification approach and feature space

In previous sections, we have proposed a model of MT cells so
that, given an input video, we can estimate an activity at each time
step for each cell. Now the goal is to investigate whether this activ-
ity can be used to categorize the action present in the input video.

To do so, in this article we propose (i) to define features from
the MT cells activity as well as a distance between features; (ii)
to use a standard supervised classification method (which has no
biological inspiration). Here we considered the simplest case of
supervised classification with training sets (category is assumed
to be known for some videos). Then, the recognition performance
is evaluated on the testing set, defined by remaining videos.

Given a video stream L(x, t) and the corresponding membrane
potential for each MT cell, we define the feature vector by a vector
HL 2 RNl�Nc whose components are the time-average membrane
potential of the MT cells during the length of the video (Fig. 1e).
Thus, HL is defined by:

HL ¼ cL
j

n o
j¼1;...;Nl�Nc

with cL
j ¼

1
T

Z
T

uMT
j ðsÞds; ð7Þ

where Nl is the number of MT layers, Nc is the number of MT cells
per layer, and, T is the total length of the video. In the sequel, HL will
be designated as the motion map.

From this definition, there is one major remark to be made. By
averaging over all the duration of the video, it is implicitly assumed
that the video contains only one action with a constant viewpoint.
If in the same video, a person was running and then jumping, or
running and changing direction, the averaged activation in time
would not be appropriate. This is a technical assumption that could
be removed by considering sliding time windows to estimate
dynamical motion maps (and not one motion map for the entire vi-
deo). This is currently under research but beyond the scope of this
article.

To compute the similarity between the testing motion map and
the training motion maps, we used two measures: triangular dis-
crimination (TD, see [19]) and symmetric Kullback–Liebler (SKL)
divergence.



Fig. 4. Representation of the 20 most activated MT cells for a video from the Weizmann database (jumping-jack denis). Receptive fields are represented here with the color
code corresponding to the motion direction-tuning of the cells, given on the left hand-side.

Table 2
Recognition performance for Weizmann database with the triangular discrimination (TD) and symmetric Kullback–Liebler (SKL) divergence.

Distance ? TD TD SKL SKL
Size of training set ? All 84 trials (%) Five random trials (%) All 84 trials (%) Five random trials (%)

Case (i) 62.48 ± 2.08 – 63.01 ± 2.07 –
Case (ii) 87.52 ± 2.23 – 87.87 ± 2.03 –
Case (iii) 96.34 ± 0.72 98.53 ± 2.02 96.47 ± 0.81 99.26 ± 1.66
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4.3. Results on Weizmann database

Weizmann database2 contains nine subjects performing nine ac-
tions: bending (bend), jumping jack (jack), jumping forward on two
legs (jump), jumping in place on two legs (pjump), running (run), gal-
loping sideways (side), walking (walk), waving one hand (wave1) and
waving two hands (wave2). The number of frames per sequence var-
ies and depends on the action.

Following the same experimental protocol described in Jhuang
et al. [24], we select six random subjects as a training set
(6 � 9 = 54 videos) and we use the remaining three subjects as a
testing set (3 � 9 = 27 videos). Motions maps are first estimated
for every video from the training set. Then, for each video from
the testing set, a motion map is estimated together with the dis-
tances to each motion map from the training set. The class of the
video from the training set with the shortest distance is then kept
and classification errors are estimated.

Our main result is to evaluate how the system benefits from the
richness of the center–surround interaction defined in the feature
space. To do so, we ran experiments with the different configura-
tions of center–surround interaction. We considered three cases:

� Case (i): CRF only (Fig. 2a)
� Case (ii): CRF and the isotropic surround interaction (Fig. 2a and

b)
� Case (iii): CRF and both isotropic and anisotropic surrounds

(Fig. 2a–d)

The recognition performance is shown in Table 2. Fig. 5 shows
the confusion matrices obtained for each type of motion map using
symmetric Kullback–Leibler divergence. A significant improve-
ment (paired t-test P < 0.0001) in the recognition performance is
obtained when all the surround geometries described in Fig. 2
are considered, case (i) versus case (iii).

In Table 2 we can also observe a high variability in the recogni-
tion performance depending on which subjects formed the training
set. So, when results are shown based only on five random training
sets (such as in, e.g., [24]), it is a priori not thorough enough to
draw strong conclusions about the performance. To overcome this
difficulty, we estimated the recognition performance over all the
2 The Weizmann database can be downloaded from http://www.wisdom.weiz-
mann.ac.il/vision/SpaceTimeActions.html.
possible training sets that can be built with six subjects, giving a
total of 84 training sets. Table 2 also shows the resulting recogni-
tion performance obtained considering triangular discrimination
and only five random training sets. The variability observed in
the recognition performance is represented by the histograms
shown in Fig. 6, where the abscissa is the number of mismatched
video from the testing set, and the ordinate is the number of times,
over the 84 trials, that the number of mismatched sequences was
obtained. In other words, the histograms shown in Fig. 6 approxi-
mate the probability distribution of the recognition performance
obtained with the architecture proposed in this article.

Finally, we tested the robustness of our approach by consider-
ing videos with different kinds of perturbations (Fig. 7): (a)
Gaussian noise of 12%, (b) Gaussian noise of 20%, (c) occlusion
and (d) moving textured background. Both noisy (a) and (b) and
legs-occluded (c) videos were created starting from the walking-
denis video, which was extracted from the training set for the
robustness experiments. The legs-occluded video sequence was cre-
ated placing a black box on the original video before the centered
cropping. The noisy videos were created adding Gaussian noise. The
moving-background video was taken from Blank et al. [6]. For the
four videos tested, the recognition was correctly performed as
walking. More precisely, a graph with the ratio between the short-
est distance to walking class and the distance to the second closest
class (running or galloping-sideways in our tests) is shown in Fig. 7.
This result shows another benefit of using rich center–surround
interaction: taking into account anisotropic surround interaction
makes the model less sensitive to occlusions or noise.
4.4. Results on KTH database

KTH database3 contains 25 subjects performing 6 actions: handc-
lapping, handwaving, boxing, jogging, running and walking. The se-
quences are separated in four different scenarios: outdoors (d1),
outdoors with scale variations (d2), outdoors with different vest-
ment (d3) and indoor with lighting variations (d4). Note that for
some videos, the action is repeated several times (e.g., for running,
one video may contain a person crossing the scene several times).
Because of the different scenarios, this database is more challenging
than the Weizman database.
3 The KTH database can be downloaded from http://www.nada.kth.se/cvap/actions.

http://www.wisdom.weizmann.ac.il/vision/SpaceTimeActions.html
http://www.wisdom.weizmann.ac.il/vision/SpaceTimeActions.html
http://www.nada.kth.se/cvap/actions


Fig. 5. Confusion matrices obtained for Weizmann database and symmetric Kullback–Leibler divergence representing the recognition performance obtained for the 84
different training sets. Numbers inside the boxes indicate the percentage of correct (diagonal) or mismatched (non-diagonal) classification.

Fig. 6. Histograms obtained for Weizmann database and the symmetric Kullback–Leibler divergence. The abscissa represents the number of mismatched sequences in the
training set, and the ordinate, the number of times (of a total of 84 trials) that this number of mismatched sequences was obtained. The histograms are shown for the three
MT center–surround interactions considered in this article: (a) CRF, (b) CRF + isotropic surrounds, and (c) CRF + isotropic/anisotropic surrounds.

a
b

c

da
b

c

d

0 10 15 20 25 305

(a) (b)

(c) (d)0

10

15

20

25

30

5

D
is

ta
nc

e 
to

 s
ec

on
d 

cl
os

es
t c

la
ss

 (
si

de
/r

un
)

Distance to the closest class (walk)

Fig. 7. Graph showing the robustness of our approach with four kinds of perturbations: (a) walking-denis modified with a gaussian noise of 12%; (b) walking-denis modified
with a gaussian noise of 20%; (c) walking-denis modified with an occlusion over the legs; (d) video from Blank et al. [6] with a moving background. Each point represents the
ratio between the action recognized (walking) and the second closest action (running or galloping-sideways). Blue points represent the performance obtained for motion maps
considering only the activation of MT classical receptive field (case (i)). Red points represent the performance obtained for motion maps considering all center–surround
interaction shown in Fig. 2 (case (iii)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 3
Recognition performance for KTH human database obtained with triangular
discrimination.

Size of training set ? 100 Trials 100 Trials Five random trials
considering running ? No (%) Yes (%) No (%)

d1-case (i) 55.24 ± 2.69 – –
d1-case (iii) 83.09 ± 1.95 74.63 ± 2.82 92.00 ± 0.01
d3-case (i) 47.40 ± 2.22 – –
d3-case (iii) 69.75 ± 2.81 65.48 ± 2.81 84.44 ± 1.22
d4-case (i) 47.82 ± 2.71 – –
d4-case (iii) 83.84 ± 1.90 71.19 ± 2.66 92.44 ± 0.01
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As before, our approach starts with preprocessing the data so
that the input will be videos of 210 � 210 pixels, with the action
which is self-centered and represented at a given scale (see Sec-
(a) (b
Fig. 8. Confusion matrices, obtained for KTH human database and triangular discriminat
training sets. Numbers inside the boxes indicate the percentage of correct (diagonal) or m
considering case (iii) for (a) d1, (b) d3 and, (c) d4.

Fig. 9. Synthesized videos where zoom level is changed manually. The top row shows im
zoomed images rescaled to the original dimensions, resulting in images with different r
tion 2.1). But there are two main differences with respect to the
Weizmann database:

� For the KTH videos where actions are repeated, besides crop-
ping and resizing the actions, we also selected only the first
instance of the action (and we did not consider the other repe-
titions of the same action). Note that it is not always clear how
other approaches deal with this concern. In our case, this choice
had to be made simply because in our framework, we represent
a video by the time-average activity of MT cells, so that estimat-
ing an average activity corresponding to different instances of
an action would be ill-posed. But by doing so, starting from ini-
tial videos, our preprocessing may sometimes only keep very
short pieces of videos. For example, this is the case for some
running videos (one action will contain only a few frames), caus-
ing problems related to the required time to correctly estimate
) (c)
ion divergence, representing the recognition performance obtained for 100 different
ismatched (non-diagonal) classification. These matrices display the results obtained

ages zoomed by a factor of 0.5–1 (50–100%, respectively). The bottom row shows
esolutions.



(a) (b) (c)
Fig. 10. Confusion matrices, obtained for synthesized zoomed KTH human database and triangular discrimination divergence. The confusion matrices represent the
recognition performance obtained for 100 different training sets. Numbers inside the boxes indicate the percentage of correct (diagonal) or mismatched (non-diagonal)
classification. These matrices display the results obtained considering case (iii) for (a) d1, (b) d3 and, (c) d4.
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the temporal filtering associated to V1 motion detectors. In the
sequel, we will show both results: with and without running
sequences in the dataset.
� In the results presented therein, we did not consider the scenario d2

because it requires more development at the preprocessing level.
The scenario d2 presents two main difficulties: the background is
not always fixed (change of focus), and also, large shadows are
sometimes present in the videos. As mentioned in Section 4.1, the
approach Kornprobst et al. [25] can only handle videos with static
backgrounds. Therefore, more sophisticated approaches are
needed for tracking humans. This is still an active research field in
the computer vision community (e.g., [48,65,62,30,26]. Note that
the fact that the actor may vary in size is not a problem in our
approach since actions are resized before being processed through
the V1–MT cortical maps (see also Section 4.5).

Similar to what has been done for the Weizmann database, we
first followed the experimental protocol described by Jhuang et al.
[24]: We selected 16 random subjects as a training set
(16 � 25 = 400 sequences) and the remaining 9 subjects as a test-
ing set (9 � 25 = 225). In Jhuang et al. [24], the authors presented
results averaged over five randomly selected training sets. As re-
marked in the previous section, this may induce strong biases.
But considering all the possible combinations of 16 subjects as a
training set gives a total of 2,042,975 possible training sets which
would be numerically very expensive to do. So, as a compromise in
order to add more representability to our results, we estimated re-
sults from 100 randomly selected training sets. The recognition
performance for the 100 training sets, with and without running
sequences, is shown in Table 3. The respective confusion matrices
are shown in Fig. 8.

Results confirm the improvement in the recognition rate ob-
tained when the different MT center–surround configurations are
used to build the motion maps. For the three subsets (d1,d3,d4)
the results obtained in the case (iii) are significantly better than
the ones obtained in the case (i) (paired t-test P < 0.0001). The ef-
fect of running sequences in the recognition performance is also
significant. The inclusion of running sequences decreases the recog-
nition rate of the system, as we previously mentioned, mainly be-
cause running sequences do not have enough frames to make the
response of V1 complex cells converge.

4.5. About scale invariance

In this section, we show the scale invariance property of our
model by considering synthesized videos where zooming level is
changed manually. To do so, we started from the d1 subset of the
KTH database and introduced a zooming factor, as shown in
Fig. 9: The first frame of the video was resized to 50% of its original
size, and then the zooming factor was gradually increased to one.
These frames represent the cropped actions that are then resized
to the original dimension (210 � 210 pixels), resulting in images
with different resolutions.

We tested our approach on these synthesized videos with the
same procedure as described in Section 4.4 (100 random training
sets). The confusion matrices are shown in Fig. 10, and the recog-
nition rates are: 74.27% ± 1.94 for case (i), 83.73% ± 1.90 for case
(ii), and, 90.56% ± 1.43 for case (iii). Interestingly, we observe that
the action recognition rate improved in comparison to the original
videos results, reaching up to 90.56% success. This suggests that
the parameters used to define the motion energy filters may not
be the most suitable, given the characteristics of the videos. An
interesting perspective will be to investigate how to choose the
spatiotemporal frequency bandwidth of the energy filters better,
which should lead to further improvements in recognition rates.

5. Conclusion

In this article we proposed bio-inspired motion features for ac-
tion recognition. Our approach is based on a state-of-the-art model
of the visual stream to process motion. The model has two main
stages. The first stage consists of focusing on the action which is
an important condition for the visual system to recognize actions.
The second stage consists of developing a model of the V1 and MT
cortical areas. The V1 cells are modeled following classical ideas
from the literature, and we provide open source code to simulate
these cells. Our main novelty is to take into account the richness
of center–surround interactions at the level of MT: We modeled
different kinds of MT cells, corresponding to different center–sur-
round configurations. Then, based on the average activity of MT
cells, bio-inspired features were defined and used to perform ac-
tion recognition via a standard classification procedure (not related
to biological facts).

Our method has been tested on two classical databases (Weiz-
man and KTH) and comparisons were made to the state-of-art lit-
erature. But comparing recognition rates is not as simple as it
seems and needs to be done carefully. In general, there are three
concerns. The first concern is the definition experimental protocol,
that is not only the size of the training sets but also the composi-
tion or number of training sets used to obtain the rates. For in-
stance, Jhuang et al. [24] considered a very small number of
training sets (five subjects) which may be not representative with
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respect to all possible training sets. Similarly, in KTH dataset Le
et al. [29] and Wang et al. [57] considered a single fixed training
set to evaluate their algorithms. In our opinion it is misleading to
compare recognition rates obtained in different testing conditions.
Indeed, we have observed a high variability in the recognition rate
depending on the conforming subjects in the training sets. That is
why we reported here histograms of recognition rates for many
different training sets (all of them for the Weizmann dataset),
and that our average is estimated over this ensemble. The second
concern is the classifier. In general, sophisticated classifiers are
used, such as, linear SVM [63] or nonlinear SVM [24,29,57]). In
our case, since our goal was to compare the information conveyed
by the different bio-inspired features here proposed, we did not
use any sophisticated classifier to improve further the recognition
rates and we used the simplest one. Finally, the third concern is the
preprocessing of the videos. In general, details are missing con-
cerning the preprocessing done on each database, which is a very
critical point since it significantly influences the level of perfor-
mance that can be reached.

Our main result is that the bio-inspired features introduced
therein achieve a high level of performance, being also robust to
perturbations such as noise, small occlusions or different back-
grounds. More importantly, we also showed that taking into ac-
count the diversity of MT center–surround interaction enriches
motion representation by improving the action recognition rate.

More precisely, results concerning the two databases can be
commented as follows. Concerning the Weizmann database, the
recognition rates reported in this article were obtained considering
all the possible training sets that can be built using six subjects. In
order to compare our results with the ones reported by Jhuang
et al. [24], Table 2 also shows the recognition rates obtained for five
random trials. The results here shown here are better, but statisti-
cally they are not significantly better (t-student P = 0.1787). Con-
cerning the KTH database, some technical difficulties appeared:
Due to the preprocessing needed by our approach to be focused
on the action, some sequences were cropped and centered leaving
only very few frames. But our V1 motion detectors need time to
correctly compute the temporal convolutions, and thus, for some
actions the response obtained by our system is not accurate. This
effect is critical in the KTH-running sequence, were there are not
enough frames to make the response of V1 motion detectors con-
verge. In order to isolate this effect, we calculated the performance
of our model including and excluding running sequences from the
database.

One clear advantage of our model is that it is generic: Unlike Gi-
ese and Poggio [20], there is no need to tune the properties of local
motion given the specific application of action recognition. And un-
like optical-flow based models, where a single velocity is assigned
to each point, our model reproduces to some extent the richness of
center–surround interactions, giving different kinds of motion con-
trasts for several orientations at every point. Our interpretation is
that cells with inhibitory surrounds bring information related to
velocity opponency or singularities in the velocity field of the input
stimulus (see also [4]).

Of course this approach could be extended in several manners
and three main perspectives seem promising. The first perspective
is essentially technical and consists of improving the system at two
levels by (i) using a more sophisticated human tracking approach
as mentioned in Section 4.4 and (ii) defining dynamical motion
maps by averaging the activity of MT cells over sliding time win-
dows (instead of the entire video). This would allow us to deal with
more complex videos. The second perspective is to enrich the mod-
el adding other brain functions or cortical maps. Of course, the mo-
tion pathway is not the only actor in action recognition in the
visual system. Like every motion-based approach for action recog-
nition, our approach is likely to be limited [20,51]. It will fail in
complex situations such as those with large occlusions, complex
backgrounds or multiple persons. To do this, one has to consider
more complex processing corresponding to additional brain areas
(e.g., V2, V4 or IT) and top-down mechanisms such as attention
(e.g., [55]. The third perspective is to investigate how speed selec-
tivity could be achieved. Speed coding relies on complex and un-
clear mechanisms. Many studies on MT focus on motion
direction selectivity (DS), but very few on speed selectivity (see,
e.g., [47,44,31]), showing that speed coding relies on complex
and unclear mechanisms. Based on this, here we only considered
the motion direction and not the motion speed, as can be seen in
Eq. (2): Our MT cells pool V1 cells considering only their motion
direction selectivity, and not their spatiotemporal tuning. How-
ever, note that it is also possible to pool different V1 cells in order
to extract some speed information, as proposed for example in
Simoncelli and Heeger [52], Grzywacz and Yuille [21], Perrone
[42]. As a result, one could obtain a velocity field qualitatively sim-
ilar to an optical flow (i.e., one velocity per position), which could
be used for action recognition but also compared to the literature
in optical flow.
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Appendix A. Model of the V1 cells and software library

A.1. V1 simple cells

Simple cells are characterized by linear receptive fields where the
neuron response is a weighted linear combination of the input stim-
ulus inside its receptive field. By combining two simple cells in a linear
manner it is possible to get direction-selective cells. The direction-
selectivity refers to the property of a neuron to respond to the direc-
tion of the stimulus’ movement. The way to model this selectivity is
obtaining receptive fields oriented in space and time (Fig. 1c.1).

Given an input stimulus L(x, t), the response of a spatiotemporal
oriented V1 simple cell Fs(x, t) is obtained by the convolution

Lðx; tÞ � Fsðx; tÞ; ðA:1Þ

where Fs(x, t) can be defined by one of the following filters

Faðx; tÞ ¼ FoddðxÞHfastðtÞ � FevenðxÞHslowðtÞ;
Fbðx; tÞ ¼ FoddðxÞHslowðtÞ þ FevenðxÞHfastðtÞ; ðA:2Þ

which are spatially located at x = (x,y). The spatial components
Fodd

h ðxÞ and Feven
h ðxÞ of each conforming simple cell are the first and

second derivative of a Gabor function spatially oriented in h, with
spatial frequency f and a standard deviation of (Watson and Ahu-
mada [58]):

r ¼ 0:5622=f : ðA:3Þ

The temporal contributions Hfast(t) and Hslow(t) are defined by

HfastðtÞ ¼ T3;sðtÞ � T5;sðtÞ;
HslowðtÞ ¼ T5;sðtÞ � T7;sðtÞ; ðA:4Þ

where Tg,s(t) is a Gamma function defined by

Tg;sðtÞ ¼
tg

sgþ1g!
exp � t

s


 �
: ðA:5Þ

The biphasic shape of Hfast(t) and Hslow(t) could be a consequence of
the combination of cells of M and P pathways [15] or to be related



(a) (b)
Fig. A.11. Values of x0 and n0 as a function of the input parameters f and s. (a) x0 as a function of s for jeF aðn;xÞj2 (blue) and jeF bðn;xÞj2 (red). (b) n0 as a function of f for
jeF aðn;xÞj2 (blue) and jeF bðn;xÞj2 (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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to the delayed inhibition in the retina and LGN (Conway and Living-
stone [14]). Fig. 1c.1 shows the respective spatial and temporal con-
tribution for a V1 simple cell defined by Fa(x, t).

Note that the causality of Hfast(t) and Hslow(t) generates a more
realistic model than the one proposed by Simoncelli and Heeger
[52] (see also [24]), where a Gaussian is proposed as temporal pro-
file, which is non-causal and inconsistent with V1 physiology.

The spatial parameters of the Gabor function: h, f and r; and the
temporal parameter s of the Gamma function (Eq. (A.5)) define the
spatiotemporal orientation of V1 simple cells Fa(x, t) and Fb(x, t).

The spatiotemporal orientation of a V1 simple cell is better visu-
alized in the Fourier space. In the Fourier space the power spec-
trum of a V1 simple cell (jeF aðn;xÞj2 for Fa(x, t) and jeF bðn;xÞj2 for
Fb(x, t)) is described by two blobs centered at (�n0,x0) and
(n0,�x0), where n0 ¼ nx

0n
y
0

� �
and x0 are the preferred spatial and

temporal frequencies, respectively (see Fig. 1c.2). The quotient be-
tween the highest temporal frequency activation (n0) and the high-
est spatial frequency (x0) is the speed selectivity of the filter
v ¼ ðvx;vyÞ ¼ x0=n

x
0;x0=n

y
0

� �
inside the limited frequency band-

width of the neuron.
Analytic expressions for n0 and x0 do not exist and these values

must be estimated numerically. The numerical solution shows
that, for a fixed value of r as function of f, the value of the preferred
temporal frequency x0 depends only on s, while the maximal spa-
tial frequency n0 depends on h and f, as it is shown in Fig. A.11.

A.2. V1 complex cells

Some characteristics of V1 complex cells can be explained using
a nonlinear combination of V1 simple cells. For instance, V1 com-
plex cells are invariant to contrast polarity, which indicates a kind
of rectification on their ON–OFF receptive field regions.

Based on Adelson and Bergen [1], the ith contrast invariant V1
complex cell, located at xi = (xi,yi), with spatial orientation hi and
spatiotemporal orientation fi ¼ ð�ni; �xiÞ is defined as

CiðtÞ ¼ ½ðFa � LÞðxi; tÞ�2 þ ½ðFb � LÞðxi; tÞ�2; ðA:6Þ

where the symbol ⁄ represents the spatiotemporal convolution, and
Fa(�) and Fb(�) are the V1 simple cells defined in Eq. (A.2). This def-
inition gives independence to stimulus contrast and the cell re-
sponse for a drifting grating is constant in time.

A.3. A documented C++ software library called ABFilter

Since the implementation of V1 cells is probably the most tech-
nical part of the architecture presented therein, we propose to the
interested reader a documented C++ software library called ABFil-
ter, which implements the Adelson and Bergen energy motion
detector filters [1]. The ABFilter library is under a CeCill-C open-
source license. It can be downloaded from: http://www-sop.in-
ria.fr/neuromathcomp/public/software/abfilter-1.0.tar.gz.
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