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Abstract Motion estimation in sequences with transparen-
cies is an important problem in robotics and medical imag-
ing applications. In this work we propose a variational ap-
proach for estimating multi-valued velocity fields in trans-
parent sequences. Starting from existing local motion es-
timators, we derive a variational model for integrating in
space and time such a local information in order to obtain
a robust estimation of the multi-valued velocity field. With
this approach, we can indeed estimate multi-valued veloc-
ity fields which are not necessarily piecewise constant on a
layer—each layer can evolve according to a non-parametric
optical flow. We show how our approach outperforms exist-
ing methods; and we illustrate its capabilities on challenging
experiments on both synthetic and real sequences.
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1 Introduction

There exists a very wide literature on apparent motion es-
timation, also called Optical Flow (OF), due to the num-
ber of applications that require motion estimation and the
complexity of the task. Motion estimation methods rely on
conservation of a function of the recorded signal, generally
luminance, or some of its derivatives across time and on spa-
tial or spatiotemporal regularity constraints.

We first introduce the main notation: let Ω ⊂ R
2, then

the function f : (x, t) ∈ Ω × {0, . . . , T } → R denotes
the greyscale sequence or “image sequence”, defined as
a volume over space x = (x1, x2) and time t , and u =
(u1(x, t), u2(x, t))T denotes “its” motion field.

The simplest conservation principle, often referred to as
the Lambertian assumption, states that the intensity of a
point remains constant along its trajectory. Thus, in the case
of a time discrete sequence, it provides the classical Dis-
placed Frame Difference equation (DFD)

f (x, t) − f (x − u, t − 1) = 0 (1)

or its differential approximation, the well known Optical
Flow Constraint equation (OFC)

(
u1∂x1 + u2∂x2 + ∂t

)
f (x, t) = ∇3f (x, t) ·

⎛
⎝

u1

u2

1

⎞
⎠ = 0, (2)

where ∇3f is the spatiotemporal gradient (fx1 , fx2 , ft )
T

of f (we will use the notation ∇f for the spatial gradient
(fx1 , fx2)

T of f ). The gradient provides an affine constraint
on the velocity space, and is sometimes referred to as “mo-
tion constraint vector”.

Although widely used, this principle is not satisfied in
several real situations which include: changing luminance
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conditions, specularities, multiple motions and in the case of
interest for this paper: transparency. Many of the above sit-
uations can be handled by solving (1) or (2) in a least-square
or more robust way, some will use higher order invariants,
but transparency can generally not be handled by such a sim-
ple modeling, since large areas of the image plane have more
than one motion attached to them.

Transparency can be modeled as “superposition”, linear
or not, of moving layers, corresponding to pixelwise opera-
tions on layer intensities. Given n layers li (x, t), a transpar-
ent image can be modeled as a combination of them,

f (x, t) = σ(x, t, l1(x, t), . . . , ln(x, t)) (3)

where σ is a combination operation and each layer motion is
described by a motion field ui = (u1

i , u
2
i ). Given a sequence

f (x, t) obtained by combination of dynamic layers, the fol-
lowing questions are somewhat natural:

– How many layers are observed in the image, i.e. what is
the value of n?

– Can we recover/estimate these layers?
– Can we recover/estimate their motions?

The purpose of this work is to address slightly different
points, avoiding formulation directly targeted to layer recov-
ery:

– How many motions are present in the image at each pixel?
– Can we estimate these motions?

The first set of questions refers directly to the computation of
transparent moving layers while the second one refers to the
classical layered motion recovery. Layers recovery requires
more than just layered motion recovery: in order to asso-
ciate the multi-velocity data to layers, the associated model
must take into account the layers’ spatiotemporal concur-
rence and provide a mechanism for multi-layer enhance-
ment/attenuation given the observed data and the spatiotem-
poral coherence, see for instance [1].

The presence of multiple motions prevents the use of sim-
ple conservation assumptions: even if the Lambertian as-
sumption holds for each layer, and if we assume that the
combination operation σ is independent of image location,
i.e. σ(x, t, l1, . . . , ln) = σ(l1, . . . , ln), it will generally not
hold for their superposition: from ∇li · ui + lit = 0, one gets

∇f · ui + ft =
∑
j �=i

∂σ

∂lj

(∇lj · ui + lj t

)
(4)

+ ∂σ

∂li
(∇li · ui + lit ) . (5)

The term (5) vanishes by the Lambertian assumption, but the
right hand-side of (4) has no reason to. In the general situa-
tion, few is known about each layer, σ depends on imaging
modalities, and motion recovery becomes a difficult task. It

is nevertheless generally assumed that the number of lay-
ers/motions is relatively small, n = 2,3.

A generally used assumption is the one of linear super-
position, i.e. (3) becomes

f (x, t) =
n∑

i=1

li (x, t) (6)

and this is the framework we place ourselves in this paper.
Although more complex formation can be considered [2],
this is in general a reasonable assumption: the light energy
measured by a camera/eye is roughly proportional to the
source energy times the reflectance and transmittance fac-
tors of the different layers that constitute the medium/scene
under observation [3]. Going from this multiplicative model
to the additive one (6) corresponds to measure a logarithm of
the received energy. Weber’s law asserts that for vision, the
sensed brightness is indeed approximately logarithmic in the
received energy. Many sensors such as CMOS ones behave
similarly. When however a layer is fully opaque, the ratio-
nale will break down. A multiple motion recovery based on
the linear assumption (6) should be able to cope with this
situation, by allowing to vary spatially and temporally the
number of recovered motion vectors.

In this paper we propose such an approach. It is based on
local detectors sensitive to one or more velocities within a
finite velocity space. We observe that the responses of these
detectors usually provide a too local, noisy and somewhat
too complex description of the velocities (detecting more ve-
locities than the actually present at a given location). Thus,
there is a need for integration and regularization of this local
information, as well as simplification when necessary. This
has led us to a novel variational approach that integrates and
regularizes simultaneous vector motion fields. We show that
a simple modification allows the algorithm to resolve Ran-
dom Dots Kinematogram (RDK) sequences [4], in both sin-
gle and transparent OFs.

This article, which extends our previous published con-
ference paper [5], is organized as follows. Section 2 reviews
the related work on motion recovery in the transparent situ-
ation. Section 3 describes the proposed framework based on
a finite sampling of the space of velocities and states a dis-
crete variational model to handle multiple motions. We in-
troduce our approach which encodes prior knowledge about
the OF smoothness and the expected, relatively small, num-
ber of motions per pixel (one or two). We show that a mod-
ification to our formulation allows to solve RDK sequences
which are used in transparent and non-transparent motion
perception experiments.The method performance is illus-
trated in Sect. 4, on synthetic, synthesized realistic and real
sequences. Finally, we present our discussion and conclu-
sions in Sect. 5.



J Math Imaging Vis (2011) 40: 285–304 287

2 Related Work

Variational motion recovery was introduced with the work
of Horn and Schunck [6]. Motion in the sequence f is recov-
ered by a penalized least squares of the OFC equation (2),
by minimizing the quadratic “OFC versus flow field smooth-
ness” functional
∫

D

(
∇3f (x, t) · (u1, u2,1)T

)2+α
(
|∇u1|2 + |∇u2|2

)
dxdt.

Since this paper was published, a considerable amount of
work has been devoted to improving this, via the use of non
linear least squares, different smoothness models, incorpo-
ration of parametric motion models etc. leading to extremely
accurate algorithms.

Variational methods are now considered as some of the
best ones for the recovery of single motion, as illustrated by
the work of Papenberg et al. [7] as well as Nir et al. [8].
For some review and benchmark, we mention the classical
paper of Barron et al. [9] as well as the work of Baker et
al. [10] around a database of image sequences with ground
truth for a systematic evaluation and benchmark of optical
flow algorithms.1

Less attention has been devoted to the case of trans-
parency, although it is an active area of research. Starting
from the linear superposition model of (6), Bergen et al.
in [11] derive an iterative three frames algorithm for estimat-
ing two motions, by deriving first a 2-fold displaced frame
difference equation using the three frames: assume that f is
the sum of two layers f = l1 + l2, moving respectively with
motion u1 and u2, and that the Lambertian assumption holds
for each layer: li (x, t) − li (x − ui , t − 1) = 0. Applying first
the DFD (1) for ui gives

f (x, t) − f (x − ui , t − 1) = lj (x, t) − lj (x − ui , t − 1)

:= dj (x, t) (7)

with (i, j) = (1,2) or (i, j) = (2,1). The DFD is in general
non zero, but one of the layers, li , has been eliminated. In
case the motion of each layer li is constant on at least the
three frames t , t − 1 and t − 2, the “difference” layer dj

satisfies the DFD dj (x, t)−dj (x−uj , t −1) = 0. Assuming
ui is known, uj can then be computed by a single estimation
technique on dj .

A theoretical study and extension of this idea is proposed
in [12], providing a frequency domain interpretation and ex-
plaining a mechanism of “dominant velocity extraction”, see
also the work of Irani and Peleg in [13, 14]. Shizawa and
Mase [15–17] have explored a frequency domain total least-
squares formulation for the multiple motion problem. They

1At http://vision/middelbury.edu/flow/eval.

replace the OFC (2) by the spatiotemporal linear homoge-
neous one

∇3f (x, t) · u = 0, u = (u1, u2, u3)T �= 0 (8)

or its frequency counterpart uT ωf̂ (ω) = 0, where ω =
(ω1,ω2,ω3) are the spatial and temporal frequencies and f̂

is the Fourier transform of f . In the case of a unique con-
stant motion, the best u can be retrieved as the minimizer of
the energy

Esingle(u) = uT (
∫

ωωT |f̂ (ω)|2 dω)u

uT u
∫ |f̂ (ω)2|dω

.

This is a total least-square problem whose solution is given
by an eigenvector corresponding to the smallest eigen-
value of the 3 × 3 positive semi definite matrix A =∫

ωωT |f̂ (ω)|2 dω, called (spatio-temporal) structure tensor,
from which a velocity is easily deduced (see [18, 19] for in-
stance). For the recovery of n motions, the linear first order
constraint (8) is replaced by an n-order one, n-multilinear,
obtained by cascading the linear first order ones, the same
way the DFD where cascaded for the 3-frames algorithm.
For instance, in the two-motions case, the pair ( �u1, �u2)

would be a zero of the bilinear symmetric map

(u1,u2) �→ u2
T Hu1 = 0, (9)

where H is the spatiotemporal Hessian operator. Using to-
tal least-square formulation, a closed-form solution can be
established when n = 2, but becomes rapidly more compli-
cated for higher orders.

Mota et al. have extended these ideas in [20] and Mühlich
and Aach have proposed an algebraic framework based on
homogeneous components of symmetric algebras on the ve-
locity space and its dual in [21]. The very algebraic structure
of the motion constraints in frequency domain led Vernon to
propose in [22] an algorithm for the decoupling of moving
pattern, for both transparency and occlusion models. Using
a similar modeling, Zhou and Kambhamettu have proposed
a specific algorithm for the specific problem of reflections
in [23].

The non homogeneous form of the constraint (9) (with
u3

i = 1) provides the 2-Fold Optical Flow Constraint equa-
tion, as introduced by Shizawa and Mase in [16]:

(
u1

1∂x1 + u2
1∂x2 + ∂t

)(
u1

2∂x1 + u2
2∂x2 + ∂t

)
f (x, t) = 0

(10)

(where a product of differential operators means composi-
tion of them, ∂x∂y = ∂xy ). This form is used by Liu et al.
in [24] with Hermite polynomial based differentiation filters,
they also propose a method for detecting the presence of ei-
ther single or multiple motions. Darrell and Simoncelli [25]

http://vision/middelbury.edu/flow/eval
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dualize this constraint in order to construct some Fourier
“donuts” that respond to one or more velocities.

The non linear form of the constraint, as used by Burt et
al. in their 3-frames algorithm mentioned above, provides
what one may call the 2-Fold Displaced Frame Difference
equation:

f (x, t) − f (x − u1, t − 1) − f (x − u2, t − 1)

+ f (x − u1 − u2, t − 2) = 0. (11)

It can and has been extended to more than 2 motion, and
has been used as a starting point by several authors. For in-
stance, Stuke et al. use it in order to derive a block-matching
approach in [26]. In order to promote spatially smooth so-
lutions, they add a Markov Random Field spatial regular-
ization framework to it in [27]. However, the use of a field
of binary indicator variables results in a computationally in-
tensive minimization for finding the global solution of the
energy minimization method. Similarly, Auvray et al. [28]
use a parametric variant of the above block matching and
apply it for transparent X-Ray sequences (images where
the integration of material density produces transparent se-
quences [29]). The method segments and estimates the OF
by alternately applying IRLS and ICM methods in order to
compute both velocities and discrete layer-indicator vari-
ables, respectively. Starting with (11), Pingault et al. per-
form in [30] a N-order Taylor expansion around velocity val-
ues. A multiresolution non linear least-squares estimation is
performed, using a Levenberg-Marquardt algorithm.

All the above mentioned approaches are based on a sin-
gle higher-order constraint designed to “react” to multiple
local motions. Another important class of approaches uses
the dual paradigm of several order-one motion constraints
originally designed for detecting single motion. They of-
ten use the idea of local dominance of one layer in some
spatiotemporal neighborhood of the image sequence. These
dominances are scattered in the image plane, and associated
with different layers at different positions. In the robust sta-
tistics approach of Black and Anandan [31], the image plane
is assumed to be partitioned into regions, each one corre-
sponding to a parametric motion model u = u(a), a being a
low dimensional parameter for this motion model. The mo-
tion parameters are then assumed to represent the motion of
two layers that cover the entire image plane. The layers are
recovered by an iterative parameter/region estimation and
by a nulling process. Given an “initial” region Oi , a dom-
inant motion u = u(ai) is estimated together with its inlier
pixel region Ri ⊂ Oi , then the corresponding outlier region
Oi+1 = Oi\Ri , and after n iterations, the decomposition

R1 ∪ R2 ∪ · · · ∪ Rn ∪ On+1,

where Ri moves with velocity u(ai) and On+1 is the final
outlier region. This strategy is then used in their article with
n = 2.

Mixture models for multiple motions have been intro-
duced by Jepson and Black [32]. The authors assume that
the motion in layers can be explained by up to N constant
parametric motion fields and a mixture model. The layer
selection probability and layer motion parameters are esti-
mated over image patches and computed by an EM-like al-
gorithm, unfortunately, in the general case it is not easy to
determine the size and position of the patches. Ju et al. [33]
propose a model in which, multi-layered affine models are
defined on small rectangular image patches (bones), and an
inter-patch term (skin) introduces a regularization effect in
the model parameters estimation. Then layer ownerships and
affine model parameters are computed within a robust es-
timation framework by using an EM algorithm augmented
with a spatial regularization. Black et al. [34] compute a set
of membership weights in order to link layers with regions.
Although the method captures the changes in illumination,
it does not allow one to compute the OF of moving trans-
parencies. In an interesting approach [35], the translation
of obstructed pixels can be estimated by a learning process
of flexible sprites, however the transparency case is not ad-
dressed. Weiss and Adelson [36] as well as Rivera et al. [37]
have proposed EM-based approaches for computing differ-
ent layered motion models. They use as prior knowledge
the smoothness property of the velocities. The solution is
given by a field of layer probabilities. Both methods pro-
duce pixelwise unimodal solutions (single motions) since
they use a distance measure for single motions as well as
entropy controls. For more details about the different types
of constraints and proposed approaches, we refer the reader
to [38].

Finally, there is a family of approaches which use the
“single-then-transparent velocity extraction” strategy in or-
der to estimate transparent OF [39, 40]. The first step of this
method is to estimate an affine approximation of a single
motion by processing several frames of the sequence. Sec-
ondly, by nulling the first motion from the sequence it is
possible to estimate the second velocity (in [39] an iterative
framework is used for refining the solution at the cost of
assuming invertible global parametric motions). This strat-
egy has two drawbacks: (a) the analyzed sequence must be
composed of a single dominant motion and a non-dominant
one (so that a good-enough approximation of the domi-
nant one can be estimated by standard parametric OF tech-
niques), and (b) the practical restriction to recover two layers
(for instance, the min/max alternation algorithm in [39]) in
combination with the assumption of global parametric mo-
tions, restrict those methods to the recovery of only two dif-
ferent velocities for the whole sequence. The former lim-
itation impedes to solve sequences where there is not a
dominant velocity, as for instance our sequence in Fig. 7.
The latter limitation is significant in cases involving stan-
dard transparencies between two objects (each pixel con-
tains at most two velocities), but the sequence contains more
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than two velocities (due to the fact that there are more
than two objects or due to complex non-rigid motions), as
for instance our sequences in Figs. 9 and 11. In Sect. 4.4
(Fig. 10) we test the above limitations by means of experi-
ments.

To conclude this section, we discuss briefly how multiple
motion recovery can be used to image layer recovery. Once
the transparent OF is computed, it is still a challenging task
to recover the original image layers. In the two layers situa-
tion, the use of (7) allows, theoretically, to recover partial in-
formation about the individual layers. Because only tempo-
ral layer difference is provided, the problem is ill posed and
error in motion estimation and noise make it complex even
in the two layers situation, while the three or more layers
case becomes extremely arduous. Toro et al. have proposed
an inverse problem regularization approach in [1]. Other au-
thors use specific motion behavior information, as Sarel and
Irani in [41], or assume constant ego-motion as Oo et al.
in [42].

3 From Local to Global by a Variational Model

We introduce in this section our 2-steps approach for trans-
parent motion estimation in this section: first the gather-
ing of local information, and then its integration in or-
der to provide some global one, via a discrete variational
model.

For the finite sampling of the velocity space, we consider
N vectors

{u1, . . . ,uN }, with ui = (u1
i , u

2
i )

T , (12)

describing the set of possible velocities. Our goal will be
to determine the likelihood of having the velocity ui at
a given position. To do so, we use an initial local esti-
mate of this likelihood. This likelihood is encoded via the
distance function d(ui , r) ∈ R

+|i=1,...,N which describes
at each spatiotemporal position r = (x, t) whether the ve-
locity ui can locally explain the apparent motion (charac-
terized by d(ui , r) ≈ 0) or not (characterized d(ui , r) 

0). Such a motion probe d is defined in the next subsec-
tion.

3.1 How to Estimate Local Velocity Information?

The two following similarity operators are, certainly, the
most used in motion recovery algorithms: the displaced
frame difference, correlation based and non linear,

M
(1)

C (ui )f (x, t)
def= f (x, t) − f (x − ui , t − 1); (13)

and its linearized version, differential-based,

M
(1)

D (ui )f (x1, x2, t)

def=
(

u1
i

∂

∂x1
+ u2

i

∂

∂x2
+ ∂

∂t

)
f (x1, x2, t),

which gives rise to the well known OF constraint (2). The
superscript (1) indicates that these operators are designed
for probing one motion vector. Following Shizawa and
Mase [17], one can define an operator for two velocities as
the composition of single velocity operators (here the super-
script (2) indicates 2 motions):

M
(2)

D (ui ,uj )f (x, t)
def= M

(1)

D (ui )M
(1)

D (uj )f (x, t) (14)

where products ∂
∂r

∂
∂s

are expanded as ∂2

∂r∂s
, see [25]. Com-

posing instead the non linear correlation operators M
(1)

C pro-
vides the non linear operator for two velocities—the 2-fold
displaced frame difference which corresponds to the dis-
tance (11) reported in [26] as

M
(2)

C (ui ,uj )f (x, t)

def= f (x, t) − f (x − ui , t − 1)

− f (x − uj , t − 1) + f (x − ui − uj , t − 2). (15)

We introduce here the general mechanism we have used
in order to select the local velocity descriptors d(ui , r) from
our motion operators. We have a set of “velocities probe”
operators

M =
{
M(1)(u1), . . . ,M

(1)(uN),

M(2)(u1,u2),M
(2)(u1,u3), . . . ,M

(2)(uN−1,uN)
}
.

Let Mui
⊂ M be the subset of all the operators M(1) and

M(2) involving ui , then we define

dC (ui , r) = min
M

(k)
C ∈Mui

1

k

∑
s∈Wr

(
M

(k)

C f (s)
)2

(16)

and

dD(ui , r) = min
M

(k)
D ∈Mui

1

k

∑
s∈Wr

(
M

(k)

D f (s)
)2

(17)

when M is composed of operators {M
(1)

C , M
(2)

C } or {M
(1)

D ,

M
(2)

D } respectively. Wr is a n × n spatial window center at
r , we use n = 3 in all our experiments. As we will see in the
next section, we can indistinctly plug-in one or the other dis-
tance in our generic-application regularization framework.
Note that because M

(1)

D is the series Taylor’s approximation

of M
(1)

C , dC is more suitable for long displacements.
Last but not least, there is a problematic situation in

which the two-displacement operator M(2) may incor-
rectly detect two motions instead of one within a region
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R which is moving with a single-displacement �ui : for any
δ = u1, . . . ,uN , such that the point x′ = x − δ ∈ R, we de-
tect both ui and δ due to

M
(2)

C (ui , δ)f (x, t)

= f (x, t) − f (x − ui , t − 1)︸ ︷︷ ︸
M

(1)
C (ui )f (x,t)=0

− [f (x − δ, t − 1) − f (x − δ − ui , t − 2)]︸ ︷︷ ︸
M

(1)
C (ui )f (x−δ,t−1)=M

(1)
C (ui )f (x′,t−1)=0

= 0,

because the velocity ui is also present at coordinate
(x′, t − 1). To prevent this ambiguity, we use the value of
operators M(2) only when

M(2)(ui , ·)f (x, t) < min
[
M(1)(uj )f (x, t)

]
∀uj ,

i.e., when the velocity probe M(2) is explicitly better than
(and not equal to) all the M(1) probes.

3.2 Global Motion Integration via a Variational Approach

Once we have gathered local motion estimates, we need to
integrate them in order to obtain a global and robust velocity
estimation. Because more motions than the actually present
may be detected, and this is due to flat intensity regions or
the aperture problem, we need to simplify the information,
while regularizing it spatially in order to get rid of noise.

Let us define the function αi(r), which corresponds
to the probability that velocity ui explains the apparent
motion at the spatiotemporal position r. We define the
unknowns of the problem as the vector valued field α:
α(r) = [α1(r), . . . , αN(r)]T , with αi(r) ∈ [0,1] ∀r ∈ Ω ×
{0, . . . , T }.

Note that, although each component αi(r) can be inter-
preted as a probability, α(r) is not a probability measure (as
in [36, 37]) in the sense that the sum of its components is
not constrained to be equal to one. If two motions ui and uj

are present at a particular pixel position, then we expect that
αi(r) ≈ αj (r) ≈ 1. Conversely, the velocity(ies) at a position
r can be extracted from α(r) by selecting the velocity(ies) ui

with highest αi(r) value(s).
Then in order to estimate the global multi-valued velocity

field from the local data d(ui , r), we compute the minimizer
of the objective function E (α) defined by

E (α) =
∑

r

{∑
i

d(ui , r)α2
i (r) + λa(1 − αi(r))2 (18)

+ λs

2

∑
s:s∈Nr

∑
i

wi(r, s)[αi(r) − αi(s)]2 (19)

+ λc

[
κNᾱ2(r) −

∑
i

α2
i (r)

]}
, (20)

subject to the constraints αi(r) ∈ [0,1] for all i; with ᾱ(r) def=
1
N

∑
i αi(r), wi(r, s) are anisotropic diffusion weights de-

fined in the sequel, Nr
def= {s : r, s ∈ Ω ×[0, T ],‖r − s‖ < 2}

is the spatiotemporal neighborhood of the r position, and
κ,λa,λs, λc are user-defined positive constants. We will in
the sequel, denote by Uc(α, r) the term between the square
brackets in formula (20). Let us now comment the different
terms of this energy.

3.2.1 Attach Potential in Term (18)

This term links the input (the functions d’s) to the un-
known α. For computing the presence of the i-th model,
we use an approach related with the outlier rejection
method [43] and with the EM formulation [33, 34, 36, 37].
Minimizing term in (18) w.r.t. αi(r) produces αi(r) close to
0 for high d(ui , r) values, indicating in this way that such
a motion model is not likely at position r. Furthermore, the
second quadratic term in (18) avoids the null trivial solution
α(r) = 0 by pushing the αi(r) towards the value 1.

3.2.2 Spatial Regularization Potential in Term (19)

Local information is integrated through this regularization
term. At a given location r, we minimize the difference be-
tween vector α(r) and all the vectors α(s) in its neighbor-
hood, Nr. Because our indicator variables are real valued,
we can use differentiable potentials with their well-known
algorithmic advantages. The smoothing process is con-
trolled by directional fixed weights [44], in this case we use:

wi(r, s) =
(
(s − r)T Īi (s − r)

)
/‖s − r‖4 ,

generated from the i-th tensor associated to the i-th ve-
locity model: Īi = γ Id + UiUi

T , where Id is the iden-
tity matrix, γ = 0.1 and Ui = [u1

i , u
2
i ,1]T /‖[u2

i , u
2
i ,1]‖ is

a homogeneous-coordinate unit vector. For small γ val-
ues (as the one proposed here) these weights promote a
strong smoothness along the i-th velocity direction. The
empirically-fixed 4-th power of the distance restricts the
spatial influence of the smoothness term, see also [38]. As
a consequence piece-wise smooth OFs are recovered with
defined boundaries along the velocity model (see Fig. 6).

3.2.3 Inter-Model Competition Potential in Term (20)

Our aim is to detect multiple simultaneous motions (trans-
parent motions), thus we may have problems at sites where
multiple spurious matches are locally detected, for exam-
ple in homogeneous regions, where d(ui , r) ≈ 0 for many
(maybe all) velocities. For this reason we need a mechanism
to eliminate spurious models (i.e. to cancel some of the com-
ponents of α(r)) and promote the valid ones: we would like
to recover almost-binary solutions.
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Regularization terms for this aim have been proposed
in [36, 37, 45]. We improve those proposals by perform-
ing an inter-model regularization over the α(r) vector by
means of the quadratic term defined in (20). For avoiding
a disruption in the method presentation, the complete math-
ematical deduction of this regularization term is presented
in Appendix. Here we continue with our discursive presen-
tation.

We can tune the κ parameter in (20) depending on the
number of models that we want to detect at each pixel. Fig-
ure 1 shows the regularization behavior of this term by itself
along the iterations for κ = 1, 2 and 4 (we used N = 16
velocity models). Note that only the prominent coefficients
(those which have significant values since the first itera-
tions) are enhanced and the others are completely attenu-
ated. As can be seen, potential (20) is suitable for recover-
ing multimodal solutions and effectively controls the num-
ber of models with the parameter κ . In fact, potential (20)
can be tuned so that for a given κ value, a multimodal so-
lution (with two or more detected motions) has lowest cost
for a given number of modes: for instance, the final solu-
tion (in the convergence) shown in the bottom of Fig. 1 has
the cost shown in first row of Table 1, then, by arbitrarily
turning-off some αi coefficient or, conversely by arbitrarily
turning-on a third coefficient (second and third rows in Ta-
ble 1, respectively) the resultant energy is increased. Such a
behavior is plotted in Fig. 2 for several κ values and for a
different number of modes in the vector solution. This be-
havior makes an important distinction with respect to Shan-
non’s entropy, which always present lower energy for uni-
modal solutions [36, 37]. Additionally, our proposed poten-
tial, based on quadratic terms, is easily differentiable and
therefore we can use simple minimization algorithms.

Because of the negative terms in (20), the cost function
E (α) may become non-convex when λc 
 λs . Figure 3 il-
lustrates this for a simple 1D example (i.e. for a single
row image): we place ourselves at a given location r , with
N = 2 velocity models and corresponding measured dis-
tances d(u1, r) 
 0 and d(u2, r) ≈ 0, and since we con-
sider a single row Nr = {r − 1, r + 1}. For illustrative aims,
we fixed the neighbor α-vectors as α(r − 1) = [0.2,0.75]T ,
α(r + 1) = [0.15,0.85]T . Clearly, given the local distances
d(ui , r) and the two α-vectors in Nr , model u2 is the most
plausible one. Figure 3(a) shows the contour lines of func-
tional with the inter-model regularization term turned-off,
i.e. λc = 0. Then, by increasing the λc value in Fig. 3(b), we
lead the solution to the desired one (almost binary). In the
same way, an excess in the value of λc parameter generates
a non-convex cost function with several local minima, as is
illustrated in Fig. 3(c). However, in the region close to the
global solution the gradient of the functional correctly in-
dicates the desired minimization direction. For this reason,
we propose to gradually introduce the λc value, due to it is

Fig. 1 Regularization effect along the iterations of the inter-model
competition term (20). At iteration zero several models have signif-
icant values; at minimization convergence the non-prominent coeffi-
cients are completely attenuated. Result for κ = 1 in the top, i.e. term
(23), where the horizontal line marks the mean vector value ᾱ, for
κ = 2 in the middle and for κ = 4 in the bottom
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Table 1 Resultant cost of Uc(α, r) in (20) by arbitrarily turning off/on
some αi coefficients from the optimal solution shown in the bottom of
Fig. 1

Cost Uc(α, r) (20) Turned-on coefficients Comments
(all others are zero)

−1.00 α12 = α16 = 1 Optimal

−0.75 α16 = 1 Non-optimal

−0.75 α6 = α12 = α16 = 1 Non-optimal

important to perform the coefficient-contrast regularization
until we have an intermediate regularized solution [as for
instance the one presented in Fig. 3(a)]. Thus, as is detailed
in Sect. 3.3, we perform a deterministic annealing over the
parameter λc along the minimization.

Finally, by using the contrast term (20) it is possi-
ble to avoid the second term in (18) that promotes the α

“switching-on”, see Appendix. However, as such a scheme
is difficult to tune we prefer to control the different tasks in
independent terms.

3.3 Implementation

Without the constraint αi(r) ∈ [0,1], in the convex case, the
minimization would be performed by solving ∇α E = 0. Us-
ing a Gauss-Seidel solver, a relaxation step for a given αi(r)

would be

αi(r) ← λs

∑
s∈Nr

wi(r, s)αi(s) − λc
κ
N

∑
k �=i αk(r) + λa

d(ui , r) + λs

∑
s∈Nr

wi(r, s) + λc(κ − 1) + λa

.

Although the data term in our cost function tends to encour-
age the αi(r)’s to be close to [0,1], these constraints are not
strictly enforced, and we cannot expect in general that the
global minimum would fulfill them, i.e. we cannot expect
that our optimal solution α̃ satisfies ∇α E (α̃) = 0. Neverthe-
less, the above relaxation step is energy decreasing, when
the cost function is convex in the neighborhood of the cur-
rent α estimate. We may thus implement our minimization
by interleaving these relaxations steps and projecting the
αi(r)’s back in the constraint intervals. We found in fact,
that in order to obtain a smooth algorithm convergence, it
is important to keep fixed the mean ᾱ(r) while updating the
entries of the current α(r) vector. This leads to the following
procedure: our sweeps are in pixel lexicographic order, with
a given fixed order on the αi(r), and at a given position r,
we update each αi(r) via

αi(r) ← λs

∑
s∈Nr

wi(r, s)αi(s) − κλcᾱ(r) + λa

d(ui , r) + λs

∑
s∈Nr

wi(r, s) − λc + λa

while projecting back out-of-bounds αi(r)-values to the
constraint range [0,1] after each computation. When we
are done at a given location r, then we update the mean
value ᾱ(r). We initially set all the αi(r)’s to the value

Fig. 2 Number of modes (i.e. αi = 1) vs. the cost of term (20) with
N = 16 and different κ values. The number of modes that minimize
the potential (20) is controlled by parameter κ

0.5, and as mentioned in the Sect. 3.2.3, we perform a
deterministic annealing on λc. The annealing scheme is
the following. For each iteration k = 1,2, . . . , n, we set
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Fig. 3 Convex or non-convex regularized cost function (18)–(20) depending on the parameter selection. Contour lines of the functional E(α) for
parameters [λs, λc] equal to (a) [1,0], (b) [1,1] and (c) [1,20], respectively

λ
(k)
c = λcak , where λc is the chosen contrast level and ak =

1 − 0.95(100k/n) is a factor that increases to 1 in approxi-
mately 90% of the total iterations. Such a deterministic an-
nealing is inspired in the work of Blake and Zisserman [46],
where graduated non-convexity was used for approximating
the global solution for non convex minimization. The results
are sensitive to the annealing speed of λc: premature incre-
ment results in an early convergence, thus lead us to an in-
correct solution. Nevertheless, the proposed schedule seems
work well in all the evaluated cases and thus we used the
same annealing scheduling in all our experiments.

For the sake of reproducibility and to avoid dependence
on dynamic range of input sequences, we normalize the in-
put distances d(ui , r) ∈ [0,1], thus we can report a range
for the user-defined parameters. A large value for λs elimi-
nates noise but a too large ones blurs the motion boundaries.
We used λs ∈ [0.1,15] for an adequate noise reduction. In
our experiments, parameter κ = 1 performs well for most
noise-free synthetic sequences. For noise-contaminated, real
sequences (with homogeneous regions) or when the num-
ber of base velocities are increased (then several spurious
models may be present) the prominent models are obtained
by increasing this parameter, κ ∈ [1,4]. Note that the κ

value depends on the size N of the velocity dictionary in
(12). Thus, in order to obtain an approximate value, the
user should use a procedure similar to the one we depict in
Fig. 2 with the actual number of velocities. We set parame-
ter λa ∈ [0.001,0.05] and λc ∈ [0.001,0.05] for our experi-
ments. Note also that in all cases, we compute our dense OF
using at most 200 iterations.

3.4 Application to Perception Experiments: Random Dot
Kinematogram Sequences

Random Dots Kinematogram (RDK) are sequences com-
monly used in motion perception experiments [4, 47, 48].
RDK sequences are composed of a set of moving randomly
distributed dots which are moving with different directions

and/or speeds, see Figs. 13(a) and 14(a). The movement of
these points in a direction causes the perception of the move-
ment of the entire display. Moreover, if a part of these dots
are moving in a direction while all the others are moving in
another direction, the human observer has the perception of
transparency. A full representation of these visual situations
include both local and global motions. These sequences
arise from the experiments in [4], that show that represen-
tations of multiple velocities do not coexist at the finest spa-
tial scale of motion analysis. According to the experiment
in [48], the transparency detection occurs in two early vision
stages: (a) local motion detectors which show a winner-take-
all interaction and (b) integration of motion signals over a
more extended region. Neurophysiologically, there is evi-
dence that such processes (local and integration) are carried
out in different networks of the cortical area: neurons V1 en-
code more local motion information and spatial integrative
process seems to be a property of neurons V5, so called MT.
Note that from a simulation point of view and computation-
ally speaking, these sequences are very challenging, given
that there are not explicit boundaries between regions.

Inspired by the motion perception model reported in [48],
we propose to recover in two stages the predominant mo-
tions in RDK sequences. We first smooth noisy or sparse
motion signals to disambiguate the aperture problem (mim-
icking V1 processing), then we propagate the information to
the entire display in a integration process (mimicking MT
processing), as we explain in the following.

In first stage we slightly modify the cost function (18)–
(20) in order to deal with the non-textured regions (areas
without dots) that must be integrated to the local motions.
The adapted cost function is:

Ua(α) =
∑

r

{
Tr

[∑
i

d(ui , r)α2
i (r) + λa(1 − αi(r))2

]

+ λs

2

∑
s:s∈Nr

∑
i

wi(r, s)[αi(r) − αi(s)]2
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+ Trλc

[
κNᾱ2(r) −

∑
i

α2
i (r)

]

+ λp

∑
i

‖ui‖α2
i (r)

}
(21)

where the term

Tr = |∇fr |/
(
λg + |∇fr |

)

indicates a confidence coefficient that depends on the local
texture (image gradient) and λg is a user-defined parameter
that controls the contrast on Tr . Regions where the aperture
problem can be solved have a large Tr coefficient (this kind
of regions include corners, textured ones and borders), while
homogeneous regions without texture, where any movement
is equal likely to occur have a Tr close to zero. We use this
coefficient for detecting regions where the movement infor-
mation is poor so that we need to acquire the information
from its neighborhood. Additionally, we use the last term
in (21) that assumes a prior favoring slow velocities, used
in [49]. This term, controlled by the parameter λp , promotes
that the movement [0,0] is set as the likely one, when there
is no other prior knowledge, and allow us to detect motion-
less non-textured regions.

For solving (21) we use the single-motion distance de-
fined in (13), since for these sequences, representations
of multiple velocities do no coexist at this spatial scale
(see [4]).

The integration of global motion needs a large interac-
tion area (different scales). In this second stage we use as
initial solution the α coefficients obtained in the previous
stage (where the local movements have been detected), and
then we perform the diffusion-based spatial integration by

the minimization of the local energies:

Ub(α(r)) =
N∑
i

[ ∑
s:s∈Nr

αi(s) (αi(r) − αi(s))2

+ λc

(
κNᾱ2(r) −

∑
i

α2
i (r)

)]
,

where the diffusion weights are the αi(s) coefficients. By
using these diffusion weights, we promote that each posi-
tion r to be similar to the neighbor position s, when position
s has a large αi(s) coefficient, i.e., where the neighbor was
marked by the previous stage as a position with a predomi-
nant α coefficient (close to one).

For our experiments we use the following user parame-
ters: for the texture detector we set λg = 1 and use a small
value λp = 0.1 in order to allow the detection of velocities
with norm different to zero.

4 Experiments on Synthetic and Real Sequences

In this section we present results for synthetic and real trans-
parent sequences; all of them can be downloaded at the web
site: www-sop.inria.fr/odyssee/data/sequences/.

4.1 Local Measurements Are Noise Sensitive

Figure 4(a) shows a synthetic sequence (size 54 × 54 × 16)
with transparent motion, very similar to the one tested
in [27]: there is a moving background (with velocity û =
[0,−1]) and an overlapped moving transparent square (with
velocity v̂ = [1,0]), with additive Gaussian noise. Fig-
ure 4(b) (resp. 4(c)) show the OFs associated to the minima
of local detector distance in (16) (resp. (17)). This represents
indeed what will be the input of our approach and illustrate
the need for velocity integration even for low levels of noise.

Fig. 4 (a) A synthetic test sequence, and results obtained when noise is added and by using only the distances (b) dC in (16) and (c) dD in (17)

http://www-sop.inria.fr/odyssee/data/sequences/
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4.2 Regularization of Local Measurements

In order to measure the robustness of our approach, we cor-
rupted the sequence in Fig. 4(a) with different Gaussian
white noises, a low noise (SNR = 30), a medium one
(SNR = 20) and a large one (SNR = 10). Figures 5(a)–(c)
show the obtained results. The percentages of pixels with
a wrong estimation are 0.64%, 2.39% and 4.48% respec-
tively: Our approach can deal with a strong noise corrup-
tion, providing better results than [27] (compare Figs. 5(d)
and 5(e) with results from [27]). The velocity basis was com-
posed of 33 vectors, specified through their magnitudes and
orientations, respectively {0,1,2, 3,4} pixels and angles of
{0, π

4 , π
2 , 3

4π,π, 5
4π, 3

2π, 7
4π} radians. For comparison pur-

poses, Figs. 5(d) and 5(e) show the computed OF with the
computationally expensive Gibbs sampler which minimizes
the discrete cost function proposed by Stuke et al. in [27].
They used a deterministic relaxation ICM algorithm, prone
to converge to a local minimum as no annealing strategy is
used, and this is the reason they recommend to use instead
the Gibbs sampler approach. The noise-free case is shown

in Fig. 5(d), and the SNR = 30 (29.54 dB) case in Fig. 5(e).
The shown results correspond to the computed solution af-
ter 150,000 iterations (about 2.5 hours, in a PC Pentium IV,
3.0 GHz) that is 150 times slower than our approach. For the
Gibbs sampler method, the results quality rapidly decreases
as the noise level increases: see Fig. 5(e) and compare it
with the one computed with the proposed method in about 1
minute in Fig. 5(a).

The behavior of the spatial regularization and inter-model
competition is illustrated in Fig. 6. It shows the evolution of
the layer associated with velocity [1,0]: as expected, large
values appear in the square region whereas small values ap-
pear in the background region.

4.3 Realistic Textured Sequences

High textured sequences are relatively easy to solve using
local motion measures. In order to evaluate the real per-
formances of the methods, we use more realistic textured
scenes with homogeneous regions where many velocities
will locally explain the data. It is then necessary to be able

Fig. 5 First row. Results obtained with our approach applied to the
synthetic sequence presented in Fig. 4(a) with different noise levels
(input was dD ). Second row. Comparison with Gibbs Sampler scheme

(as proposed in [27]): (d) noise-free case and (e) noisy case SNR = 30
(29.54 dB), confront with our result in (a)
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Fig. 6 Evolution during
minimization (in pseudo-color
scale) of αi(r) for the layered
motion ui = [1,0] for
SNR = 20 (26.54 dB). Iterates
0, 1, 11, 31 and 200 are shown

Fig. 7 Two noisy realistic textured patterns in translation. We show the velocities associated to minimum distance in (17) and our regularized
result

Fig. 8 One frame of a sequence with a transparent object moving
with changing translational speed over a translating background and
the recovered multi-motion field. Results for more frames of this se-

quence can be found in www.cimat.mx/~mrivera/vision/transparent_
sequences/index.html

to carry the information from less ambiguous regions. The
next experiment is designed with that purpose in mind. It is
composed of two moving photographs: a face I1 with mo-
tion u = [1,0] (limited textured scene) and a rocky Mars
landscape I2, with motion v = [−1,0]. The sequence was
generated with f = 0.6I1 + 0.4I2, see Fig. 7(a). Figure 7(b)
shows the OF associated to the minimum distance in (17)
used in the attach term (18). The computed velocity field is
shown in Fig. 7(c). Note that the right OF is recovered in all
the pixels regardless of the high amount of noise.

Figure 8 shows a sequence with a time-varying trans-
parent region and motions. The changing velocities are
sketched in Fig. 8(a). An example of the obtained multi-
velocity vector field is shown in Fig. 8(b). For this experi-
ment we used the distance measure in (16).

The next sequence, shown in Fig. 9, is artificial too, and
made of a rotating earth globe (1 degree per frame) added to
a texture image, the latter translating with velocity [−1,0],
and with low-level added noise. Original layers are show
in Fig. 9(a). Because of the rotation, a large set of veloci-
ties (with different orientations and magnitudes) are present

http://www.cimat.mx/~mrivera/vision/transparent_sequences/index.html
http://www.cimat.mx/~mrivera/vision/transparent_sequences/index.html
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Fig. 9 Transparent motion sequence with complex rotating motion, SNR = 60 (35.56 dB). We show: the sequence, the associated velocities to
minimum distance in (16) and our method’s result

Fig. 10 Performance of the
dominant-velocity estimation
strategy for the sequence in
Fig. 7. In (a) frame #3, (b) result
of the affine registration (i.e.,
dominant motion estimation) of
frame #3 to frame #1,
(c) registration error, and
(d) recovered affine registration
applied to a regular grid.
In (e), (f), (g) and (h) same
results for frame #9,
respectively. The computed
displacement is neither correct
nor consistent because of the
absence of a dominant motion
(confront with our correct result
in Fig. 7(c))

and are in effect computed as the final solution in Fig. 9(c).
We use a dictionary with N = 97 velocities: 16 uniformly
distributed directions (incremental angle 2π/16) and mag-
nitudes equal to [0,0.33,0.66,1.0,1.33,1.66,2.0]. In this
experiment we estimate dense smooth flow which does not
rely on any motion assumption or model. We note in this
complex case that:

1. the recovered (rotational) optical flow looks smooth be-
cause of the large dictionary used,

2. the method recovers effectively the multiple OF and,
3. the inter-model competition prevents false motion layer

activation.

4.4 Limitations of the Single-Then-Transparent Velocity
Extraction Algorithm

Here we test the limitations of the single-then-transparent
velocity extraction strategy (commented in Sect. 2). For
this aim we estimate, by using that strategy, the dominant-
motion in the noise-free case for our transparent sequence

used in Fig. 7. The dominant parametric motion was com-
puted by affine registration with Gauss Newton optimiza-
tion [50] with a four-level multi-grid approach. The actual
velocities are [−1,0] and [1,0]. The results are shown in
Fig. 10. Note that, even for the noise-free case, the dom-
inant motion estimation for different frames is neither cor-
rect nor consistent: the estimated velocities are incorrect and
pointing in opposite directions because of the absence of
a clear dominant motion (see the correct transparent OF in
Fig. 7(c)). Note that a correct motion recovery should show
a single object (face or rocks) in Figs. 10(c) and 10(g). Given
the incorrect initial estimation for the first velocity, it is not
possible to estimate the second one. We found similar prob-
lems for the rest of the frames (not shown). In order to char-
acterize the sensibility of that method to the amount of trans-
parency, we variate the mixture parameter β of the layer
composition f = βI1 + (1 − β)I2 in the range [0.2,0.8]
with increments of size 0.1. For the noise-free case we note
that the single-then-transparent velocity extraction detects
the correct motion for β ≤ 0.3 and β ≥ 0.7 (i.e. only when a
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Fig. 11 Real transparent sequence and the computed transparent OF in the second row. The used input was dC

clear dominant motion is present) and is thus more sensitive
to the amount of transparency than our approach.

4.5 Transparency and Occlusion in a Real Sequence

We show in Fig. 11 the results obtained for a real se-
quence composed of two robots moving down a slope. The
upper-left robot is located behind a glass while the lower-
right robot is located in front of the camera. The reflec-
tion of the second robot is located in the upper-central part.
For this experiment we used as input the distance measure
in (16). The recovered velocities were [1.5,−0.4] pixels for
the upper-left robot and [−1.5,−0.5] for both the lower-
right robot and its reflection, as it is shown in the second
row of Fig. 11. Despite the fact that the lower right-robot
is moving a little faster than its reflection (easy to deduct
from the projection geometry), both are detected with the
same velocity model. This is explained by the low reso-
lution of the discrete velocity basis. We use a dictionary
with N = 231 velocities taken from an equidistant grid in
the interval [−2.0,2.0] × [0.0,−1.0] with increments of
size 0.1. For this experiment, we perform a spatiotemporal
Gaussian smoothing to the sequence (with std = 0.5), and
we process only the regions that contain displacements: the
static background was removed automatically by threshold-

ing the difference between consecutive frames, and then ap-
plying opening-closing morphological operators on the ac-
tivity mask. The processed sequence has a resolution of 28
frames with 101 × 166 pixels.

4.6 Recovering Rigid Objects from the Transparent OF

In this section we propose a procedure for recovering the
rigid transparent objects involved in the sequence of M

frames. In the general case, for each frame FM , FM−1,
FM−2, . . . , F2 we can group neighboring voxels associated
to the same α layer, and then displace them according to
the computed velocity to the previous frame until reach the
first frame (as in an object tracking procedure). Once each
set of pixels reached the first frame we have M different
images of the same object with a different transparent over-
lap. Thus, we can average the image intensities for this ob-
ject, this process eliminates the changing pattern (due to the
transparent overlap) and keeps the object’s structure.

We illustrate this idea for the noisy sequence (SNR = 10)
in Fig. 7(a) with M = 17 frames. In this case, the process is
simple because the whole frame is associated to the two ve-
locity layers shown in Fig. 7(c), thus we recovered the whole
images. Figure 12 shows the original sequence and frames
in Fig. 12(a) and the recovered image layers in Figs. 12(b)
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Fig. 12 (a) Noisy sequence from experiment in Fig. 7(a) and original
frames, (b) and (c) recovered image frames according to procedure in
Sect. 4.6

and 12(c), the root mean squared errors between the actual
and recovered frames are 26.72 and 38.65 respectively (the
dynamic range of the images is [0,255]). Note that the re-
covered images present a contrast reduction due to the aver-
age process, and also, structures from the other image that lie
along the current velocity are kept, because they are constant
along the frames and the average can not eliminate them (as
for instance in our example, the eyebrow is still present in
the rocky landscape).

Fig. 13 Results obtained for a RDK sequence with 1 movement.
(a) Original sequence, (b) recovered velocity field, (c) and (d) show
α layers for velocities [0,0] and [0,−1] respectively

4.7 Results on RDK Sequences

Figure 13 shows the obtained results for a RDK sequence
with one movement û = [0,−1]. The original 301×301×9
sequence is shown in Fig. 13(a). The recovered subsampled
velocity field is shown in Fig. 13(b). We show the recov-
ered velocity layers with values different from zero in or-
der to indicate the regions where each velocity model ui is
present; Fig. 13(c) shows the α layer associated to the model
ui = [0,0] and Fig. 13(d) shows the α layer associated with
the velocity model uj = [0,−1]. The white regions indicate
areas with coefficients close to one and the dark zones indi-
cates the presence of coefficients close to zero.

Figure 14 shows a more complex experiment involving a
RDK transparent sequence composed of two opposed move-
ments û1 = [1,0] and û2 = [−1,0]. The sequence dimen-
sions where 301 × 301 × 9, Fig. 14(a). We show the sub-
sampled velocity field in Fig. 14(b). The alpha layers for
the three actual movements, ui = [0,0], uj = [1,0] and
uk = [−1,0], are shown in Figs. 14(c) 14(d) and 14(e) re-
spectively, the other α layers are composed of zeros. The
velocity dictionary is composed of N = 25 uniformly dis-
tributed vectors. We tested different RDK sequences com-
posed of different velocities (not shown) and we obtained
similar results.
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Fig. 14 A transparent RDK sequence and results. (a) Original
transparent sequence, (b) recovered multi-velocity field, (c), (d)
and (e) show the α layers for velocities [0,0], [1,0] and [−1,0] re-
spectively

5 Discussion and Conclusion

We have presented a novel variational formulation for the
estimation of multiple motions, with an emphasis on trans-
parency. Our regularization proposal is an extension of pre-
vious variational approaches based on layered OF compu-
tation [36, 37]. The novelty and extensions are the follow-
ing: What we recover is a vector valued field that indicates
the presence or absence of some given motions at each spa-
tiotemporal location. Our formulation (a) extends previously
reported methods by using a distance measure suitable for
transparent motions, (b) introduces oriented spatial regular-
ization weights which promote a layer’s smoothness along
the associated velocity model, and (c) proposes an inter-
model competition mechanism well-suited for multi-valued
solutions. In our case (multiple motions), the inter-model
competition behaves similarly to the mechanisms used for
entropy-control for single motion fields [36, 37]. This term

is by itself a novel contribution of this work, since we do
not need special preprocessing in order to tackle sequences
with one or more layers, as was shown in synthetic experi-
ments in textured and non-textured sequences as well as in
real sequences.

Our non-parametric velocity scheme allows the recovery
of an arbitrary number of displacements at the cost of us-
ing a fixed dictionary of velocities. The size of such a dic-
tionary determines the required computational burden and
the quality of the results. However, a recent work, reported
in [51], presents a convenient strategy to deal with a large set
of velocity hypothesis; our schema can be extended to use
that strategy. In our experiments we tested both a medium-
size dictionary for the experiments in Figs. 4, 5, 6, 7, 8, 13,
and 14, and a large-size dictionary for the experiments in
Figs. 9 and 11.

The robust-to-noise feature of our proposal depicts an ad-
ditional difference with respect to several methods such as
in [39, 40, 52]: to solve highly noisy sequences (as for in-
stance our experiment in Fig. 7) is not the aim of previous
methods. For instance, an insight into the pernicious effect
of noise in the estimation is given in [39]. With this in mind,
we note that our proposal belongs to a different family of
approaches, specifically regularization of local transparent
velocities, as in [27].

Although our regularization framework can deal with
more than two models at the same spatiotemporal position
(as demonstrated in [53]), we note that, for practical pur-
poses, the used multi-velocity detectors are unstable (i.e.,
they are noise sensitive) for more than two velocities. In this
sense, the lack of motion detectors for more than two dis-
placements limits the practical application of our proposal
to the two-transparent layer cases.

We compared our method with two competitive ap-
proaches [27, 39]; our experiments show how our proposal
improves the motion detection. However, the automatic
transparent OF estimation is still a difficult computer vi-
sion task and belongs to an active research area. Our work,
as the ones in the state of the art [11, 15–17, 20, 25–28,
39, 42], is based on the assumption that displacements are
constant for at least three consecutive frames. Such an as-
sumption is hard to achieve for sequences with non-rigid
objects. Consequently, we believe that the development of
robust methods for rapid changes in displacements remains
an open problem.

We presented an easy-to-implement procedure to recover
the rigid transparent layers given the multiple motion field.
The quality of the results depends on the number of frames
in the sequence given that our framework is based on an av-
erage process of the observed layers. Taking into account
the available methods for layer separation, it is important
to note that they impose different constraints in the trans-
parent sequence in order to be able to separate the layers.
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For instance, our method can deal with noisy sequences but
then it requires several frames of rigid objects, the approach
in [1] works on noise-free sequences and recovers just the
smoothest layers (it could have problems with textured ob-
jects), the method in [41] separates two layers by assuming
that one presents a periodical movement, the work in [39]
requires sequences containing a dominant motion, and the
proposal in [42] works based on a specific camera motion
constraint. In this regard, it is important to investigate new
approaches for constraint-free transparent sequences.

Finally, we have tested the application of our regulariza-
tion proposal on RDK sequences: we proposed a regional
based single motion estimation on a diffusion based integra-
tion. Our experiments show that is possible to use our model
to integrate such single-motion local estimations into trans-
parent layers.

In future work, we consider that it is important to study in
more depth the diffusion terms of the spatial integration and
also investigate how different velocity maps may interact.
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Appendix: The Inter-Model Regularization

Sparsity or “compact coding” scheme has been biologically
motivated: in the context of biological vision models it is
desirable to minimize the number of models that respond to
any particular event. The prior information is that the prob-
ability of any model to be present is equal, but such prob-
ability is low for any given model. Such coding scheme is
like the one suggested by experiments in retina and primary
visual cortex analysis of natural images [54–56], where a
suitable response may be described in terms of structural
primitives (as lines for instance), so that only a small subset
from all detectors should indicate contribution.

In order to promote sparsity in the case of probability
measure vectors, α(r), Weiss and Adelson proposed in [36]
to penalize the Shannon’s entropy:

Ûc1(α, r) = −
∑

i

αi(r) log(αi(r)).

The high non linearity of this term and its derivatives makes
the minimization scheme rather complex. Instead, Rivera et
al. propose in [37] to penalize the Gini’s entropy by means
of a quadratic potential as

Ûc2(α, r) = 1 −
∑

i

α2
i (r).

Note however that in both cases the minimum entropy is
reached for unimodal solutions [57] (i.e. with only one co-
efficient αi(r) close to one and all the others close to zero),
an undesirable behavior for this work. Multimodal non lin-
ear potentials that promote sparsity have been proposed by
Olshausen et al. in [45] as

Ûc3(α, r) = −
∑

i

exp(−α2
i (r)),

Ûc4(α, r) =
∑

i

log(1 + α2
i (r))

and

Ûc5(α, r) =
∑

i

|αi(r)| = ‖α(r)‖1.

For these potentials, the authors reported no meaningful dif-
ferences in implementation, although their non linear feature
results in well-known minimization drawbacks.

In order to overcome the shortcomings of the above men-
tioned terms, we propose to perform an inter-model regular-
ization over the α(r) vector by means of a quad-ratic term
defined in a general form as

Ûc(α, r) = −
∑

i

(
αi(r) − Cα(r)

)2
, (22)

where Cα(r) is an intermediate value lying between zero and
the maximum value expected by any αi coefficient (1 in our
case). This term promotes large contrast in the αi(r) coeffi-
cients, since it is minimized as each αi(r) is as far as pos-
sible from the value Cα(r). We can understand Cα(r) as a
parameter which acts as a threshold between the significant
and non significant models.

Take Cα(r) to be the mean value ᾱ(r) of the α(r) vector:
ᾱ(r) = 1

N

∑
k αk(r) (as in [44, 53]): (22) becomes propor-

tional to the opposite of the variance of the αi(r)’s, therefore
encouraging deviation with respect to their mean. In fact, by
expanding the contrast term (22), one gets

Ûc(α, r) = −
∑

i

αi(r)2 + Nᾱ(r)2. (23)

Thus, the first term of (23) promotes the “switching on”
of models and avoids the trivial solution α(r) = 0, while
the second term penalizes the number of switched-on mod-
els. Hence for a fixed mean value (controlled by the second
term) the first term (that acts in a similar way to Gini’s en-
tropy term) prefers highly contrasted solutions.

According to our experiments and inspired from the pre-
vious analysis, we propose a more versatile inter-model reg-
ularization potential in (20) as

Uc(α, r) = −
∑

i

αi(r)2 + κNᾱ(r)2
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where κ > 0. In this way, we can tune the κ parameter de-
pending on the number of models that we want to detect at
each pixel, see the Sect. 3.2.3 for illustrative experiments.
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