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Abstract. We question whether the recent characterization of Sobolev spaces by Bourgain,
Brezis, and Mironescu (2001) could be useful to solve variational problems on W 1,p(Ω). To answer
this, we introduce a sequence of functionals so that the seminorm is approximated by an integral
operator involving a differential quotient and a radial mollifier. Then, for the approximated for-
mulation, we prove existence, uniqueness, and convergence of the solution to the unique solution of
the initial formulation. We show that these results can also be extended in the BV-case. Interest-
ingly, this approximation leads to a unified implementation, for Sobolev spaces (including with high
p-values) and for the BV space. Finally, we show how this theoretical study can indeed lead to a
numerically tractable implementation, and we give some image diffusion results as an illustration.
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1. Introduction. The goal of this work is to propose a new unifying method for
solving variational problems defined on the Sobolev spaces W 1,p(Ω) or on the space
of functions of bounded variations BV (Ω) of the form

(1.1) inf
u∈W 1,p(Ω)

F (u),

with

F (u) =
∫

Ω

|∇u(x)|pdx +
∫

Ω

h(x, u(x))dx.

To solve this problem numerically, particularly in the case when p = 1, several meth-
ods have been proposed; see, e.g., [8, 13, 14, 7, 18]. These methods mainly rely on
regularization or duality results.

In this article we propose an alternative method based on a recent new charac-
terization of the Sobolev spaces by Bourgain, Breszis, and Mironescu [5], and further
extended by Ponce [16] in the BV -case. In [5] the authors showed that the Sobolev
seminorm of a function f can be approximated by a sequence of integral operators
involving a differential quotient of f and a suitable sequence of radial mollifiers:

lim
n→∞

∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|p ρn(|x − y|)dxdy = KN,p

∫
Ω

|∇u|pdx.
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In this paper, our main contribution is to show how this characterization can be
used to approximate the variational formulation (1.1) by defining the sequence of
functionals

Fn(u) =
∫

Ω

∫
Ω

|u(x) − u(y)|p
|x − y|p ρn(|x − y|)dxdy +

∫
Ω

h(x, u(x)) dx.

To do this, we prove that the sequence of minimizers of Fn converges to the solution
of the original variational formulation. We prove this result for any p ≥ 1, so that the
BV -case is also covered (thanks to results by Ponce [16]). Note that approximation is
not constrained by the fidelity attach term (see [7]). Numerically, we propose a unified
subgradient approach for all p ≥ 1, and we show how to discretize the nonlocal singular
term with a finite element–type method.

Interestingly, the nonlocal term in Fn has some similarities to recent contributions
by Gilboa and Osher [12] and Gilboa et al. [11], who propose to minimize nonlocal
functionals of the type ∫

Ω

∫
Ω

φ(|u(x) − u(y)|)w(|x, y|)dxdy,

where φ is a convex positive function and w is a weighting function. The authors
propose a general formalism for nonlocal smoothing terms but define them heuris-
tically for their applications in image processing (see also the link to neighborhood
filters [6]). In our contribution, the nonlocal term that we propose comes from the
approximation of a seminorm, so that we will show some regularity results on the
solution. Notice that one related major difference is the weighting function, which is
in our case singular.

This paper is organized as follows. In section 2, we recall the main results from [5]
that we will use herein and define the sequence of the approximating functional Fn.
In section 3, we present the most significant results of the paper, considering the case
p > 1: we prove existence and uniqueness of a minimizer un of Fn, characterize its
regularity, derive the optimality condition, and finally show that un converges to the
unique solution of the initial formulation. In section 4, we describe how those results
can be extended to the case p = 1, which corresponds to the BV -case. Finally, we
show in section 5 how this theoretical study can indeed lead to a numerically tractable
implementation, and we give some image diffusion results as an illustration.

2. The Bourgain–Brezis–Mironescu result. Let us first recall the result of
Bourgain, Brezis, and Mironescu [5].

Proposition 2.1. Assume 1 ≤ p < ∞ and u ∈ W 1,p(Ω), and let ρ ∈ L1(R), ρ ≥
0. Then

(2.1)
∫

Ω

∫
Ω

|u(x) − u(y)|p
|x − y|p ρ(|x − y|)dxdy ≤ C‖u‖p

W 1,p‖ρ‖L1(R),

where ‖u‖p
W 1,p denotes the (semi)norm defined by ‖u‖p

W 1,p =
∫
Ω
|∇u|pdx and C de-

pends only on p and Ω.
Now let us suppose that (ρn) is a sequence of radial mollifiers, i.e.,

(2.2) ρn ≥ 0,

∫
RN

ρn(|x|)dx = 1,

and for every δ > 0, we assume that

(2.3) lim
n→∞

∫ ∞

δ

ρn(r)rN−1dr = 0.
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With conditions (2.2) and (2.3), which we will assume throughout this article, we
have the following proposition.

Proposition 2.2. If 1 < p < ∞ and u ∈ W 1,p(Ω), then

(2.4) lim
n→∞

∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|p ρn(|x − y|)dxdy = KN,p‖u‖p

W 1,p ,

where KN,p depends only on p and N .
In this paper, we propose to apply Propositions 2.1 and 2.2 for solving general

variational problems of the form

(2.5) inf
u∈W 1,p(Ω)

F (u),

with

(2.6) F (u) =
∫

Ω

|∇u(x)|pdx +
∫

Ω

h(x, u(x))dx, u ∈ W 1,p(Ω).

To do this, following [5], we introduce the nonlocal formulation

(2.7) inf
u∈Lp(Ω)

Fn(u),

with

(2.8) Fn(u) =
∫

Ω

∫
Ω

|u(x) − u(y)|p
|x − y|p ρn(|x − y|)dxdy +

∫
Ω

h(x, u(x)) dx.

Our goal is to establish in which sense formulation (2.7)–(2.8) approximates the initial
formulation (2.5)–(2.6).

3. Approximation of variational problems on W 1,p(Ω), p > 1. Thanks
to Proposition 2.1, functional Fn(u) is well-defined on W 1,p(Ω). However, one can-
not prove directly that Fn admits a unique minimizer on W 1,p(Ω), since minimizing
sequences cannot be bounded in that space. Thus we need to consider the minimiza-
tion over the larger space Lp(Ω), and problem (2.7) is in fact an unbounded problem
in Lp(Ω).

In this section, we prove the following results:
• For n fixed, we show in section 3.1 that problem (2.7) admits a unique solution

un ∈ Lp(Ω).
• Then we show in section 3.2 that un is more regular and belongs to the Sobolev

space W s,p(Ω) with 1/2 < s < 1. Moreover, we show that all minimizing
sequences are bounded on W s,p(Ω). The main consequence is that minimizing
sequences (ul

n)l indeed converge strongly to un. This additional regularity will
also enable us to consider problems with Dirichlet boundary conditions, since
one can give a meaning to the trace operator on that space.

• The previous regularity result will be fundamental in section 3.3 when we
consider that n tends to infinity. Applying some results by Ponce [16], we
will show that un converges to the unique solution u of the original formula-
tion (2.5).

• In section 3.4 we establish the expression of the Euler–Lagrange equation.
Remark. Note that throughout this section and in the proofs, we will denote by C

a universal constant that may be different from one line to the other. If the constant
depends on n, for example, it will be denoted by C(n).
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3.1. Existence and uniqueness of a solution un in Lp(Ω). Now, let us
show that functional (2.8) admits a unique minimizer. It is clear by using again
Proposition 2.1 and the fact that ‖ρn‖L1(R) = 1 that we have for all v in W 1,p(Ω)

inf
u∈Lp(Ω)

Fn(u) ≤ inf
u∈W 1,p(Ω)

Fn(u) ≤ Fn(v) ≤ C‖v‖p
W 1,p +

∫
Ω

h(x, v(x)) dx,

from which we deduce that infu∈Lp(Ω) Fn(u) is bounded by a finite constant (inde-
pendent of n).

Proposition 3.1. Assume that h ≥ 0, the function x �→ h(x, u(x)) is in L1(Ω)
for all u in Lp(Ω), h is convex with respect to its second argument, and, for each
n, the function t �→ ρn(t) is nonincreasing. Then functional (2.8) admits a unique
minimizer in Lp(Ω).

Before proving this proposition, let us recall a technical lemma from Bourgain,
Brezis, and Mironescu (Lemma 2 in [5]) that we will use in the proof of Proposition 3.1.

Lemma 3.2. Let g, k : (0, δ) → R+. Assume g(t) ≤ g(t/2) for t ∈ (0, δ), and that
k is nonincreasing. Then for all M > 0, there exists a constant C(M) > 0 such that

(3.1)
∫ δ

0

tM−1g(t)k(t)dt ≥ C(M)δ−M

∫ δ

0

tM−1g(t)dt

∫ δ

0

tM−1k(t)dt.

Proof of Proposition 3.1. Let us consider a minimizing sequence ul
n of Fn(u) with

n > 0 fixed. Since h ≥ 0 and infu∈Lp(Ω) Fn(u) is bounded, then there exists a constant
C such that

(3.2)
∫

Ω

∫
Ω

|ul
n(x) − ul

n(y)|p
|x − y|p ρn(|x − y|)dxdy ≤ C.

We are going to apply techniques borrowed from Brezis, Bourgain, and Mironescu [5,
Theorem 4]. Without loss of generality, we may assume that Ω = R

N and that the
support of ul

n is included in a ball B of diameter 1. This can be achieved by extending
each function ul

n by reflection across the boundary in a neighborhood of ∂Ω. We may
also assume the normalization condition

∫
Ω

ul
n(x)dx = 0 for all n and l. Let us define

for each n, l, t > 0

(3.3) El
n(t) =

∫
SN−1

∫
RN

|ul
n(x + tw) − ul

n(x)|pdxdw,

where SN−1 denotes the unit sphere of R
N . Straightforward changes of variables show

that
∫

Ω

∫
Ω

|ul
n(x) − ul

n(y)|p
|x − y|p ρn(|x − y|)dxdy =

∫ 1

0

tN−1 El
n(t)
tp

ρn(t)dt,

and thus (3.2) can be equivalently expressed as

(3.4)
∫ 1

0

tN−1 El
n(t)
tp

ρn(t)dt ≤ C.

Now since we have supposed that ul
n is of zero mean, we can write

ul
n(x) = ul

n(x) − 1
|B|

∫
B

ul
n(y)dy.
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Thus∫
|ul

n(x)|pdx =
∫ ∣∣∣ul

n(x) − 1
|B|

∫
B

ul
n(y)dy

∣∣∣pdx =
1

|B|p
∫ ∣∣∣

∫
B

ul
n(x) − ul

n(y)dy
∣∣∣p dx,

and, thanks to the Hölder inequality, there exists a constant C such that

(3.5)
∫

|ul
n(x)|pdx ≤ C

∫
|h|≤1

( ∫
|ul

n(x+h)−ul
n(x)|p dx

)
dh = C

∫ 1

0

tN−1El
n(t)dt.

Now, an interesting property of El
n is that

(3.6) El
n(2t) ≤ 2pEl

n(t).

Inequality (3.6) follows from the triangle inequality |a + b|p ≤ 2p−1(|a|p + |b|p):

El
n(2t) =

∫
SN−1

∫
RN

|ul
n(x + 2tw) − ul

n(x)|pdxdw

=
∫

SN−1

∫
RN

|ul
n(x + 2tw) − ul

n(x + tw) + ul
n(x + tw) − ul

n(x)|pdxdw

≤ 2p−1
(∫

SN−1

∫
RN

|ul
n(x + 2tw) − ul

n(x + tw)|pdxdw

+
∫

SN−1

∫
RN

|ul
n(x + tw) − ul

n(x)|pdxdw
)

(3.7)

≤ 2pEl
n(t),

since both integrals in (3.7) are equal (up to a change of variable).
To conclude we apply Lemma 3.2 with M = N , δ = 1, k(t) = ρn(t), and g(t) =

El
n(t)
tp (this choice is valid thanks to the hypotheses on ρn and property (3.6)). We

obtain ∫ 1

0

tN−1ρn(t)
El

n(t)
tp

dt ≥ C

∫ 1

0

tN−1ρn(t)dt

∫ 1

0

tN−1 El
n(t)
tp

dt

≥ C

∫ 1

0

tN−1ρn(t)dt

∫ 1

0

tN−1El
n(t)dt,(3.8)

where we have used in the last inequality the fact that 0 < t < 1. Let us denote
d(n) =

∫ 1

0
tN−1ρn(t)dt > 0; we obtain, thanks to (3.4), (3.5), and (3.8), that there

exists a constant C(n) > 0 (but which is independent of l) such that

(3.9)
∣∣ul

n

∣∣
Lp(Ω)

≤ C(n).

From (3.9), we deduce that, up to a subsequence, ul
n tends weakly in Lp(Ω) to some

un ∈ Lp(Ω) as l → +∞. Then we deduce that the sequence wl
n(x, y) = ul

n(x)− ul
n(y)

tends weakly in Lp(Ω × Ω) to wn(x, y) = un(x) − un(y). Since the functional

w →
∫

Ω

∫
Ω

|w(x, y)|p ρn(|x − y|)
|x − y|p dxdy

is nonnegative, convex, and lower semicontinuous from Lp(Ω×Ω) → R̄, we easily get

Fn(un) ≤ lim
l→∞

Fn(ul
n) = inf

u∈Lp(Ω)
Fn(u),

where the symbol lim denotes the lower limit. Therefore un is a minimizer of Fn.
Moreover it is unique since the function t �→ |t|p is strictly convex for p > 1.
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3.2. Regularity result for un. We have obtained the existence of a minimizer
in Lp(Ω). Let us show that the solution is in fact more regular than just Lp.

As for W 1,p(Ω), the space W s,p(Ω) can be characterized by a differential quotient.
For 0 < s < 1 and 1 ≤ p < ∞, we define

W s,p(Ω) =
{

u ∈ Lp(Ω);
|u(x) − u(y)|
|x − y|s+N/p

∈ Lp(Ω × Ω)
}

,

endowed with the norm

|u|pW s,p(Ω) =
∫

Ω

|u|pdx +
∫

Ω

∫
Ω

|u(x) − u(y)|p
|x − y|sp+N

dxdy.

Let us consider n fixed and let us denote by C(n) a universal positive constant de-
pending on n (i.e., C(n) may be different from one line to the next). Let (ul

n)l be a
minimizing sequence of (2.7) so that

(3.10)
∫

Ω

∫
Ω

|ul
n(x) − ul

n(y)|p
|x − y|p ρn(|x − y|)dxdy ≤ C(n).

Then we would like to prove that (3.10) implies

(3.11)
∫

Ω

∫
Ω

|ul
n(x) − ul

n(y)|p
|x − y|sp+N

dxdy ≤ C(n)

for some 1/2 < s < 1 and some constant other constant C(n), thus showing that ul
n

belongs to W s,p(Ω).
Proposition 3.3. Let q be a real number such that p

2 < q < p and (p−1) ≤ q, and
let us assume that ρn verifies (2.2)–(2.3) and also that conditions of Proposition 3.1
are fulfilled. Moreover let us suppose that the functions t → ρn(t) and t → tq+2−pρn(t)
are nonincreasing for t ≥ 0. Then ul

n ∈ W q/p,p(Ω) for all l.
Proof. Without loss of generality, let us prove Proposition 3.3 for the case N = 2.

Equivalently, thanks to (3.3) of El
n, we can rewrite (3.10) and (3.11) so that one needs

to prove that

(3.12)
∫ 1

0

t
El

n(t)
tp

ρn(t)dt ≤ C(n)

implies
∫ 1

0

t
El

n(t)
tsp+2

dt ≤ C(n).

Let us apply Lemma 3.2 with M = δ = 1, g(t) = El
n(t)

tq+1 , k(t) = tq+2−pρn(t). Assuming
the hypothesis on g(t) is true, Lemma 3.2 gives

(3.13)
∫ 1

0

El
n(t)ρn(t)
tp−1

dt ≥ C(M)
∫ 1

0

El
n(t)

tq+1
dt

∫ 1

0

tq+2−pρn(t)dt.

Therefore
∫ 1

0

El
n(t)

tq+1
dt ≤ 1

C(M)
∫ 1

0
tq+2−pρn(t)dt

∫ 1

0

El
n(t)ρn(t)
tp−1

dt,
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and according to (3.12), we get∫ 1

0

El
n(t)

tq+1
dt ≤ C(n)/C(M)∫ 1

0
tq+2−pρn(t)dt

,

where the right-hand term is bounded independently of l. Thus ul
n ∈ W s,p(Ω) with

s = q
p , and since we have supposed p

2 < q < p we have 1
2 < s < 1.

So it remains to show that function g(t) verifies the hypothesis of Lemma 3.2.
We have to check g(t) ≤ g(t/2). Since g(t) = El

n(t)
tq+1 then g(t/2) = El

n(t/2)
tq+1 2q+1 ≥

2q+1−p El
n(t)

tq+1 = 2q+1−pg(t) (thanks to (3.3)). Thus we get g(t/2) ≥ g(t) if q+1−p ≥ 0,
i.e., if q ≥ (p − 1).

Depending on p, one needs to find a function ρn(t) so that ρn(t) and tq+2−pρn(t)
are decreasing, and verify (2.2) and (2.3). Let us show that such a ρn function exists.
We define

(3.14) ρn(t) = Cn2ρ(nt) with C =
1∫

R2 ρ(|x|)dx

and, depending on the values of p, we propose the following functions:

(3.15) ρ(t) =

⎧⎪⎪⎨
⎪⎪⎩

exp(−t)/tq+1 if p = 1, with 0.5 < q < 1,

exp(−t)/tq if p = 2, with 1 < q < 2,

exp(−t)/t if p > 2, with q = p − 1.

As a consequence, we have the following proposition.
Proposition 3.4. Let (ul

n)l be a minimizing sequence of (2.7). Let us suppose
that h verifies the conditions of Proposition 3.1 and the coercivity condition h(x, u) ≥
a|u|p + b, with a > 0. Then the sequence (ul

n)l is bounded in W q/p,p(Ω) uniformly
with respect to l. Therefore, up to a subsequence, ul

n tends weakly to un in W q/p,p(Ω)
(and strongly in Lp(Ω)).

Another direct consequence of Proposition 3.3 is the following.
Lemma 3.5. We have infu∈Lp(Ω) Fn(u) = infu∈W s,p(Ω) Fn(u), and the solution of

the problem posed on Lp(Ω) is also the solution of the problem posed in W s,p(Ω).
Proof. Since W s,p(Ω) ⊂ Lp(Ω), then

inf
u∈Lp(Ω)

Fn(u) ≤ inf
u∈W s,p(Ω)

Fn(u).

By definition, since un is the minimizer of Fn in Lp(Ω), we have

Fn(un) = inf
u∈Lp(Ω)

Fn(u) ≤ inf
u∈W s,p(Ω)

Fn(u),

but as un ∈ W s,p(Ω), we have finally

inf
u∈W s,p(Ω)

Fn(u) ≤ Fn(un) = inf
u∈Lp(Ω)

Fn(u) ≤ inf
u∈W s,p(Ω)

Fn(u),

which concludes the proof.
Remark. Yet another consequence of Proposition 3.3 is that one can also consider

problems with Dirichlet boundary conditions if necessary: If one needs to solve prob-
lem (2.5) with a Dirichlet boundary condition u = ϕ on ∂Ω, then one can impose the
minimizing sequence of (2.7) to verify ul

n = ϕ on ∂Ω (which has a meaning thanks to
this regularity result), so that, by continuity of the trace operator, we have un = ϕ
on ∂Ω. Thus un is the unique minimizer in W q/p,p(Ω) of problem (2.7), also verifying
the Dirichlet boundary condition.
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3.3. Study of the limn→∞ un. In section 3 we proved the existence of a
unique solution un for problem (2.7), with n fixed, which is in fact in W s,p(Ω). Now,
we are going to examine the asymptotic behavior of (2.7) as n → ∞. Throughout
this section we will suppose the hypotheses stated in Proposition 3.3 and 3.4 hold.
By definition of a minimizer, we have, for all v ∈ W q/p,p(Ω),

(3.16) Fn(un) ≤ Fn(v) =
∫

Ω

∫
Ω

|v(x) − v(y)|p
|x − y|p ρn(|x − y|)dxdy +

∫
Ω

h(x, v(x))dx.

Thus by using (2.1) and the fact that |ρn|L1 = 1 we deduce from (3.16) that Fn(un) is
bounded uniformly with respect to n. In particular, we get for some constant C > 0

∫
Ω

∫
Ω

|un(x) − un(y)|p
|x − y|p ρn(|x − y|)dxdy ≤ C.

By using the same technique as in Proposition 3.3, we still have that (un) is bounded in
W q/p,p(Ω). Therefore there exists u such that (up to a subsequence) un → u in Lp(Ω)-
strong. Moreover, by applying Theorem 4 from [5], we obtain that u ∈ W 1,p(Ω). We
claim that u is the unique solution of problem (2.5), i.e., for all v ∈ W 1,p(Ω),

(3.17)
∫

Ω

|∇u(x)|pdx +
∫

Ω

h(x, u(x))dx ≤
∫

Ω

|∇v(x)|pdx +
∫

Ω

h(x, v(x))dx.

To prove (3.17) we refer the reader to the paper by Ponce [16]. In this paper the author
studies in the same spirit as [5] new characterizations of Sobolev spaces and also of
the space BV (Ω) of functions of bounded variations (see also section 4). The author
considers more general differential quotients than the ones in [5], namely, functionals
of the form

En(u) =
∫

Ω

∫
Ω

w

(
|u(x) − u(y)|

|x − y|

)
ρn(|x − y|)dxdy.

By studying the asymptotic behavior, Ponce [16] obtained new characterizations of
W 1,p(Ω) but also of BV (Ω). In particular, for w(t) = |t|p the author proved that
En(u) Γ-converge (up to a multiplicative constant) to E(u) =

∫
Ω
|∇u|pdx.

We have the following proposition.
Proposition 3.6.

(i) The sequence of functionals

Fn(u) = En(u) +
∫

Ω

h(x, u(x))dx

Γ-converges (up to a multiplicative constant) to

F (u) = E(u) +
∫

Ω

h(x, u(x))dx.

(ii) The sequence un of minimizers of Fn(u), which is precompact in Lp(Ω), con-
verges to the unique minimizer of F (u).

Proof. Item (i) is the Γ-convergence result shown by Ponce [16]. Item (ii) is
a direct consequence of general Γ-convergence properties, since we proved that the
sequence (un) is bounded in W s,p(Ω), and thus converges strongly in Lp(Ω) to u (up
to a subsequence).
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3.4. Euler–Lagrange equation. Since un is a global minimizer of Fn(u) it
necessarily verifies F

′
n(un) = 0, i.e., an Euler–Lagrange equation. The Euler–Lagrange

equation is given in the following proposition.
Proposition 3.7. If function h is differentiable, verifies conditions of Proposi-

tions 3.1 and 3.4, and verifies for all u and a.e. x an inequality of the form |∂h(x,u)
∂u | ≤

l(x) + b|u|p−1 for some function l(x) ∈ L1(Ω), l(x) > 0 and some b > 0, then the
unique minimizer un of Fn(u) verifies for a.e. x

(3.18) 2p

∫
Ω

|un(x) − un(y)|p−2

|x − y|p (un(x) − un(y))ρn(|x − y|)dy +
∂h(x, un(x))

∂u
= 0.

Proof. Let us focus on the smoothing term and denote

En(un) =
∫

Ω

∫
Ω

|un(x) − un(y)|p
|x − y|p ρn(|x − y|)dxdy,

and let us consider for all v in W 1,p(Ω) the differential quotient

Dv(t) =
En(un + tv) − En(un)

t
.

We have

Dv(t) =
∫

Ω

∫
Ω

|un(x) − un(y) + t(v(x) − v(y))|p − |un(x) − un(y)|p
|x − y|p ρn(|x − y|)dxdy.

Thanks to Taylor’s formula, there exists c(t, x, y) with |c(t, x, y)− (un(x)− un(y))| <
t|v(x) − v(y)| such that

Dv(t) = p

∫
Ω

∫
Ω

(v(x) − v(y))c(t, x, y)|c(t, x, y)|p−2

|x − y|p ρn(|x − y|)dxdy.

Moreover, we have, as t → 0

(v(x) − v(y))c(t, x, y)|c(t, x, y)|p−2

|x − y|p ρn(|x − y|)

→ (v(x) − v(y))(un(x) − un(y))|un(x) − un(y)|p−2

|x − y|p ρn(|x − y|).

On the other hand

|c(t, x, y)|p−1 ≤ 2p(|un(x) − un(y)|p−1 + |v(x) − v(y)|p−1).

Thus

(3.19)

∣∣∣ (v(x) − v(y))c(t, x, y)|c(t, x, y)|p−2

|x − y|p ρn(|x − y|)
∣∣∣

≤ 2p

(
|v(x) − v(y)||un(x) − un(y)|p−1

|x − y|p ρn(|x − y|) +
|v(x) − v(y)|p

|x − y|p ρn(|x − y|)
)

.
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Let us discuss the integrability of the right-hand side terms denoted, respectively, by A
and B. The second term B is bounded by an integrable function because v ∈ W 1,p(Ω)
and thanks to Proposition 2.1. The first term A gives

A =
|v(x) − v(y)|

|x − y| ρ
1
p
n (x − y)

∣∣∣∣un(x) − un(y)
|x − y|

∣∣∣∣
p−1

ρ
p−1

p
n (x − y),

where

|v(x) − v(y)|
|x − y| ρ

1
p
n (x − y)

is in Lp(Ω) since v ∈ W 1,p(Ω) and thanks to Proposition 2.1, and

∣∣∣∣un(x) − un(y)
|x − y|

∣∣∣∣
p−1

ρ
p−1

p
n (x − y)

is in L
p

p−1 (Ω) since un is a minimizing sequence. So A is also bounded by an integrable
function.

Therefore we can apply Lebesgue’s dominated convergence theorem (n is fixed)
and get

〈E′
n(un), v〉 = p

∫
Ω

|un(x) − un(y)|p−2

|x − y|p (v(x) − v(y))(un(x) − un(y))ρn(|x − y|)dy.

The computation of the derivative of
∫
Ω

h(x, u(x))dx is classical. Thus the desired

result (3.18) by remarking that the function (x, y) �→ |un(x)−un(y)|p−2(un(x)−un(y))
|x−y|p is

antisymmetric with respect to (x, y).

4. Extension of previous results to the BV (Ω)-case (p = 1). A similar
result to that of Proposition 2.2 holds if p = 1; see [16]. In this case we need to search
for a solution for problem (2.5) in BV (Ω), the space of functions of bounded variations
[1, 10]. In fact most results are still valid in this case with some adaptations. We do
not reproduce here details of their proofs, which rely upon the work by Ponce [16],
who has, as said before, generalized to BV (Ω) the results of [5] stated in the W 1,p(Ω)
case.

Let us recall the main steps and show how the results can be extended.
• The first point is that the proof of Proposition 3.1 does not apply in the case

p = 1 since we cannot extract from a sequence bounded in L1(Ω) a weakly
converging subsequence. Thus we have to show that a minimizing sequence
ul

n of Fn(u) is bounded in the Sobolev space W q,1(Ω), with 0.5 < q < 1. To do
that, we use the same proof as in Proposition 3.3. Then, thanks to the two-
dimensional Rellich–Kondrachov theorem W q,1(Ω) ⊂ Lr(Ω) with compact
injection for 1 ≤ r < 2

2−q (note that if 0.5 < q < 1, then 4/3 < 2
2−q < 2).

Therefore, up to a subsequence, ul
n(x) tends, a.e., to some function un(x).

Then by using Fatou’s lemma we get Fn(un) ≤ lim inf l→∞ Fn(ul
n); i.e., un is

a minimizer of Fn.
• The result when n tends to infinity is again obtained thanks to the Γ-convergence

result by Ponce and the compactness of the sequence un in Lr(Ω). As a result,
un converges strongly in L1(Ω) to u ∈ BV (Ω).
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• Finally, the Euler–Lagrange equation (3.18) is no longer true in the case p = 1
since the function t → |t| is not differentiable. However, it is subdifferentiable.
Therefore (3.18) changes into an inclusion

(4.1) 0 ∈ ∂En(un) +
∂h

∂u
(x, un),

where En(u) =
∫
Ω

∫
Ω

|u(x)−u(y)|
|x−y| ρn(|x − y|)dxdy. In (4.1), we can choose any

element of the subdifferential, and, for example,

(4.2) 2
∫

Ω

1
|x − y| sign(un(x) − un(y))ρn(|x − y|)dy,

where

(4.3) sign(s) =

⎧⎪⎨
⎪⎩
−1 if s < 0,

0 if s = 0,

1 if s > 0.

5. Implementation details and results.

5.1. A unified discrete implementation. In this section, we give the imple-
mentation details to solve the general variational problem (2.7) in a unified way (for
n fixed) for both Sobolev and BV spaces.

The goal is to solve the differential inclusion

0 ∈ ∂Fn(un),

with a standard subgradient descent approach [17, 4]:

(5.1)
{

uk+1(x) = uk(x) − αkgk(x),
u0(x) = u0(x) ∀x ∈ Ω,

where αk is the kth step size and gk is any subgradient in ∂Fn(un).
Taking into account the expression of the gradient or subgradient, we have here

(5.2) uk+1(x) = uk(x) + αk
(
− ∂h

∂u
(x, uk(x)) − 2pIuk(x)

)
,

with

(5.3) Iuk(x) =
∫

Ω

|uk(x) − uk(y)|p−1

|x − y|p sign(uk(x) − uk(y))ρn(|x − y|)dy ∀p.

Note that (5.3) is a unified expression which corresponds to the gradient when p > 1
(see the Euler–Lagrange equation in section 5.1), or a given element of the subdiffer-
ential in the BV -case (see section 4). We remind the reader that the definition of ρn

also depends on p (see (3.15)).
Now the problem is to discretize in space the integral Iuk (x), which has a singular

kernel, not defined when x = y. Let us introduce the function Juk such that

(5.4) Iuk(x) =
∫

Ω

Juk(x, y)
|x − y| dy,
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(a) (b) (c)

Fig. 1. (a) Mesh definition. Pixels are represented by the dashed squares. The circles correspond
to the centers of the pixels defining the nodes of the mesh. Four nodes define two triangles. (b) In the
special case when x is a node (x = y1 in the figure), one needs an interpolation to define Juk (x, y). In
that situation, another point z close to the node is introduced and a linear interpolation is estimated.
(c) Different cases depending on the situation of x with respect to Ti. Triangle T1 has no edge aligned
with x; for triangle T2, x is one node; for T3, x is aligned with one edge.

with

Juk(x, y) =
|uk(x) − uk(y)|p−1

|x − y|p−1
sign(uk(x) − uk(y))ρn(|x − y|).

Because of the singularity, simple schemes using finite differences and integral approx-
imations, for example, will fail. Here we propose to do the following:

• Discretize the space using a triangulation. We denote by T the family of
triangles covering Ω (see Figure 1).

• Interpolate linearly the function Juk
(x, y) on each triangle (x fixed).

• Find explicit expressions for the integral Juk
(x, y)/|x − y| on each triangle.

Note that this kind of estimation also appears, for instance, in electromag-
netism problems such as MEG-EEG (see, e.g., [9]), where one needs to esti-
mate such singular integrals on meshed domains (three-dimensional domains
here).

Let us now detail each step. First, integral (5.4) becomes

(5.5) Iuk(x) =
∑

Ti∈T

∫
Ti

Juk(x, y)
|x − y| dy.

Then let us approximate Juk(x, y) on each triangle by a linear interpolation. We
assume that x is given and fixed. Given one triangle T ∈ T , let us denote the three
nodes of T by {yi = (y1

i , y2
i )

T }i=1..3, where the subscript indicates the component.
Then we define {Ai}i=1..3 to be the three-dimensional points

Ai = (y1
i , y2

i , Juk(x, yi))T .

Note that as soon as x �= yi, Juk(x, yi) is well-defined. Otherwise, if x is in fact a node
of T , for example, y1 (see Figure 1(b)), then we use a linear interpolation algorithm:
We introduce one point z ∈ T close to y1, estimate the value of Juk(z, y1) at this
point, and deduce the value of Juk(x, y1) by interpolation.

So, given {Ai}i=1..3, we can in fact choose any node yj and write

(5.6) Juk(x, y) = Juk(x, yj) −
1
n3

(
n1

n2

)
(y − yj),
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where n is the normal to the triangle A1A2A3 (see Figure 1(b)). With (5.6) we obtain

∫
T

Juk(x, y)
|x − y| dy = Juk(x, yj)

∫
T

1
|x − y|dy − 1

n3

(
n1

n2

) ∫
T

(y − yj)
|x − y| dy(5.7)

= Juk(x, yj)
∫

T

1
|x − y|dy

− 1
n3

(
n1

n2

) [∫
T

(y − x)
|x − y| dy + (x − yj)

∫
T

1
|x − y|dy

]
.

So, in order to estimate the integral over triangle T , one need only estimate

(5.8)
∫

T

1
|x − y|dy and

∫
T

(y − x)
|x − y| dy.

If we introduce the distance function

Dist(x, y) = |x − y| =
√

(x1 − y1)2 + (x2 − y2)2,

so that

∇yDist(x, y) =
y − x

|x − y| ,

�yDist(x, y) =
1

Dist(x, y)
,

then we have the following relations:
∫

T

1
|x − y|dy =

∫
T

�yDist(x, y)dy =
∑

i=1,2

∫
∂T

∂Dist
∂yi

(x, y)N ids ,(5.9)

∫
T

(y − x)
|x − y| dy =

∫
T

∇yDist(x, y)dy =
∫

∂T

Dist(x, y)Nds ,(5.10)

where N is the normal to the edges of the triangle T . So we need to estimate the
two kinds of integrals defined on the boundaries of the triangles. This can be done
explicitly, as follows.

Lemma 5.1. Let us consider a segment S = (α, β) of extremities α = (α1, α2),
β = (β1, β2), N the normal to this segment, and x a fixed given point. Let us define

a = |αβ|, δ = a2b2 − c2, l1 = c/
√

δ,

b = |xα|, d = 	xα · N, l2 = (a2 + c)/
√

δ,

c = 	xα · 	αβ.

Then we have

∑
i=1,2

∫
S

∂Dist
∂yi

(x, y)N ids =
{

0 if x is aligned with S,

d(asinh(l2) − asinh(l1)) otherwise,
(5.11)
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and ∫
S

Dist(x, y)Nds(5.12)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a2/2 if x = α or x = β,

a2/2 + c if c = ab (x aligned with 	αβ and c > 0,

−a2/2 − c if c = −ab (x aligned with 	αβ) and c < 0,

δ/a2
(
l2

√
1 + l22 + asinh(l2) − l1

√
1 + l21 − asinh(l1)

)
otherwise.

Proof. Let us show how to obtain (5.11) when x, α, and β are not aligned. To do
this, let us parametrize the segment S = [α, β] so that

S =
{

y(t) = t

(
β1

β2

)
+ (1 − t)

(
α1

α2

)
; t ∈ (0, 1)

}
.

The unitary normal vector of the segment S is given by

N =
( −(β2 − α2)

β1 − α1

)
1√

(β1 − α1)2 + (β2 − α2)2
.

So we have

I =
∑

i=1,2

∫
S

∂Dist
∂yi

(x, y)N ids =
∑

i=1,2

∫ 1

0

yi(t) − xi

|x − y(t)|N
i|αβ|ds .

After some algebraic computations, we get

I = αβ · xα⊥
∫ 1

0

dt√
t2|αβ|2 + |xα|2 + 2 t xα · αβ

,

with xα⊥ =
(−(α2−x2)

α1−x1

)
. Using the notation defined in Lemma 5.1, and since δ > 0

(x, α, and β are not aligned), we have

I = αβ · xα⊥ a√
δ

∫ 1

0

dt√
a4

δ

(
t + c

a2

)2 + 1
.

We can explicitly compute the integral with the change of variable

z =
a2

√
δ

(
t +

c

a2

)
,

so that we obtain

I =
αβ · xα⊥

|αβ| (asinh(l2) − asinh(l1)),

which concludes the proof. Other cases follow from similar arguments.
With Lemma 5.1, one can estimate (5.9) and (5.10) and thus (5.7). By summing

over all the squares and for a given x, we obtain the estimation of the integral Iuk(x)
(5.5), and then we can iterate (5.2).
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5.2. Experiments on image restoration. Let u : Ω ⊂ R2 → R be an original
image describing a real scene, and let u0 be the observed image of the same scene
(i.e., a degradation of u). We assume that

(5.13) u0 = R u + η,

where η stands for a white additive Gaussian noise and where R is a linear operator
representing the blur (usually a convolution). Given u0, the problem is then to recon-
struct u knowing (5.13). Supposing that η is a white Gaussian noise, and according
to the maximum likelihood principle, we can find an approximation of u by solving
the least-squares problem

inf
u

∫
Ω

|u0 − Ru|2 dx,

where Ω is the domain of the image. However, this is well known to yield to an
ill-posed problem [15, 3].

A classical way to overcome ill-posed minimization problems is to add a regular-
ization term to the energy so that the problem is to minimize

(5.14) F (u) =
∫

Ω

|u0 − Ru|2 dx + λ

∫
Ω

|∇u|p dx.

The first term in F (u) measures the fidelity to the data. The second is a smoothing
term. In other words, we search for a u that best fits the data so that its gradient is
low (so that noise will be removed). The parameter λ is a positive weighting constant.
For p = 1 we have in fact a BV -norm which leads to discontinuous solutions (see [2]
for a review).

Remark that (5.14) is of the form (2.5), with h(x, u(x)) = |u0(x) − Ru(x)|2.
Without loss of generality, we will assume that the operator R is the identity operator.
So, in this section, we show some numerical results considering the minimization of
the nonlocal functional

(5.15) Fn(u) =
∫

Ω

|u0 − u|2 dx + λ

∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|p ρn(|x − y|)dxdy

for a given n.
The first result, shown in Figure 2, illustrates an image restoration result on a

real noisy image for p = 1. The result is as expected, which is very close to classical
TV results. We recall that this approximation of the BV regularization problem is
indeed independent of the fidelity attach term.

The second result, shown in Figure 3, is another image restoration result on a
simple synthetic step image, which illustrates the effect of the parameter p on the
edges. For example, we recover the classical observation for p = 1 or p = 2. More
importantly, we show that our approximation can be successfully used to handle
variational problems posed on W 1,p(Ω) with high values of p which, to our knowledge,
generally leads to numerically unstable schemes.

6. Conclusion. Our main contribution was to show that the characterization
result due to Bourgain, Brezis, and Mironescu [5] for the Sobolev seminorm can
indeed be successfully applied to solve variational problems. It was not a priori
straightforward that this characterization of W 1,p could be useful in the theoretical
and numerical analysis of problems of calculus of variations.
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original noisy restored (p = 1)

Fig. 2. Example of image restoration.

Evolution for p = 1

Evolution for p = 2

Evolution for p = 20

Evolution for p = 40

Fig. 3. Example of evolutions with various values of p applied to a synthetic noisy image.
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A step further, we proved that our results can be extended also in the BV -case,
thanks to Ponce’s results [16]. Note that the BV -case is not a simple extension from
the W 1,p-case, and it requires some adaptations.

Interestingly, we show that this approach allows us to treat problems posed in
W 1,p with high values of p, which is a challenging problem as far as we know.

Finally, our contribution does not target a particular field of application, and
image restoration was proposed here as an illustration: We wanted also to show that
this alternative formulation, which leads to nonlocal terms with singular kernels, can
be implemented.
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