Journal of Mathematical Imaging and Vision, 77, 1-24 (77)
© ?? Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Image Sequence Analysis via Partial Differential Equations

PIERRE KORNPROBST, RACHID DERICHE

Pierre.Kornprobst@sophia.inria.fr - Rachid.Deriche@sophia.inria.fr

INRIA, 2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France

GILLES AUBERT

gaubert@math.unice.fr

Laboratoire J.A Dieudonne, UMR n° 6621 du CNRS, 06108 Nice-Cedex 2, France

Received ?%; Revised 7%

Editors: 77

Abstract. This article deals with the problem of restoring and motion segmenting noisy image sequences
with a static background. Usually, motion segmentation and image restoration are considered separately
in image sequence restoration. Moreover, motion segmentation is often noise sensitive. In this article,
the motion segmentation and the image restoration parts are performed in a coupled way, allowing the
motion segmentation part to positively influence the restoration part and vice-versa. This is the key of our
approach that allows to deal simultaneously with the problem of restoration and motion segmentation.
To this end, we propose a theoretically justified optimization problem that permits to take into account
both requirements. The model is theoretically justified. Existence and unicity are proved in the space of
bounded variations. A suitable numerical scheme based on half quadratic minimization is then proposed
and its convergence and stability demonstrated. Experimental results obtained on noisy synthetic data
and real images will illustrate the capabilities of this original and promising approach.

Keywords: Sequence image restoration, motion segmentation, discontinuity preserving regularization,
variational approaches, space of bounded variation

1. Introduction ear Model-Based Analysis and Description of Im-

ages for Multimedia Application), IMPROOFS?
Automatic image sequence restoration is clearly a (IMage PROcessing Operations for Forensic Sup-
very important problem. Applications areas in- port), ... Image sequence restoration is tightly
clude image surveillance, forensic image process- coupled to motion segmentation. It requires to
ing, image compression, digital video broadcast- extract moving objects in order to separately re-
ing, digital film restoration, medical image pro- store the background and each moving region
cessing, remote sensing ... See, for example, the along its particular motion trajectory. Most of
recent work done within the European projects, the work done mainly involves motion compen-
fully or in part, involved with this important sated temporal filtering techniques with appro-

problem : AURORA! (Automated Restoration of priate 2D or 3D Wiener filter for noise suppres-
Film and Video Archives), NOBLESSE? (Nonlin- sion, 2D/3D median filtering or more appropri-



ate morphological operators for removing impul-
sive noise [16, 38, 39, 31, 27, 52, 19, 17]. However,
and due to the fact that image sequence restora-
tion is an emerging domain compared to 2D im-
age restoration, the literature is not so abundant
than the one related to the problem of restoring
just a single image. For example, numerous PDE
based algorithms have been recently proposed for
noise removal, 2D image enhancement and 2D im-
age restoration in real images with a particular
emphasis on preserving the grey level discontinu-
ities during the enhancement /restoration process.
These methods, which have been proved to be very
efficient, are based on evolving nonlinear partial
differential equations (PDE’s) (See the work of
Alvarez et al [4], Aubert et al. [8], Chambolle
& Lions [21], Chan [14, 67] Cohen [23], Cottet &
Germain [24], Kornprobst & Deriche [44, 43, 42|,
Malladi & Sethian [46], Mumford & Shah [65, 53],
Morel [3, 51], Nordstrém [54], Osher & Rudin [60],
Perona & Malik [58], Proesman et al. [59], Sapiro
et al. [20, 61, 62, 12, 63], Weickert [71, 72], You et
al. [74], ...). This methodology provides several
advantages. Firstly, we can justify on a theoretical
point of view the model, using the theory of vis-
cosity solutions or the calculus of variations. Sec-
ondly, it provides some suitable numerical schemes
for which convergence may be proved. Finally, it
permits to obtain results of high quality.

It is the aim of this article to consider the im-
portant problem of image sequence restoration by
applying this PDE based methodology, which has
been proved to be very successful in anisotrop-
ically restoring images. To our knowledge, few
litterature exists on the analysis of sequences of
images using Partial Differential Equations. How-
ever, we mention that this methodology has been
previously used in the context of multiscale anal-
ysis of movies (see the works of Guichard [35] and
Moisan [50]). In all this work, we will assume that
the background is static. We recall that the back-
ground will be defined as the most often observed
part over the sequence. Our goal will be to obtain
the motion segmentation and the restored back-
ground.

Therefore, considering the case of an image se-
quence with some moving objects, we have to
consider both motion segmentation and image
restoration problems. Usually, these two problems

are treated separately in image sequence analysis.
However, it is clear that these two problems should
be treated simultaneously in order to achieve bet-
ter results. This is the key of our approach that
allows to deal simultaneously with the problem of
restoration and motion segmentation.

The organization of the article is as follows.

In Sect. 2, we make some precise recalls about
one of our previous approach for denoising a single
image [26, 8, 43]. The formalism and the methods
introduced will be very useful in the sequel.

Section 3 is then devoted to the presentation of
our new approach to deal with the case of noisy
images sequences. We formulate the problem into
an optimization problem.

The model is theoretically justified in Sect. 4
¢ we prove the existence and the unicity of the
solution to our problem in the space of bounded
variation functions.

A suitable algorithm is then proposed in Sect.
5 to approximate numerically the solution. We
prove its convergence and its stability.

We propose in Sect. 6 some experimental results
obtained on noisy synthetic and real data that will
illustrate the capabilities of this new approach.

We conclude in Sect. 7 by recalling the speci-
ficities of that work and giving the future devel-
opments.

2. Restoring a single image

In Sect. 2.1, we recall a classical method in image
restoration formulated as a minimization prob-
lem [26, 11, 8]. Section 2.2 presents a suitable
algorithm called the half quadratic minimization
which will also be used in the sequel.

2.1. A Classical Approach for Image Restoration

Let N(z1,x2) be a given noisy image defined for
x = (21,23) € Q C R? which corresponds to the
domain of the image. V. is the gradient operator.
We search for the restored image I(x1,z2) as the
solution of the following minimization problem :

I

inf/Q(I—N) dai+ar\/9¢(|VI|)dazl (1)

term 1 term 2



where | -| is the usual euclidian norm, o is a con-
stant and ¢ is a function still to be defined. No-
tice that if ¢(t) = 2, we recognize the Tikhonov-
Arsenin regularization term [68]. How can we in-
terpret this minimization with this choice? In fact,
we search for the function I which will be simul-
taneously close to the initial image N and smooth
(since we want the gradient as small as possible).
However, this method is well known to smooth
the image isotropically without preserving discon-
tinuities in intensity. The reason is that with
the quadratic function, gradients are too much
penalized. One solution to prevent the destruc-
tion of discontinuities but allows for isotropically
smoothing uniform areas, is to change the above
quadratic term. This point have been widely dis-
cussed [13, 53, 64, 66, 11, 8]. We refer to [26]
for a review. The key idea is that for low gra-
dients, isotropic smoothing is performed, and for
high gradient, smoothing is only applied in the
direction of the isophote and not across it. This
condition can be mathematically formalized if we
look at the Euler-Lagrange Equation (2), associ-
ated to energy (1) :

2(I = N) — a"div <¢’(|VI|)

Notice that Neumann conditions are imposed on
the boundaries. Let us concentrate on the diver-
gence term associated to the term 2 of (1). If

we note 1 = %, and ¢ the normal vector to 7
(J¢] = 1), we can show that [26] :

(¢ (V1)) =
div (WVI>
7¢\(|I||) Iee + ¢"(] VI|) Iy (3)

[
c¢

where I,,,, (respectively I¢¢) denotes the second or-
der derivate in the direction 7 (respectively £). It
is interesting to notice that most diffusions oper-
ators used for image restoration may also be de-
composed as the weighted sum of the second di-
rectional derivatives I¢¢ and I,,. We refer to [41]
for more details. As for operator (3), if we want
a good restoration as described before, we would
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like to have the following properties :

lim ¢,= lim cc=aqg >0 4
|VIl—0 " |VIj—0 & 0 )

lim ¢, =0and lim ¢ =as>0 (5)
|VI|—oo [VI|—oo
But it is clear that the two conditions in (5) are

incompatible. So, we will only impose for high
gradients [26, 11, §] :

lim|v”4oo Cpn = lim‘v[‘_,oo Ce = 0

(6)
lim|v”_,oo (2—2) =0 ’

Many functions ¢ have been proposed in the lit-
erature that comply with the conditions (4) and
(6) (see [26]). From now on, ¢ will be a convex
function with linear growth at infinity which veri-
fies conditions (4) and (6). For instance, a possible
choice could be the hypersurface minimal function

oty =vV1+t2 -1 (7

In that case, existence and unicity of problem
(1) has recently been shown in the Sobolev space
WEL(Q)[11] (See also [69]).

2.2.  The Half Quadratic Minimization

Solving directly the minimization problem (1) by
solving directly its Euler Lagrange equation (2),
is something hard because this equation is highly
non linear.

To overcome the difficulty, the key idea is to
introduce a new functional which, although de-
fined over an extended domain, has the same
minimum in I and can be manipulated with lin-
ear algebraic methods. The method is based on
the half quadratic minimization theorem, inspired
from Geman and Reynolds [30]. The general idea
is that under some hypotheses on ¢ (mainly ¢(v/1)
concave), we can write it as an infimum :

o(t) = inf(dt* + (d)) (8)

where d will be called the dual variable associated
to z, and where 9¥(-) is a convex and decreasing
function. We refer to the Appendix A for more
details. We can verify that the function proposed
in (7) can be written as in (8). Consequently, the
problem (1) is now to find I and its dual variable



d; minimizing the functional F(I,d;) defined by :
F(I.dy) = 9)
/ (I - N)2dz + o* / (VI + b(dy)da
Q Q

It is easy to check that for a fixed I, the functional
F is convex in dj and for a fixed dj, it is convex in
I. These properties are used to perform the algo-
rithm which consists in minimizing alternatively
in I and dj :

" = argmin

I

F(I,dp) (10)
dgt! = argmin  F(I"", dy) (11)
dy

To perform each minimization, we simply solve the
Euler-Lagrange equations, which can be written as

" N — ot div(dpvItthy =0 (12)

d?+l _ ¢’(|VIH+1|) (13)
2|Vt

with discretized Neumann conditions at the
boundaries. Notice that (13) gives explicitly dp+*
while for (12), for a fixed d%, I"*! is the solution
of a linear equation. After discretizing in space,
we have that (I;jjl)(i,j)eﬂ is solution of a linear
system which is solved iteratively by the Gauss-
Seidel method for example. We refer to the Ap-
pendix B for more details about the discretization
of the divergence operator. We also mention that
the convergence of the algorithm has been proved
[69].

3. Dealing with Noisy Images Sequences

Let N(x1,x2,t) denotes the noisy images sequence
for which the background is assumed to be static.
A simple moving object detector can be ob-
tained using a thresholding technique over the
inter-frame difference between a so-called refer-
ence image and the image being observed. Deci-
sions can be taken independently point by point
[73]. More complex approaches can also be used
[55, 57, 56, 1, 36, 45, 16, 38, 39, 31, 27, 52]. How-
ever, in our application, we are not just dealing
with a motion segmentation problem neither just
a restoration problem. In our case, the so-called
reference image is built at the same time while

observing the image sequence. Also, the motion
segmentation and the restoration are done in a
coupled way, allowing the motion segmentation
part to positively influence the restoration part
and vice-versa. This is the key of our approach
that allows to deal simultaneously with the prob-
lem of restoration and motion segmentation.

We first consider that the data is continuous in
time. This permits us to present the optimization
problem we want to study (Sect. 3.1). In Sect.
3.2, we rewrite the problem when the sequence is
given only by a finite set of images. This leads to
the Problem 2.

3.1.  An Optimization Problem

Let N(x1,a,t) denotes the noisy images sequence
for which the background is assumed to be static.
Let us describe the unknown functions and what
we would like them ideally to be :

(i) B(z1,x2), the restored background,

(if) C(x1, 2, t), the sequence which will indicate
the moving regions. Typically, we would like that
C(z1,22,t) = 0 if the pixel (x1,z2) belongs to a
moving object at time ¢, and 1 otherwise.

Our aim is to find a functional depending on
B(z1,22) and C(z1,22,t) so that the minimizers
verify previous statements. We propose to solve
the following problem :

Problem 1. Let N(z1,x2,t) the given noisy im-
age sequence. We search for the restored back-
ground B(z1,z2) and the motion segmented se-
quence C(x1,x2,t) as the solution of the following
minimization problem :

inf (// C2(B — N)*dzdt
B,C tJO

term 1
+ac//(0—1)2dxdt (14)
Jt Q
term 2
+a;/¢1(|v3|)dx+ag// 62(|VCl)dadt )
N Q tJQ B
term 3

where ¢; and ¢- are convex functions that comply
conditions (4) and (6) , and a., af,, af are positive
constants. We will specify later the spaces over



which the minimization runs.

Getting the minimum of the functional means that
we want each term to be small, having in mind the
phenomena of the compensations.

The term 3 is a regularization term. Notice
that the functions ¢1,¢2 have been chosen as in
Sect. 2 so that discontinuities may be kept.

If we consider the term 2, this means that
we want the function C(z1,x2,t) to be close to
one. In our interpretation, this means that we
give a preference to the background. This is
physically correct since the background is vis-
ible most of the time. However, if the data
N(xy1,xq,t) is too far from the supposed back-
ground B(z1,x2) at time ¢, then the difference
(B(w1,22) — N(21,2,t))% will be high, and to
compensate this value, the minimization process
will force C(x1,x2,t) to be zero. Therefore, the
function C(z1, w2, t) can be interpretated as a mo-
tion detection function. Moreover, when search-
ing for B(z1,z2), we will not take into account
N(zy,x9,t) if C(21,29,t) is small (term 1). This
exactly means that B(xy,z2) will be the restored
image of the static background.

Remark : What about regularizing in time
the functions? As we can notice, the term 3
is a spatial smoothing term and we may suggest
to add some temporal smoothing for the sequence
C. However, there are two difficulties to keep in
mind:

e the sequence has to be well sampled in time.
This temporal regularization term will have no
real interpretation in cases of images taken at
very large times (as it can be the case in video-
surveillance).

e In the same spirit as before, the discretiza-
tion of the regularization operator (in time) will
be hard because it will depend strongly on the
kind of movement in the sequence. In fact this
kind of regularization is, in some way, equivalent
to find the optical flow, which we wanted to avoid.
We can think that this term could be usefull and
well discretized in a multiscale approach.”
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3.2.  The Temporal Discretized Problem

In fact, we have only a finite set of images. Con-
sequently, we are going to rewrite the Problem 1,
taking into account that the sequence N(z1,x2,t)
is represented during a finite time by T images
noted Ny(z1,xs),..., Np(z1,22). The Problem 1
becomes :

Problem 2. Let Ni,...,Nt be the noisy se-
quence. We search for B and Cy,...,Ct as the
solution of the following minimization problem :

T
. — )
Bﬂigf- ,Cr (};/QC}I(B Ny)dx

~ v

te;;n 1
T
+ac2/(0h C12de (15)
ot ® )
tel“;n 2

T
+a£/ﬁ¢1(lv3|)dx+a£’;/ﬂ¢z(|vch|)dx)

term 3

Before going further, one may be interested in
the link between this method and the variational
method developed for image restoration in section
2. To this end, let us consider a sequence of the
same noisy image. More generally, we can consider
a sequence of the same static image corrupted with
different noises. If we admit the interpretation of
the functions Cj,, we will have Cy, = 1. After few
computations, (15) may be re-written :

inf (/Q(B _ %éNh)%x + %{’/(2¢1(|VB|)dx)

Consequently, if we observe the energy (1) pro-
posed for the image restoration problem, we can
consider B as the restored version of the mean in
time of the sequence. Notice that if the sequence
is simply T times the same image, both methods
correspond exactly. Therefore, this model devoted
to sequences of images can be considered as a nat-
ural extension of the previous one for single image
restoration.

Now that we have justified the proposed model,
let us prove that it is mathematically well posed.
It is the purpose of the next section.



4. A Rigorously Justified Approach in
The Space of Bounded Variations

Section 4.1 presents the mathematical background
of our problem : the space of bounded varia-
tions which is suitable to most problems in vision
[60, 22]. Roughly speaking, the idea is to gener-
alize the classical Sobolev space W1(€) so that
discontinuities along hypersurfaces may be consid-
ered. After having precisely specified the problem
in Sect. 4.2, we first prove the existence of a solu-
tion in a constrained space (See Sect. 4.3). Using
this result, we finally prove the existence and the
unicity of a solution over the space in bounded
variations in Sect. 4.4.

4.1.  The Space BV () : a Short Overview

In this section we only recall main notations and
definitions. We refer to [2, 28, 33, 29, 75| for the
complete theory.

Let Q be a bounded open set in RY, with
Lipschitz-regular boundary Q. We denote by £V
or dx the N-Lebesgue dimensional measure in RV
and by H® the a—dimensional Hausdorff measure.
We also set |E| = LV (F), the Lebesgue measure
of a measurable set £ C RY. B(Q) denotes the
family of the Borel subsets of 2. We will respec-

tively denote the strong, the weak and weak* con-
*

vergences in a space V() by , , .
V(©Q) V() V()

Spaces of vector valued functions will be noted by
bold characters.

Working with images requires that the func-
tions that we consider can be discontinuous along
curves. This is impossible with classical Sobolev
spaces such as W11(Q). This is why we need
to use the space of bounded variations (noted
BV(9Q)) defined by :

BV (Q) = {u € Ll(ﬂ);sup/gudiv(ga)dx <00 :

v €CH() ¢l <1}

where C(Q) is the set of differentiable functions
with compact support in Q. We will note :

[Dul(®) =

sup { [ udiv(erir o € Ch@ ol < 1}
Q

If w € BV(2) and Du is the gradient in the sense
of distributions, then Dw is a vector valued Radon
measure and |Du|(§2) is the total variation of Du
on Q. The set of Radon measure is noted M()

The product topology of the strong topology of
L'(Q) for u and of the weak* topology of measures
for Du will be called the weakx topology of BV,
and will be denoted by BV — wx.

Ut —— u

LY(Q)
u = * (16)
BV —wx* Du™ D

un

M(Q)

We recall that every bounded sequence in BV ()
admits a subsequence converging in BV — wx.

We define the approximate upper limit u™(z)
and the approximate lower limit u~ (x) by :

u™(z) = inf {t € [—00,+x] :

lim {u>t}NB,(x) _ 0}
p—0+ pN

u” () = sup{t € [—o0, +00] :

lim {u<tinBy(z) _ 0}
p—0+ pN

where B,(z) is the ball of center z and radius
p. We denote by S, the jump set, that is to say
the complement of the set of Lebesgue points, i.e.
the set of points « where u* (z) is different = (z),
namely :

Su={reQ/u(z) <ut ()}

After choosing a normal n,(z) (z € S,) point-
ing toward the largest value of u, we recall the
following decompositions ([5] for more details):

Du=Vu-Ly+Cy+ " —u)n, ~H|Aé:1
(17)

where Vu is the density of the absolutely continu-
ous part of Du with respect to the Lebesgue mea-
sure, ’H‘Aé:l is the Hausdorff measure of dimension
N — 1 restricted to the set S, and C, is the Can-
tor part. We then recall the definition of a con-
vex function of measures. We refer to the works
of Goffman-Serrin [34] and Demengel-Temam [25]
for more details. Let ¢ be convex and finite on
R with linear growth at infinity. Let ¢> be the



asymptote (or recession) function :

¢ (2) := lim @ € [0; +00),

t—o00

then for u € BV(Q), using classical notations, we
define

/9¢<Du> Z/Q¢(|V“|)dx+¢°°(1)/ﬂ\ 1Cul +

u

¢°°(1)/S (Wt —u)dHN T (18)

u

We finally mention that this function is lower
semi-continuous for the BV — wx-topology.

4.2.  Setting the problem

Let us recall the problem. Notice that the deriva-
tives will be now considered as distributional
derivatives. Consequently, the problem is to min-
imize over BV (Q)T*! the functional E defined by

E(B,Cy,..,Cr) = (19)

T T
Z/ cg(B—Nh)de+aCZ/(0h—1)2dx
h=1"% h=1"%

T
ral /Q o1DB) + o3 /Q 62(DCy)

We recall that the regularization terms are in-
terpretated as convex functions of measures (see
(18)). The precise hypotheses on the functions

(¢j)j=1,2 are :

¢j : R — Rt is an even and strictly convex
function, nondecreasing on R* and there (20)

exist constants ¢ > 0 and b > 0 such that
cx—b< ¢;(x) <cx+bforallze€RT

#(0) =0, ¢3°(1) =1 (21)
As for the data (Ny)p=1..7, we will assume that :
Ny, € BV(Q)NL>®(Q) Vh=1.T (22)

and we will denote my and My the constants de-
fined by :

mN = ess—inf Nh($1,$2>
he€[0..T],(@1,22)€Q (23)
Myx = ess—sup  Nu(z1,72)

he[0..T],(z1,22)EQ

where ess —inf (resp. ess — sup) is the essential
infimum (resp. supremum).
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4.8. FEmxistence of a solution in a constrained
space

Let us consider the problem :

inf E(B,Cy,.,Cr)  (24)
(B,C1,..,Cr) BV (Q)T+1

Let (B™,C},..,C%) € BV(2)™*! be a minimizing
sequence of E. Thanks to the property (20), one
may bound the derivatives of B and C}, and the
second term of E (see (19)) permits us to obtain
a bound for Cj,. However, nothing can be said
about the norm of B because of the product in
the first term of E (functions Cj may be zero).

To overcome this difficulty, let us introduce the
restricted space £(Q) defined by :

Q) ={(B,C1,..,Cr) € BV()T such that:
mny < B< My ae and 0<C, <1 ae Vh}
(25)

Then, we have the following theorem :

Theorem 1. Given a sequence of images Ny

verifying (22)-(23), the minimization problem :

inf _ E(B,Cy,.,Cr) (26)
(B,C1,..,C1)EE(Q)

where ¢; verify (20)-(21), admits a solution in the
set £(Q).

Proof:  The proof of this theorem is based on
classical arguments. As mentionned at the begin-
ing of this section, the idea is to bound unifor-
maly a minimizing sequence, extract a converging
subsequence and pass to the limit. Notice that
working on this restricted space permits to obtain
a uniform bound for B. We refer to [10] for the
complete proof. O

4.4. FEmxistence and unicity of a solution over
BV (Q)

The previous theorem establishes the existence
of a solution on a restricted space. However,
this result is not satisfying because working in a
constrained space is not easy to handle because



the optimality conditions are inequations and not
equations. In fact, even if these constraints are
natural (with regard to the interpretation of the
variables), we would like to avoid them. This is
the aim of Theorem 2 but we first need a prelimi-
nary result :

Lemma 1. Letu € BV(Q), ¢ a function ver-
ifying hypotheses (20)-(21), and o5 the cut-off
function defined by :

a if <«
Yaplz)=< z if a<z<p (27)
Boif w=p

Then we have :

[ 0easw) < [ ovu)

This Lemma is very intuitive, however we have
to deal with distributional derivatives and func-
tions of bounded variation. Consequently, we have
to deal with jump sets and Cantor parts. We re-
fer to the Appendix C where the complete proof
is sketched.

Using this Lemma, we can state the following
result :

Theorem 2.  Under hypotheses (20)-(21)and
(22)-(23), the minimization problem :

inf E(B,Cy,.,Ct)  (28)
(B.C1,...Cr)eBV/(Q)T+

admits a solution in BV (Q)TH1. If moreover :
ag Z 3(MN — mN)2 (29)

where the constants my, My are defined by (23),
then the solution is unique.

Proof:  Existence is proved showing that the
minimization problem (26) over £(Q) is equiva-
lent to the same problem posed over BV (Q)T+!,
that is to say without any constraint (this is a di-

rect consequence of Lemma 1). This remark will
permit us to prove the existence of a solution.

As for unicity, the difficulty comes from the ap-
parent non convexity of the function :

(B,Cy,..,Cr)
l
T T
D CEHB - Ny)? +acy (Ch —1)?
h=1 h=1

with respect to all variables (Notice that it is con-
vex with respect to each variable). However, if a¢
is large enough, we prove that this functional is
convex over & which permits to conclude.

We refer to [10] for the complete proof. O

This theorem is important since it permits
to consider the minimization problem over all
BV (Q)T+! without any constraint. On a numer-
ical point of view, this remark will be also im-
portant since we will not have to handle with La-
grange multipliers. We can also remark that the
condition (29) is in fact natural : it means that
the background must be sufficiently taken into ac-
count.

5. The Minimization Algorithm

In the preceding section, we saw that there was a
unique solution in BV (2)T*! of the minimization
problem (28). The aim of this section is to propose
a suitable algorithm to approximate numerically
this solution.

Before begining, we would like to insist on
the fact that working numerically with BV () is
something hard. Firstly, we cannot write Euler-
Lagrange equations. Anzellotti [7] proposes an ex-
tension of Euler-Lagrange equation but they are
variational inequalities. In an image restoration
background, Vese [69] gives a characterisation of
the solution using a dual formulation. However,
both of them cannot be used, for the time being,
numerically.

Secondly, discretizing directly functions in BV ()
is still an opened question. For theses reasons, we
propose an algorithm with two steps :

- Section 5.1 : we define a functional E, on
a more regular space. We show that the associ-
ated minimization problem admits a unique solu-
tion in W12(Q)T+! (noted (B., Cy.,..,Cr.)), and



that the functional E. T'—converges to E for the
L?-strong topology (We refer to [32, 47] for more
details about the notion of I'-convergence). Con-
sequently, (B.,Ci.,..,Cr.) will converge for the
L2?-strong topology to the unique solution of the
initial problem.

- Section 5.2 : For a fixed €, we are going to
construct a sequence (B™,C7,..,C%) converging
to (Be,Ci,,..,Cr,) for the L?—strong topology.
It will be found as a minimizing sequence of an
extended functional. This part usually referenced
as the half quadratic minimization.

Consequently, we are able to construct a se-
quence (B",CT,..,C}) converging to the unique
minimum of the functional E for the L?—strong
topology. We will end this section by presenting in
section 5.3 the precise discretized algorithm. Its
stability will be proved using the fixed point the-
orem.

5.1. A Quadratic Approzimation

We first extend an idea developed in [21]. For a
function f having hypotheses (20)-(21), we define
the odd function f. by :

1.5 = (30)
%tz+ﬂe)_# ifo<t<e
£() ife<t<1/e

D P 1ft21/€

ef’(l/E) 2 4 f(l/e) _ f,(1€/€>

We observe that for € > 0, fe > f and for all ¢, we
have : lim._ fc(t) = f(t). Using this definition,
let us denote by ¢1 . and ¢2 . the two functions
associated to ¢; and ¢>. We then define the func-
tion E. by :

E.:BV(Q)™ =R (31)
E.(B,Cy,..,Cp) =

( T T
Z/ C2(B — Ny)2dzx + aCZ/ (Ch — 1)2dx
h=1 Q h=1 Q

T
taf, / b1 (IVB)dr + 0ty / 6, (IVCh)da
Q Pt}

if (B,Cy,..,Cr) € Wh2(Q)T+L
| +0o0 otherwise

7”79

Then, using same ideas than for Theorem 2,
we can prove that there exists a solution in
WH2(Q)T+1 of the problem :

inf E(B,Cy,..Ct) (32)
(B,C1,..,Cr)EWL2(Q)T+1

If moreover :
ac > 3(My —my)? (33)

where the constants my, My are defined by (23),
then the solution is unique. We will denote by
(B:,C4,,..,Cr.) the unique minimizer. We have
the following proposition :

Proposition 1. The sequence of functionals
E. I'—converges to the functional E for the
L2T+lfstr0ng topology as € goes to zero. The
sequence of the unique minimum of E., noted
(B:,C1,,..,Cr.), converges in L2T+175tmng to
the unique minimum of E.

Proof: By construction, the sequence E. is a
decreasing sequence converging pointwisely to the
functional E defined by :

E:BV(Q) =R
E(Baclw'aCT) =

E(B,C’17..7CT)
if (B,C,..,Cr) € WH2(Q)T+!
+00 otherwise

Thanks to [47] (proposition 5.7), we can deduce
that E. I'-converges to the lower semi continuous
envelope of E (for the LQTH—strong topology)
noted R(E). We then show that in fact R(E) = E
using some compacity results developed for in-
stance in [25, 15]. O

5.2.  An extension using dual variables

Let (B.,Ci.,..,Cr.) be the unique minumum of
the functional E. over WH?(Q)T+1. For a fixed
€, our aim is to approximate it. To this end,
we need the result recalled in the Appendix A
and already used for the image restoration prob-
lem (see Sect. 2.2) : let us apply Theorem 3 to
the functions ¢; ¢ and ¢,  which fulfil desired hy-
potheses (Typically ¢; .(v/f) are concave). We will
denote by ¥; . and ¥, . the associated functions
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. We then define the functional E¢ defined over
(WE2(Q) x L2(Q)) x WE2(Q)T x L2(Q)T by :

Eg(BvdBvclv~~7OT7dC17~~7dCT) = (34)
T
Z/ [C2(B = No)? + ae(Ch — 1)?] da
h=1"¢

+ 04;/ [ds|VBJ* + ¥, (dp)] da
Q

T
+a§2/ [de, [VCL|? + s (de, )] dz
h=1"%

where we have introduced the variables dg, dc, ,...,
dc, associated to B, C1,..., Ct respectively. To
minimize the functional E¢, the idea is to mini-
mize successively with respect to each variable :
given the initial conditions (B°,dy, Cp,d¢, ), we
iteratively solve the following system :

Bn+1 = argmin Eg(Bv d%7 Cill’ I(ljh) (35)
Bewh(Q)
d%+1 = argmin Eg(Bn+17 dB7 C}rll7 %h> (36)
ds € L*(Q)
C}lll+1 = argmin Eed(Bn+17 d%+17 C}H IC]JI,) (37)
Cn € WH(Q)
d?j-:l = argmin Eed(Bn+17 d%+17 C}r:+17 dcl;) (38)
do, € L*(Q)

Equalities (37)-(38) are written for h = 1..T. No-
tice that the order of the minimization procedure
is not important for all the results presented be-
low. The way to obtain each variable like de-
scribed in (35) to (38) consists in solving the as-
sociated Euler-Lagrange equations. As we will
see in section 5.3, the dual variables dg"’l and
(d'é'l':l)h:l__T are given explicitly, while B**! and
(Cf:“)ll:l“T are solutions of linear systems. Any-
way, before going further, we need to know more
about the convergence of this algorithm : does it
converges and does (B”,C7,..,C7.) approximates
(B:,Ci,,..,C7.)? This is the purpose of the fol-
lowing proposition :

Proposition 2.  Let (Bo7d%7q?7d%h) be the
initial condition in W'2(Q)TT1.  Then the se-
quence defined by the system (35)-(36)-(37)-
(38) is convergent in L?(Q)TT'—strong. More-
over, the sequence (B™,C7,..,C%) converges in

L2(Q)™ ! —strong to the unique minimum of E.
in WH2(Q) T+ that is to say (B.,Ci.,..,Cr.).

Proof: The basis of the proof is to write
the variational optimality conditions associated to
each step and to pass to the limit into them. To
this end we needed some results about non-linear
elliptic equations [48, 49] and we used a trick of
Minty (see for instance [18, 21]). For more details,
we refer to [21, 9, 40] where such kind of ideas have
been developed. O

5.3.  The discretized algorithm

Let us write explicitely the equations that the
system (35)-(36)-(37)-(38) implies. Starting from
an initial estimate (B, dg, Cy, d¢,, ), the equations
that will be solved are the following :

T
D R3B! — Ny) — adiv(dg VB*T) = 0(39)
h=1
1. ([VB™ )

d11+1 — 40
B 2|V B+ (40)
Cf:"'l [ac + (B — Nh)2] — Qe
— afdiv(de, VCORth) =0 (41)
dn+1 _ ¢’2,e(|vcl]11+1|> (42)
I Ve

As we said in the previous section, (40) and (42)
give explicitely the values of dj™ and dg;™" while
B! and C’EH are solutions of a linear system.
Once discretized using finite differences, the linear
system can be solved by a Gauss-Seidel method for
instance.

We next prove that the discretized algorithm
described by (39) to (42) is unconditionally stable.

Proposition 3.  Let Q9 correspond to the dis-
S =d )
cretization of 2. Let £ () be the space of discrete



functions (B, C4,..,Cr);,; such that :

mn < B;; < My (43)
T

0<me<Y Ch<T (45)
h=1

mN = inf (4,5 ) th
h=1.
where My = sup (; jy Nnij (46)
h=1..T

Me = Ot<-+(MN*TmN)2+4

Then, for a given (B",CT,...,C%L) in Ed(Q),

there exists a unique
(BrHL Cptt L ety i Ed(ﬂ) such that (39)-
(42) are satisfied.

Remark that the bounds (43) and (44) can be
justified if we consider the continuous case (see the
proof of the Theorem 2). As for condition (45), it
is also very natural if we admit the interpretations
of the variables Cy, : if this condition is false, this
would mean that the background is never seen at
some points which we refuse.

Proof: Let us sketch the proof. The first step is
to express the discretized equations (39) and (41).
Using equations (40) and (42) and the Appendix
B for the divergence terms (see the definition of
coefficients (piyx,j41)(k,)), We obtain :

n+1 Z Br ZBZ:FI}JH +7° (47)
(k.)eD
W Ch 3
mt= )0 e W T (48)
(k,l)eD

77 11

where :
BPitk,j+1(B")

Cr*+ap > pirkg+1(B")

B
By =

M=

h=1 (k€D
B i NwC2,
Y= T
h=1
Z i i TaB Z Pi+k,j+1(B™)
h=1 (k,D)ED
o _ aePith,j+1(CF)
bl = . n
ac+ (B — Nu)i,; +ag Z Pitki+1(CF)
(k,)ED
SO = ac
kel = . n
ac +(B" = Nh)?,j +ag Z Pitr,j+1(Ch)

(k,l)eD

We then show that we have a contractive appli-
cation and conclude by applying the fixed point
theorem. We refer to [10] for the complete proof
which is mainly technical. O

During this proof we needed to write explicitely
the discretized equations to be solved. We give
below a sum-up of the precise algorithm. Notice
that it is not necessary to compute explicitely the
dual variables because they are directly replaced
into the divergence operator.

1. /* Initializations (may be changed) */

2. B'=0, cl=1  (Vh)

3. /* General loop */

4. for(It=0;It<ItNumber;It++) {

5. /* ***% Minimizing in B *** */

6. - Compute coefficients (pitr,j+1)k,0eD
corresponding to the divergence discretization for
B (see Appendix B)

7. - Solve the linear system (47) by an it-
erative method (Gauss-Seidel) to find B"*!

8. /* ¥*¥* Minimizing in C), *** */
9. for(h =1;h < T;h++) {
10. - Compute coefficients (pitr j+1)(x,1en

corresponding to the divergence discretization for
C}' (see Appendix B)

11. - Solve the linear system (48) by an it-
erative method (Gauss-Seidel) to find Cy"**

12. } /* Loop on h */
13. } /* Loop on It */
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To conclude this section, we will notice that if
af = 0, the functions (CﬂH)h:l..T are in fact ob-
tained explicitly by :

Qe
Qe + (Bn+1 o Nh)2

cptt = (49)

As we can imagine, this case permits important
reduction of the computational cost since T linear
systems are replaced by T explicit expressions. We
will discuss in Sect. 6 if it is worth regularizing or
not the functions Cy,.

6. The Numerical Study

This section aims at showing quantitative and
qualitative results about this method. Synthetic
noisy sequences will be used to estimate rigorously
the capabilities of our approach. In all experi-
ments, we will fix the weights of differents terms
to : a. = 10000, = 10 and we will discuss
about the opportunity to choose a non zero coef-
ficient af. The purpose of Sect. 6.1 is the quality
of the restoration. The Sect. 6.2 is devoted to the
motion detection and its sensibility with respect
to noise. We will conclude in Sect. 6.3 by real
sequences.

6.1. About the Restoration

To estimate the quality of the restoration, we used
the noisy synthetic sequence presented in Fig. 4
(a)(b). Figure 4 (c) is a representation of the
noisy background without the moving objects. We
mentioned the value of the Signal to Noise Ratio
(SNR) usually used in image restoration to quan-
tify the results quality. We refer to [43] for more
details. We recall that the higher the SNR is, the
best the quality is. Classically used to extract the
foreground from the background, the median (see
Fig. 4 (d)) appears to be inefficient. The average
in time of the sequence (see Fig 4 (e)), although
it permits a noise reduction, keeps the trace of the
moving objects. The Fig. 4 (f) is the result that
we obtained.

To conclude that section, let us mention that
we also tried the case af = 0, that is to say we do
not regularized the functions C}. The resulting
SNR was 14, to be compared with 14.4 (af # 0).
This kind of results has been observed in all ex-

periments : regularizing the functions C}, does not
seem to influence the quality of the restored back-
ground. Naturally if we are just interested to the
movement detection, this regularization may be
important. However, this point has to be better
investigated and more experimental results have
to be considered before to conclude.

6.2. The Sensitivity of Motion Detection With
Respect to Noise

In this section, we aim at showing the robustness
of our method with respect to noise. To this end,
we choose a synthetic sequence (see Fig. 5) where
a grey circle is translating from left to right in
front of a textured background.

To estimate the sensitivity of the algorithm, we
corrupted the sequence by gaussian noise of dif-
ferent variance (from 5 to 50). We give in Fig. 1
the value of the SNR of the corrupted sequences
for each variance.

Figure 7 presents five typical results obtained
for different values of o (0=5,15,25,35,45). The
second one gives qualitative informations concern-
ing the quality of the restoration and the motion
detection. The criterion used to decide whether
a pixel belongs to the background or not is : if
Ch (i, j)>threshold, then the pixel (4, j) of the im-
age number h belongs to the background. Other-
wise, it belongs to a moving object. The threshold
has been fixed to 0.25 in all experiments.

We can observe that when the SNR of the data
is more than 8 (corresponding to o = 25), results
are particularly precise : The SNR of the back-
ground is more than 20 (see Fig. 2) and the error
detections are less than 5 percent (see Fig. 3).
When the SNR of the data is less than 8, the mo-
tion detection errors grow rapidly but the quality
of the restored background still remains correct.
See for instance the last row of Fig. 7 obtained for
o = 45 : the triangles on both sides are well recov-
ered (observe the strong noise in the sequence).

Finally, notice that same parameters (af, ac,
af) have been used for all experiments. Gener-
ally speaking, we remarked that the algorithm
performs well on a wide variety of sequences
with the same set of parameters (af,ac,al) =
(10,10%,103).
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20+

15+

SNR(Nh)

10+

Sigma
Fig. 1. Signal to Noise Ratio of the data as a function of the variance.

35+

SNR(B)

SNR(Nh)

Fig. 2. SNR of the background as a function of the SNR of the data.

252

Error (%)

SNR(Nh)

Fig. 3. dotted (resp. plain) line : percentage of bad detections for the moving regions (resp. static background) as a
function of the SNR of the data.
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(d) SNR=5.7 (e) SNR=9.8 (f) SNR=14.4

Fig. 4. Results on a synthetic sequence (5 images) (a) Description of the sequence (first image) (b) Last image of the
sequence (c) The noisy background without any objects (d) Mediane (e) Average (f) Restored background (af # 0)

Fig. 5. Three images of the initial synthetic sequence (35 images are available)

35+ 25%

301 20+

15+

10+

SNR(B)
Error (%)

15+

<

SNR(Nh) SNR(Nh)

Fig. 6. Left : SNR of the background as a function of the SNR of the data. Right : dotted (resp. plain) line : percentage
of bad detections for the moving regions (resp. static background) as a function of the SNR of the data.
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Fig. 7. Left : One image of the noisy sequence. Middle : The motion detection based on variable C}, at the same
time. Right : The restored background B. From top to bottom : Results for different variances of the gaussian noise
(5,15,25,35,45).
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6.3. Results on Real Sequences

Numerous real sequences have been tested us-
ing this methodology. We will present some re-
sults where the background of the scene is seen
most of the time. To be more precise, we men-
tion that some experiments have been done where
some people were hiding the background more
than sixty percent of the time. In that case, the
background found does not correspond to the real
static regions and takes into account some people
for the reconstruction. One possible way to avoid
this could be to add some a priori information of
the mouvement.

The first real sequence is presented in Fig. 8
(a)-(b). A small noise is introduced by the
camera and certainly by the hard weather condi-
tions. Notice the reflections on the ground which
is frozen. We show in Fig. 8 (c) the average in
time of the sequence. The restored background is
shown in Fig. 8 (d). As we can see, it has been
very well found and enhanced. Figure 8 (e) is a
representation of the function Cj, (using a thresh-
old of 0.5) and we show in Fig 8 (f) the associated
dual variable dc,, .

The second sequence is more noisy than the first
one. Its description is given in Fig. 9 (a). To
evaluate the quality of the restoration, we show a
close-up of the same region for one original image
(see Fig. 9 (b)), the average in time (see Fig. 9
(c)) and the restored background B (see Fig. 9
(d)). The detection of moving regions is displayed
in Fig. 9 (e). Notice that some sparse motion
have been detected at the right bottom and at
the left side of the two persons. They correspond
to the motion of a bush and the shadow of a tree
due to the wind.

The last sequence is taken from an highway (see
Fig. 10). We give two images (Fig. 10 (a) and
(b)) and the corresponding motion detection be-
low (Fig. 10 (c) and (d)). Finally, we show in
Fig. 10 (e) the restored background. Notice that
there is a black zone at the top of the road which
comes from the fact that there are always cars in
that region.

Notice that corresponding animations are avail-
able in the Pierre Kornprobst’s home page *.

7. Conclusion

We have presented in this article an original
coupled method for the problem of image sequence
restoration and motion segmentation. A theo-
retical study in the space of bounded variations
showed us that the problem was well-posed. We
then proposed a convergent stable algorithm to
approximate the unique solution of the initial min-
imization problem.

This original way to restore image sequence
has been proved to give very promising result.
A straightforward extension to color image se-
quences has recently been developed. To com-
plete this work, several ideas are considered : use
the motion segmentation part to restore also the
moving regions, think about possible extensions
for non-static cameras. This is the object of our
current work.

Appendix A
The Half Quadratic Minimization Theorem

This theorem has been inspired by Geman and
Reynolds [30] and proposed by Aubert [8].

Theorem 3.
that:

Let ¢ : [0, +00][— [0, 4+00[ be such

(V1) is concave on 10, 400]. (1)

Let L and M be defined as: L = lim;— 4o 2(1)

2t
and M =lim;_ g+ ¢2—(tt) Then, there exists a con-
vex and decreasing function ¢ :|L, M] — [B1, 2]

such that

_ 2
p(t) = LglggM(dt + (d)) (2)
where: By = limy_ 4o (¢(t) — tQ%) and
Br = lim;_o, &(t) Moreover, for every fized t > 0
the value dy for which the minimum is reached is
unique and given by:
¢'(t)

a=%2 (3)

In addition, we can give the expression of the
function ¥ with respect to ¢. If we note 6(t) =
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(e) (f)

Fig. 8. Sweeden Sequence : (a) and (b) Description of the sequence (55 images available). Two people are walking from
top to bottom. This sequence is available from the web site http://www.ien.it/is/is.html. (c) The average over the
time. (d) The restored background B. (e) Function C}, associated to the image (a) (a threshold of 0.5 has been used). (f)

The dual variable d¢, associated to the image (a).
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Fig. 9. INRIA Sequence : (a) Description of the sequence (12 images available). (b) Zoom on a upper right part of
the original sequence (without objects). (¢) Zoom on the mean image. (d) Zoom on the restored background B. (e) The
function Cy, thresholded. (f) The dual variable dc,, .
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(c) (d)

Fig. 10. Highway Sequence : (a) and (b) Two images from the sequence (90 images available). (c) and (d) Corresponding
C}, functions. (e) The restored background.
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#(V/t),then :
U(t) = 06((6")71 (1) — ()7 (1)

However, notice that this expression will never be
used explicitely.

Appendix B

On Discretizing the Divergence Operator

Let d and A given at nodes (i,7). The problem
is to get an approximation of div(dVA) at the
node (7,7). We denote by 6** and 6*2 the finite
difference operators defined by :
A = Ai+%,j — A1
5 A = Ay — A

.1
LJ—3

Using that notation, Perona and Malik [58] pro-
posed the following approximation :

) 7] 0A 0 0A

~ 6"t (d(SIlAi’j) + 62 (dézZAi’j>

0 dij+l 0
“gP
| diiyy =S digyy | <Ay
0 d 0

ij—%

(1)
where the symbol x denotes the convolution and
SP is the sum of the four weights in the principal
directions. Notice that we need to estimate the
function d at intermediate nodes. Our aim is to
extend this approximation so that we could take
into account the values of A at the diagonal nodes

0 d + 0
div(dVA)g=ap | di_z; =5 digz; | A
0 dij_s
dGi_giry 0 digiiey
+ ap 0 —-sb 0 *Ai; (2
dpi-y 0 iy

where ap and ap are two weights to be discussed,
and SP is the sum of the four weights in the diag-
onal directions. Approximation (2) is consistent if
and only if :

ap +2ap =1 (3)

Now, there remains one degree of freedom. Two
possibilities have been considered :

11
(@ran) == (3.) @
(ap,ap) = functions of d (See Fig. 10) (5)

%p

1.7 AN
BA RN RN

I /4 2 e

Fig. B.1. ap = ap(0) is a 7/2 periodic function where ¢
is the direction of the gradient of d. Notice that ap can be
deduced from the consistency condition is then computed
thanks to the consistency condition.

Before going further, remark that any kind of
discretization leads to :

- (9'(IVA]) )
div (7VA =1
R

D pirkgr(A) Ay, — ( > pi+k,j+l(f4)> Aij

(k,1)eD (k,)eD
(6)

where D = {(k,1) # (0,0) € [~1,0,1]?} and
(pi+k,j+l)(k,z)ep verifying :
0<pitkj+1 <1  and > piprge <4
(k,l)eD

(7)

To compare these different discretizations, we
made numerical experiments with the image
restoration problem where such kind of operator
have to be discretized. We recall that for a given
d?, we need to find I"*' such that :

" - N - o div(d?VIPTH) =0

puted by interpolation (see [58]).

We tested these different discretizations on a
noisy test image using quantitative measures. We
checked that (2) permits to restore identically
edges in principal or diagonal directions. More-
over, we observed that choosing ap adaptatively
(5) gave more precise results than (4). We used
this approximation (5) in our experiments.
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Proof of Lemma 1

Proof: Let us first recall the Lebesgue decom-
position of the measure ¢(Du) :

/Q¢(DU) =/ﬂ¢(|Vu|)dm+
L

term 1
/ |u+—u*\HN*1+/ IC|
Su Q/S.
~ —_———
term 2 term 3

We are going to show that cutting the fonction
u using the fonction ¢, 5 permits to reduce each
term. To simplify notations, we will sometimes
use the notation 4 for the troncated function
Parp(u)

Term 1: let Q. = {z € Q/u(z) < a or u(z)>
B} and Q; = Q/Q.. Thanks to [37], we have

/ 6(Vil)do = /

/¢ Vi) dx / o(|Vu|)dz +

&(|Vu|)dz. Consequently :

¢ |Val])d
(=0)

< / o(|Vul)dz (1)

Term 2: using results proved in [5], we know

that :
Sﬁ C Su
T =ap(ut) and i@ = pap(u)

Thanks to these results, and since ¢4 g is Lipschitz
continuous with a constant equals to 1, we have :

/ it —a [N g/ fut — [N
Sﬂ Sﬂ

< / wt —u Y (2)
Su

Notes

W N =

http://www.ina.fr/INA/Recherche/Aurora/index.en.html

http://www.esat.kuleuven.ac.be/ konijn/improofs.html
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Term 3: we need to understand how is the Can-
tor part of the distributional derivative of the com-
posed function ¢, g(u). Vol'pert [70] first pro-
posed a chain rule formula for functions v = p(u)
for w € BV(§) and when ¢ is continuously dif-
ferentiable. Ambrosio and Dal Maso [6] gave ex-
tended results for functions ¢ uniformely Lipschitz
continuous. Since wu is scalar, it is demonstrated
in [6] that we can write :

Clpap(u) = ¢, (@)C(u) |Dul-a.e.on /S,

(3)

where @ is the approximate limit of u defined by :

lim T*N/ luly) — i(x)]dy = 0
B(z,r)

r—0+

where B(x,r) is the closed ball with center x and
radius r. Moreover, we have :

[ e
Q/Sa Q/s

Notice that the second integral equals to zero be-
cause the Hausdorff dimension of the set S,/S;
is at most N — 1 and we know that for any
v € BV () and any set S of Hausdorff dimen-
sion at most N — 1, we have C,(S) = 0. Then,
using the chain rule formula (3), we have :

| re <l [ jeds [ e
Q/Sa (<1 Jays. Q/S.
®)

Finally, using results (1), (2), (5) permits to write

[ oeost) < [ ot

This concludes the proof. O

u

ICal + / Cal (@)
S,,/Sﬁ
(=0)

http://www.spd.eee.strath.ac.uk/users/harve/noblesse.html

http://www.inria.fr/robotvis/personnel/pkornp/pkornp-eng.html
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