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G. AUBERT T, R. DERICHE ¥, AND P. KORNPROBST ¥

Abstract

Defined as the apparent motion in a sequence of images, the optical flow is
very important in the Computer Vision community where its accurate estimation
is strongly needed for many applications. It is one of the most studied problem in
Computer Vision. In spite of this, not much theoretical analysis has been done. In
this article, we first present a review of existing variational methods. Then, we will
propose an extended model that will be rigorously justified on the space of functions
of bounded variations. Finally, we present an algorithm whose convergence will be
carefully demonstrated. Some results showing the capabilities of this method will
end that work.
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1. Introduction.

This paper deals with the estimation of the movement in a sequence of images.
This velocity field is called the optical flow. In the Computer Vision community, it is
well known that the optical flow is a rich source of information about the geometrical
structure of the world. Numerous practical and theoretical studies on the optical
flow estimation from image sequences and on the useful information it contains have
been performed. They have clearly shown how the optical flow can be used to recover
information about slant and tilt of surface elements, ego-motion, shape information,
time to collision, etc [32, 33, 31, 35, 34, 30, 29, 49, 61, 21, 48, 60, 28, 8, 53, 55].

Almost all these approaches use the classical brightness constancy assumption
that relates the gradient of brightness to the components of the local flow to esti-
mate the optical flow. Because this problem is ill-posed, additional constraints are
usually required. The most used one is to add a quadratic smoothness constraint as
done originally by Horn and Schunk [30]. However, in order to estimate the optical
flow more accurately, other constraints involving high order spatial derivatives have
also been used [53]. Nevertheless, several of the proposed methods lacked robust-
ness to the presence of occlusion, and yielded smooth optical flow. The variational
approach proposed in this paper is motivated by the need to recover the optical
flow while preventing the method from trying to smooth the solution across the
flow discontinuities.

This article is organized as follows :

Section 2 is a general introduction to the optical flow problem. The purpose is to
define properly what can we expect to find and how. A review of existing variational
methods will be done. In section 3, we propose a general variational method which
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permits to regularize the velocity field while keeping its dicontinuities. Then, after
some general review about the space of functions of bounded variations, we will
prove the existence and the unicity of the solution in that space. Section 4 aims at
proposing a convergent algorithm to approximate the solution. To this end, we will
use the theory of the I'-convergence and some duality arguments. We conclude in
Section 5 by giving some results showing the capabilities of the approach.

2. Computing optical flow via variational techniques : an overview.

2.1. Definition. Let us consider a concrete situation : someone is shooting a
scene in the street (see Figure 2.1). An easy way to understand the link between

Fic. 2.1. Ezample of a real scene available via anonymous ftp from ftp.csd.uwo.ca in the
directory pub/vision. Four objects are moving. 1 : one pedestrian, 2 and 3 : two cars 4 : a van,
5 is static but a precise observation permits to see changes of bright due to noise.

Moving object

The camera

Fia. 2.2. The pinhole camera model : one of the easier one. € is the domain of the image
and O is the optical center.

what we can observe and the real 3D movement is to model the camera as a simple
projective model (see Figure 2.2). So the first idea is to say that the 2D velocity
field in the image corresponds to the projection of the 3D velocity field of the ob-
jects. This is the case for the car 3. However, when we look closer, we notice the
shadow in the back of the car which follows it. It is clear that this apparent motion
does not corresponds to any real motion. The importance of the light source can
be seen from other phenomena. For instance, if the object is shiny, the reflected
luminosity will change rapidly with the position. This is the case for bodywork,
glasses,. .. This problem is encountered for the glasses of the van 4. Finally, notice
the problem of noise in images which is unavoidable. For instance, if we look at
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the car 5 which is static, we will observe some random changes of brightness due
to noise in the sequence. We conclude that the variations of the intensity do not
always correspond to physical movements.

So, we will define the optical flow as the 2D velocity field describing the changes
in intensity between images. We see in the next section how we can translate it
mathematically.

2.2. The optical flow constraint. In this last decade, numerous methods
have been proposed to compute optical flow. Several ideas have been used : working
with regions, curves, lines or points. There is also a wide range of methodologies :
wavelets, Markov random fields, Fourier analysis and naturally partial differential
equations [30, 29, 49, 61, 21, 48, 60, 28, 14, 53, 55]. We refer the interested reader
to two (mainly computational) general surveys :

- Barron, Fleet and Beauchemin [8] explain the main different techniques and
do numerical quantitative experiments to compare them (the database used for tests
is also available).

- Orkisz and Clarysse [52] is an “updated” version of the preceding one.

In this article we will concentrate upon the class of differential methods (as
named by Barron, Fleet and Beauchemin) which have been proved to be among the
best one [8]. Their common point is the consistency intensity hypothesis of a point
during its movement. More precisely, we will assume that :

“The intensity of a point keeps constant along its trajectory” (2.1)

This hypothesis is called the optical flow constraint (noted in the sequel OFC). We
can consider it as reasonable for small displacements for which changes of the light
source are small.

Let us translate (2.1) mathematically. Let u(xy,x2,t) denote the intensity of
the pixel (x1,x2) at time ¢. Starting from a point (x4, z2g) at the time ¢y, we define
the trajectory :

t = (21 (1), w2(t), 1)
such that :
(z1(to), 2(t0), to) = (219, T20, to) vt (2.2)
and
u(zy(t), zo(t),t) = u(xyg, 209, to) vt (2.3)
By differentiating (2.3) with respect to ¢, we obtain at ¢ = t¢ :

dx ou dx ou ou
d—tl(to)a—xl($1075r207to) + d_tZ(tO)a_xQ(IlO’IQO’tO) + E(Ilowmﬂfo) =0 (24)

So we will search the optical flow as the velocity field :

a1
g2

o(x19,x29) = < ) (x19,T29) =

such that (2.4) is true.
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Recapitulation : let the sequence u(x1, x5, t) given and ¢y the time of observation.
We aim at finding the optical flow o(z1,22) ((z1,22) € Q), that is to say the
instantaneous apparent velocity at time ¢, verifying the optical flow constraint :

o(z1,22) - Vu(zy, 2,t0) + ue(z1,22,t0) =0 (2.5)

Unfortunately, this equation is scalar which is not enough to find both components
of the velocity field. This problem is usually called the aperture problem. Other
conditions should be found. Several ideas that are presented in the following section
adress this difficulty.

Remark : Is the OFC unavoidable? Even if it is widely used to compute
optical flow, several reasons may force us to look for something different. Let us
mention three cases :

(i) We want to take into account possible changes in the light source which may
turn out the velocities to be false. The models proposed by Negahdaripour & Yu
[50], or Mattavelli & Nicoulin [41] permit an affine variation of the intensity during
time (and not a conservation).

(if) We consider a special kind of movement which requires suitable conditions.
For instance, Devlaminck & Dubus [18] propose an analogy with the theory of
elasticity to find their constraint. Wildes, Amabile etal [62] are interested in fluid
movements. Alatan & Onural [2] only consider rigid displacements.

(i) We want to avoid to differentiate (2.3) to get the OFC. A possible solution
is to say that ¢ should satisfy :

u(z19 + 01(219,220)(t — t0), T2 + 02(10, T20)(t — t0), t0) = u(T10, T20, t0)

for t close to tg. We refer to the works of Mémin, Perez etal [43] or Guichard &
Rudin [26] for more details.

To conclude this remark, let us also mention the work of Willick & Yang [63],
where we can find a comparison between some possible contraints. &

2.3. Solving the aperture problem. As we saw in the preceding section,
the optical flow constraint is not enough to compute the optical flow. Several ideas
have been proposed.

2.3.1. Use second order derivatives. For instance, one could impose the
conservation of Vu(z1,zs,t) along trajectories that is to say :

dVu
W($171‘27 t) =0

This is a stronger restriction than (2.5) on permissible motion fields. This implies
that first order deformations of intensity (eg. rotation or dilation) should not be
present. This condition can be re-written in the following form :

uwlml(x17‘r27t) urzl‘l(xlvx%t) 01 + uﬂ?lt(l'hx%t) — 0
Ugyop (21,22, 8)  Ugye,y (X1, 22, 1) o2 Uyt (21, T2, 1) 0
(2.6)

These equations can be used alone or together with the optical flow constraint.
Several possibilities are then proposed. We quote the works of Otte & Nagel [53]
and Tistarelli [59]. However, this kind of method is often noise sensitive because we
need to compute second derivatives.
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Fia. 2.3. The method of Horn € Schunk applied on a synthetic ezample. Notice that this
example is very caricatural since we do not have any texture information on the background and
on the moving object. One may observe that the discontinuities at edge locations are lost.

2.3.2. Choosing a model of velocity. This permits us to diminish the num-
ber of unknowns. We refer to the recent work of Mémin & Perez [42] for more details
about the different possibilities (piecewise constant, affine,...). Several numerical
experiments are also proposed to compare the models.

2.3.3. Regularizing the velocity field. Among the first one, Horn & Schunk
[30] (see also [57]) proposed to solve the following problem :

min / (0 - Vu+us)’dr +a” /(||Val 1?4+ Voo ||?)dz (2.7)
o Jo Jo
X B
where a” is a constant and | - || is the usual euclidian norm. In other words, we

search for the velocity field o fitting the best the optical flow constraint (term A),
and so that the derivatives are low (term B). This kind of penalty term has been
introduce by Tikhonov & Arsenin [58] and is well known to smooth isotropically
without taking into account the discontinuities of the flow field (see Figure 2.3 for
a typical example).

Since then, many research have been done to compute discontinuous optical
flow field. One idea should be to make the weights of the regularization terms
depend on the gradients of the intensity [22]. More generaly, the idea is to change
the regularization term B. We describe below some of the most significant one :

- Modifying Horn & Schunk functional by introduction of robust norms was
pioneered by Black [9]. Since then, many authors worked on that. The idea is to
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change the regularization term into :

/Q o(IVor [)dz + / 6(|IV0s))d

where functions ¢ permit noise removal and edge conservation. Let us give some
examples. Cohen [14] or Kumar, Tannenbaum and Balas [38] use the L norm, that
is to say the Total Variation (¢(t) = t). Deriche, Kornprobst and Aubert [17] used
more general functions to preserve discontinuities. This kind of ideas is also called
robust estimators in the stochastic literature. In that direction, we mention the
works of Mémin, Perez etal [43] who worked with Markov random fields.

- Gupta & Prince [27] or Guichard & Rudin [26] add some penalty terms based
on the divergence or the rotational of the flow field :

/@(div(a), rot(o))dx
Q

where several possibilities for ¢ may be proposed. For instance, in [26], the regu-

larization term is only :
/ \div(o)|dz
Q

In this case, the idea is to note that rigid 2-D objects in 2-D motions have a diver-
gence free motion. The divergence is non zero only at the boundaries of occlusions
where it looks like a concentrated measure.

- Nagel & Enkelmann [49, 47] propose an oriented smoothness constraint in
which smoothness is not imposed across steep intensity gradients (edges) in an
attempt to handle occlusions. So the penalty term is of the form :

/(;m [(Ulz1uzz T 01, Uz, )2 + (0'23511%2 - 02zeu11)2 + 6(0151 + Ulig + 0251 + 0'23:3 )] dx
where 6 is a constant. Minimizing this new functional with respect to o will atten-
uates the variations of the flow in the direction perpendicular to the gradient.
- Nési [51] adapt the formulation of Horn & Schunk introducing the length of
the discontinuity set of o (noted |S,|). We recall that this kind of idea has been
introduced by Mumford & Shah for image segmentation [46]. The regularization
term is of the form :

or / (IVo1]]? + [Vou|?)dz + ]S, |
Q

Numerically, the main difficulty is to approximate the last term. One possible
solution is to use the concept of I'-convergence (see [23, 40] for more details). We
introduce a sequence of functionals so that the sequence of minimizers converge to
the unique minimum of initial functional. Typically, the way to approximate the
regularization term is (see [4] for more details) :

2 k(1 — 2
ar/ 22(||V0'1||2 + ||V0'2||2)dl'+04d/ ||VZ|| + ( Z)

where z is an additional function and k is a parameter that will tend to infinity.
The function z can be considered as a control variable which equals to zero near
discontinuities and close to 1 in homogeneous regions.

Naturally, this list is non exhaustive. However, we can observe that not much
theoretical analysis has been done. This is why we propose in the next section a
model that will be rigorously justified and that is a natural extension of previous
work done in [17].
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3. A justified variational approach.
3.1. Construction of the model.

3.1.1. The optical flow constraint. We will choose the L!'-norm instead
of the L? norm of the OFC as done by Horn & Schunk [30]. This choice is not
fundamental in the method but it will be justified later by theoretical arguments.

3.1.2. The regularization part. To cope with discontinuities, several meth-
ods have been proposed [14, 49, 55, 28, 17]. The method presented here is inspired
from a recent framework that has proven to be very useful in some image processing
tasks as image restoration [56, 16, 5, 7]. The key idea is to forbid regularizing and
smoothing across discontinuities. One way of taking into account these remarks is to
replace || Vw||? in (2.7) (where w is 0y or 03) by ¢(||Vw]||) where ¢(-) having desired
properties. To define and identify such functions, we consider the corresponding
term in the Euler-Lagrange equations.

[Vw|? — 2Aw

. "(J[Vw 3.1
s(IVwl) — mv(Qﬁ%Evaw) (3-1)
If we denote n = Hg—xﬂ and £ the normal direction to 1, we can develop formally

the divergence term in the following form :

o (070D, ) _ ST

wee + 0" (|| Vol)) w (3.2)
V]| [Vl 8 T

cy
ce

where w,,, (resp. wee) is the second order directional derivative of w in the di-
rection 1 (resp. ). In order to regularize the solution and preserve optical flow
discontinuities, one would like to smooth isotropically the optical flow field inside
homogeneous regions and preserve the flow discontinuities in the inhomogeneous
regions. Assuming that the function ¢”(.) exists, the isotropic smoothing condition
inside homogeneous regions can be achieved by imposing the following conditions :

¢'(0) =0, im CUYED g e =0 >0 @3)

IVwl—o [Vl [Vul-0

Therefore, at the points where ||[Vw|| is small, the divergence term becomes :

div <%VU}> ~ ¢"(0)(wee + wyy) = ¢ (0)Aw. (3.4)

In order to preserve the flow discontinuities near inhomogeneous regions presenting
a strong flow gradient, one would like to smooth along the isophote (curve with
constant flow) and not across them. This leads to stopping the diffusion in the
gradient direction 7, i.e. setting the weight ¢"(||Vw]|) equal to 0, while keeping a

/
stable diffusion along the direction orthogonal £, i.e. setting the weight %
equal to some positive constant :
. ¢'(I[Vwll)
lim  ¢"(|Vw]]) =0 ————=0>0 3.5
IVwl|—o0 (Iveel) IVwl—eo  [[Val] (33

Unfortunately, the two conditions of (3.5) cannot be satisfied simultaneously by a
function ¢(-). However, the following conditions can be imposed in order to decrease
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the effects of the diffusion along the gradient more rapidly than those associated
with the diffusion along the isophotes :

!
. \Y
lim vy —o ¢" (IVw|]) = lim) vy % =
. &' (V) 3.6
imy v 1l = o0
Vel

The conditions given by Equations (3.3) and (3.6) are those which one has to impose
in order to deal with a regularization process which preserves the discontinuities.
Several functions have been proposed in literature and we refer to table 3.1 for some
examples. We notice that, among discontinuities preserving ¢(-) functions, there
are convex and non-convex functions.

| Author | o(s) |
Geman et Reynolds lj_%
Malik et Perona log(1 + s2)
Green 2log[cosh(s)]
Aubert 2v1+ 5% -2

TABLE 3.1
Some functions ¢ preserving discontinuities.

3.1.3. The homogeneous regions. When we have an homogeneous region
characterized by low image gradients magnitude, no visible motion should be de-
tected locally. This will be enforced by adding a term of the form :

[ clolfas

where ¢(z) is a given function penalizing homogeneous regions. Typically, ¢(x) is
high for low spatial gradients of u (hence penalizing velocities in poor information
zones) and low for high spatial gradients of u (no intervention). Precise assumptions
will be given in the sequel.

3.1.4. The variational problem. Combining observations of the preceding
sections lead us to consider the optical flow problem as the minimum of an energy.
Given a sequence u(z,y,t) described locally by its spatial and temporal derivatives
at a fixed time t¢ (noted Vu and ), we search for the velocity field o which realizes
the minimum of the energy :

E(o) = /Q|Vu~a+ut|dx+ar [/quﬁ(DJl)-i-/ng(DJQ)] +ah/Qc(x)||J||2dx

(3.7)

where a”, " are positive constants. Remark that we used the notation D- for the

distributional derivative since we will work with functions in the space of functions

of bounded variations. The notation / ¢(Dw) is formal here and will be made
Q

precise in the sequel.

3.2. The space of functions of bounded variations. In this section we
only recall main notations and definitions. We refer to [6] for more details and to
[1, 19, 24, 20, 64] for the complete theory.

Let Q2 be a bounded open set in RN, with Lipschitz-regular boundary 0.
We denote by £V or dz the N-dimensional Lebesgue measure in RY and by H®
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the a—dimensional Hausdorff measure. We also set |E| = £V (E), the Lebesgue

measure of a measurable set E C RY. B(Q) denotes the family of the Borel subsets

of 2. We will respectively denote the strong, the weak and weakx convergences in
*

a space V() by

, , . Spaces of vector valued functions will be
V) V) V()
noted by bold characters.

Working with images requires that the functions that we consider can be dis-
continuous along curves. This is impossible with classical Sobolev spaces such as
W11(Q). This is why we need to use the space of functions of bounded variations
(noted BV (9)) defined by :

Q

BV(Q) = {u € LI(Q);sup/u div(p)dr < 00 : ¢ € CH(2)?, ]| < 1}
where C}(12) is the set of differentiable functions with compact support in . We
will note :

Dal() = sup { [ wdiv(opir s € @R, Iolo <1

If w € BV(Q) and Du is the gradient in the sense of distributions, then Du is a
vector valued Radon measure and |Du|(f2) is the total variation of Du on . The
set of Radon measure is noted M ((2)

The product topology of the strong topology of L*(2) for u and of the weakx
topology of measures for Du will be called the weakx topology of BV, and will be
denoted by BV — wx.

U E— U
L1(Q)
u™ U = * (3.8)
BV —w* Du™ Du
M(Q)

We recall that every bounded sequence in BV (Q2) admits a subsequence converging
in BV —wx.

We define the approximate upper limit v+ (z) and the approximate lower limit
u”(x) by :

ut(z) = mf{t € [~o0, +00] : lim %}CBM = 0}

p—0t P
t}NB
uw () = sup{t € [~o0, +00] : lim fu<t}0By(z) }N o(2) = 0}
p—0t P

where B,(z) is the ball of center z and radius p. We denote by S, the jump set,
that is to say the complement of the set of Lebesgue points, i.e. the set of points x
where u*(z) is different w™(z), namely :

Sy ={r € Q/u~(z) < ut(x)}.

After choosing a normal n,(z) (x € S,) pointing toward the largest value of u, we
recall the following decompositions ([3]| for more details):

Du=Vu-Ly+Cy+ (u" —u)n, ~H‘A§;1 (3.9)

| Du(©) =/ IVulda +/ \Cul +/ (wt —u)aH " (3.10)
Q Q\ Sy w
where Vu is the density of the absolutely continuous part of Du with respect to
the Lebesgue measure, C,, is the Cantor part and HY ™! is the Hausdorff measure
of dimension N — 1.
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We then recall the definition of a convex function of measures. We refer to the
works of Goffman-Serrin [25] and Demengel-Temam [15] for more details. Let ¢ be
convex and finite on R with linear growth at infinity. Let ¢°° be the asymptote
(or recession) function defined by ¢ (z) = lim; .o @ € [0;+00). Then, for
u € BV (), using classical notations, we define :

[ etow = [[avada+ =) [

We finally mention that this function is lower semi-continuous for the BV — wx-
topology.

(u* = u=)dH ! +¢°°(1)/ ] (3.11)
Q\Su

u

3.3. A mathematically justified model. In all this article, we will assume
that the data is Lipschitz :

u€ W (R x Q) (3.12)

This assumption is realistic from a numerical point of view because a pre-smoothing
is always necessary to diminish noise.
We recall the energy (3.7) we want to minimize :

= o- t r o o h all?
E<a>—/ﬂ| Vu+ulde +o [/ﬂw 1>+/Q¢<D 2>]+a /Qc<x>|| 2z
where we assumed :

é: R— R" is an odd, convex and non-decreasing function on R*  (3.13)

There exists constants b; >0 and by > 0 such that (3.14)
biz —by < ¢(z) < bjz+by forall z € RT

and c¢(x) verifies :

ceC™(N) (3.15)
There exists m. > 0 such that c(z) € [m.,1] for all z € Q (3.16)

Let us remark that the last term of the functional E is well defined on BV (1)
thanks to the inclusion of BV () into L2(Q2) (IV = 2). We have the following the-
orem :

THEOREM 3.1. Under the hypotheses (3.18)-(3.14), (3.15)-(3.16)and (3.12),
the minimization problem :

c€EBV(Q)

inf E(J):/Q|U~Vu+ut\dx+Z/Q¢(Daj)+/Qc(x)||a||2dac (3.17)

admits a unique solution in BV ().

Proof. According to (3.14), the functional E is coercive on BV (2). Thus, we can
uniformly bound the minimizing sequences and extract a converging subsequence
for the BV — wx* topology. Since E is lower semi continuous for this topology, we
easily deduce the existence of a minimum. 0

Remark : In this paper, we have assumed that the data was a Lipschitz function.
This permitted us to prove the existence and the unicity of the solution of the
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optimization problem. We also mention that we studied the case where the data
is only a function of bounded variations. We refer to [36, 6] for more details.
Interestingly, the fact that w may have jumps will induce not trivial theoretical
problems. Let us point out main difficulties :

- we need to give a sense to the first integral of the energy which has to be
interpreted as a measure (the L'-norm is in fact a total variation). To this end, we
proposed an integral representation of this term.

- then, we observed that the global energy was no longer semi-continuous for
the BV — wx-topology so that we searched for the relaxed problem [11]. &

Now, the problem is to get an approximation of the solution. This is the purpose
of the following section.

4. A convergent algorithm.

In this section, we propose and justify a convergent algorithm. Two steps are
necessary :

- in section 4.1, we introduce a new functional noted E. so that the associated
minimization problem admits a unique solution (noted ¢.) in WH2(Q) = {o €
L2(Q)/Vo; € L2(2)}. We prove, via the I'—convergence, that the solution o
converges in L2-strong to the minimizer of E.

- then, for a fixed ¢, we propose in section 4.2 a suitable numerical scheme called
the half-quadratic minimization. We prove its convergence in L2Z-strong to the
minimizer of E..Consequently, merging both results permits us in fact to construct
a solution that converge in L?-strong to the minimizer of (3.17).

4.1. A result of I' convergence. For a function f verifying hypotheses
(3.13)-(3.14), let us define the function f, by :

FOp gy efLl0 ift<e

2€ 2
fe(t) = ft) if e <t<1/e (4.1)
efl(21£€)t2+f(1/e)— f’(21€[€) iftZl/e

We have, for all €, fc > f, and for all ¢, lim._.q fc(t) = f(t). Using that definition,
we denote by ¢1 . and ¢- . the functions associated to |t| and @(t) respectively. Now,
let us define the functional E, by :

E.:BV(2) - R (4.2)

2
) /qul,e(a~Vu+ut)dac+JZ_;/Q¢2,E(||VUJ-||)dx+/Qc(:c)”a” dr

if 0 e WH2(Q)
+00 otherwise

E(0)

We are going to establish that the sequence E. I'-converges to E. We refer the
interested reader to [23, 40] for the I'—convergence theory.

PROPOSITION 4.1. Under the hypotheses (3.13)-(3.14), (3.15)-(3.16) and
(8.12), the sequence E. defined in (4.2), I'-converges to E as € tends to O for the
LZ2-strong topology.
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Proof. Let us denote by E the functional defined by :

E:BV(Q)— R

[ E(o) i oeW2(Q)
E(0) = { +00 otherwise

By construction, we observe that F. is a decreasing sequence converging pointwise
to E. Thanks to [40] (Proposition 5.7), we deduce that E, T-converges to the lower
semicontinuous envelope of E in BV (Q) that is to say the relaxed functional R(E)
(see [11, 40| for more details). Let us show that R(E)(c) = E(o). Since E is lower
semicontinuous for the BV — w* topology, it is enough to prove that E is the lower
semicontinuous envelope of E. This is equivalent to say that for o in BV (Q), there
exists a sequence (0™) € W12(Q) such that :

0" —— o and FE(0) = liminf E(o™)
L2(Q) n— oo

Such a sequence can be estimated by a slightly modified version of the Theroem 2.2
in [15]. This concludes the proof. O

PROPOSITION 4.2. Under the hypotheses (3.13)-(3.14), (3.15)-(3.16) and
(3.12), the minimization problem :

inf E.(0) (4.3)
seW2(Q)

admits a unique solution noted o.. Moreover, the sequence o, converges for the
L2-strong topology to the unique minimizer of E in BV (Q).

Proof. The existence and unicity of the minimization problem follows by classi-
cal techniques. As for the convergence of the sequence ¢¢, it is a direct application
of general I'-convergence properties [23, 40]. O

4.2. The half-quadratic minimization. Let o, be the unique minimizer of
(4.3). Our problem is to find an estimation of g.. The main difficulty of solving di-
rectly the associated Euler-Lagrange equations is that they are nonlinear. To avoid
this, the idea is to use the following “duality” result, due to Aubert etal [5] :

THEOREM 4.3. Let ¢ : [0,400[— [0, +0o0[ be such that :

#(\/s) is concave on 10, +o0]. (4.4)

Let L and M be defined as : L = limgs_. 4 ¢;(Ss) and M =lim,_ g+ % Then,
there exists a conver and decreasing function 1 :|L, M| — [51, B2] such that

o(s) = inf (ds® + ¥(d)) (4.5)

L<d<M

where : o = lim;_ 1 o (¢(s) — 32@) and 1 =lim,_o, ¢(s). Moreover,
for every fized s > 0 the value ds for which the minimum is reached is unique and
given by :

¢'(s)

ds = 4.
55 (4.6)

The additional variable is usually called the dual variable. Let us apply Theorem
4.3 to the functions ¢ . and ¢»  which fulfill desired hypotheses. We then introduce
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the functional E¢ defined by :

EY:Wh2(Q) x L}(Q) x L3(Q) — R (4.7)
EX(0,a,b) = /Q (a(a V4 us)? + é) dr + Z/Q (b;IVa;||” + b2, (b)) d

+/Qc(x)||a|| du

where a is the the scalar dual variable associated to the optical flow constraint
and where b is the vectorial dual variable whose components are associated to
¢2.(]|Vo;]). This transformation is useful because :

(i) the OFC part is now differentiable at zero,

(ii) the new regularization term permits us to consider the problem in W2(().

To minimize E¢ with respect to all variables, we perform minimizations with
respect to each variable alternatively. Notice that this functional, defined on an
extended domain is either convex or quadratic with respect to o,a,b. More pre-
cisely, for a given (¢,a”,b%) € W12(Q) x L2(2) x L2(€2), we propose the following
algorithm which consists in minimizing successively with respect to each variable :

ol = argmin E(o,a™,b") (4.8)
FEWL2(Q)

a" ! = argmin E (o™ a,b™) (4.9)
a € L*(Q)
e<a<l/e

bt = argmin El(o™* a1 b) (4.10)
be L3(Q)

edae(1/€) S bj < Phe(e)/e

We remark that the constraints ¢ < a < 1/e and e}, .(1/€) < b; < ¢ (€)/ein (4.9)-
(4.10) come from Theorem 4.3 and will play an important role to prove that the
algorithm is convergent. Qur aim is to prove that the sequence o™ converges in L2-
strong to o.. Let us first write optimality conditions associated to (4.8)-(4.9)-(4.10)

For all ¢ = (¢1,992)" € WH2(Q) (4.11)

2
/ a™(e" Vu+u)p - Vu+e(x)o™ o + Zb?VU;H_l Vo, | de=0
Q

j=1
! n+1 | v 1
S D1, (\U_H U+ ugl) —¢ - A1/e (4.12)
2|lo™ - Vu 4 uy |o" - Vu 4wy
!
c ([[Val?
i $2.¢ (Il o; [ (4.13)
2||Vey||

where the mapping = +— a1 V& A as is defined by :

a; if r<m
ar VT Aas = v if o <x<as
as if x> as

Then we have the following proposition :

PROPOSITION 4.4. Let (0°,a% %) € WH2(Q) x L?(Q) x L2(Q2) given. Then the
sequence (o™, a™,b"™) defined by (4.11)-(4.12)-(4.18) is convergent. Moreover (™)
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converges in L2-strong to o, the unique minimum of E,.
Before proving this proposition, let us show a preliminary result.

LEMMA 4.5. Let (o™, a™,b") € WH2(Q)x L2(Q)x L2(2) a minimizing sequence
of E¢ defined by (4.8)-(4.9)-(4.10). Let ) an open subset strictly included in ).
Then, there exists p' > 2 such that :

" e WHP'(Q)  Vn (4.14)
Moreover, we can find a constant M, independant of n, such that :

”Un”Wl-p’(Q/) <M vn (4.15)

Proof. In that proof, C and M will be constants, independant of n, which may
be different from one line to another.

Firstly, since 0™ € W12(Q)'), Sobolev embeddings (see for instance [10]) permits
us to find a constant C' such that :

lo"[La) < Clle™llwrzy Vg€ [2,+09]

As the sequence (o™, a™,b™) is a minimizing sequence, we can find M such that
llo™lwr2(0) < M and so we have :

lo" oy < M Vg€ 2, +00] (4.17)

where M only depends on ¢. But what about the gradient of 6”7 The idea is to use
results from Meyers [44, 45] about elliptic operators. Let o™ the solution of Euler-
Lagrange equations (equivalent to the variational form (4.11) since the functional
is convex) :

div(b}Voy) = a™(o - Vu + ug)ug, + c(x)oy
div(b3Vosy) = a"(0 - Vu + ug)ug, + c(z)os.

In fact, we observe that the elliptic operator (left-hand side term) is uncoupled in
(01,02). Moreover, the right-hand side term only depends on terms of order zero
which can be frozen. This remark permit us to apply a result from Meyers in the
scalar case [44] : there exists p’ > 2 and a constant C' > 0 such that :

1907 0y < Clla™ (0™ - T+ e, + ()} | 2.

As the functions a® !, Vu, u; and ¢ belong to L*°(2) and that ¢" is a minimizing
sequence, we can find a constant such that :

||VU;L||L1;’(Q/) S M \7’n (418)

From (4.17) and (4.18), we deduce (4.14) and (4.15). As for (4.16), we use again
Sobolev embedding results. In particular, we have WP (Q') C L>®(Q') with a
continuous embedding. So there exists C' such that :

o™ L) < Cllo™ lwre (q)-

Hence the result (4.16). O
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Proof. of Proposition 4.4. It contains three main stages (see also [12] where
similar ideas are developed). The first one is essentially technical. It aims at show-
ing that the difference between two iterates tends to zero when n goes to infinity
(4.22). In the second one, we write an optimality condition for 6”1 and show that
it tends to zero. Finally, we show in the third stage that we can pass to the limit
in each term of the optimality condition so that we will recover the optimality con-
dition associated to the problem (4.3). This will prove that, up to a subsequence,
o" tends to o, in L2-strong. Remark that since the minimum is unique, all the
sequence converges.

Stage 1 : Using the optimality conditions (4.11)-(4.12)-(4.13), some easy calculus
permit us to establish that (see [36] for more details) :

u" EES((TTL’ an7 bn) - Egd(a.n+17an7 bn)
>min(e,me)[lo" — " 3y12(q) (4.19)

V" =Ed (o™ a™, ") — EX (o™t oL b)

>3 — a2, (4.20)

Wn EEEd(Jn+17 an+17 bn) _ Ev;l(o_n-&-l7 an+17 bn+1)
>c(e)[[0" = " Iz (4.21)
We first remark that the sequences (U™), (V™) and (WW™) tends to zero as n goes to
infinity : if we denote T" = E4(¢",a",b"), we have :
Ur+ V" 4+ W =1T" 7"

Since (U™), (V™) and (W) are positive sequences, the sequence (1) is positive and
non-increasing. Consequently, it is convergent and so (U"), (V™) and (W™) tend to
zero. Moreover, as  is bounded, and the sequences (a™), (b™) are also bounded,
we deduce from the preceding inequalities that :

o™ — " lwr2(0) — 0

||an — an-&-l“L],(Q) —0 Vp (n — OO) (4'22)
0" = 0"+ |Loo) — 0 Vp.
Stage 2 : Let Z"*1(Q) the integral defined over ) by :
Q) = (4.23)

2
/Qa”+1 (0" Vut ) o Vu+tc(@)o™ o+ Y 0 Vol Vide. (4.24)
j=1

The aim is to show that lim,, .} o, Z*T(Q2) = 0. Thanks to the optimality condition
(4.11), we can re-write (4.24) in the following form :

7" Q) = (4.25)

2
/ (@™t —a™) (6™ Vu+u) - Vu+ Z (bt —b") V(J';-H_l -V,dr. (4.26)
Q

=1
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Let us now introduce an open subset ' strictly included in 2. We will make precise
in the sequel how to choose it. Then we have :

") = 7T (Q/Q)) + T (Y. (4.27)

As for the first integral, since a”*!,b"*! are bounded independently of n, we can
find a constant C' such that :

21/ Q)] < Cllelw a(o/9)- (4.28)

As for the second one, defined over ', we have, for all p and p’ such that :

1,11
p pl 2_ ?

the following inequality :

|Z"H(Q)] <CIVullp=(on el z2on lla™th — an”Li’(Q’)”UTLH”LP'(Q’)

2
+ ) IVeillzznllo; ™ = b e @) IV}l o o) = R(n). (4.29)
j=1

Then, using Lemma 4.5, there exists p’ (p’ > 2) such that ||Va;+1||wl‘p,(9,) is
finite. With that choice, we observe that the right-hand side term in (4.29) tends
to zero. So, for all o € W12(Q2), we deduce from (4.28) and (4.29) that :

IV Q)] < Cllellw, o) + R(n) (4.30)

with lim, 4 R(n) — 0 (thanks to the first stage). Consequence : Let n > 0
and ¢ € WL2(Q) given. Firstly, we can choose ' close enough from € so that
lellw,y 2(2/0) < 1/2. Secondly, since lim,, ., o R(n) — 0, there exists N such that
if n > N, we have R(n) < n/2. As a result, for every n > 0 given, there exist N
such that n > NN implies :

") <0
that is to say :
—div(b} Vo)) +a"(c" - Vu + ui)u,; +c(x)o} | —— 0 (4.31)
- -~ N -— L | w2y
S I up

Now, we are going to show that we can pass to the limit in each term of (4.31).
This is proved in the next stage.

Stage 3 : In the sequel, we will also denote by (™) all the subsequences. As (o™)
is bounded in W12(€2), compact in L2({2), we can extract a subsequence (again

noted (¢")) such that 6" —— o, Vo
L2(Q)

So the term U} converges in Wh2(Q)".
As for the term 717, using (4.12), we have :

Voj, that is to say ¢ —— 0.
L2(Q) W1.2(Q)

o Sl Vutud)
7 2|0 - Vu + uy

(0 Vu+u)
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The question is to know if :

™ (;5’17E(|0'~V’Lb+ut|)
J n—+oo 2|O'V’U/+Ut|

(c-Vutu)=T; 7

Since o” Lz—(Q; o, we also have the pointwise convergence. The mapping s —

1,:(8)/2s being continuous, we can assert that T7* converges almost everywhere
to T;. Moreover, since this application is bounded and so is the L*°-norm of (¢")
(Lemma 4.5), there exist a constant M such that 77" < M. From the dominated
convergence Theorem, we deduce a convergence in W12(Q)’. Until now, taking in
to account (4.13) we proved :

b (Vo .
_ div (Mv%@> 61 (o Vut w))
2||v0'j || w1.2(Q) 2|0"VU+ut|

(0 Vu+up)ug, —c(x)o;.
(4.32)

as n tends to infinity. If we denote by S;, the right-hand side term in (4.32) and if
we define the operator A by :

A:WH2(Q) - WH2(Q)

(D2 UIVel)

we can re-write (4.32) under the form :

A(e?) —— S5

J W1.2(Q)/

So the problem is to show that A(c}) —— A(0;), or, equivalently that :
W1‘2(Q)I

.A(O’j) = S]‘.

Since A corresponds to the derivative of a convex functional, it is a monotone
operator and we have :

<A@e?) = Alp)of —e> > 0 Voe WH3(Q)
When n tends to infinity, two terms have to be studied more carefully :
<A(e}),07 > and < A(gy), 0] >
For the second one, we have :

o, (Il
<A ol >= _
() o 2V

;07 Vo Vojde =< A(p),0; >
As for < A(0}), 07 >, we first use the optimality condition (4.11). So we have :

ny m (A |
< A(d}),07 >= QWV%‘ -Voidx
j
=- /Qa"il(an “Vu+ug)oug; + c(cv)a?2 (4.33)
- /Q (0} = b7 )Voy? (4.34)

=7"(9). (4.35)
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Then, we introduce an open subset ', strictly included in Q and we decompose
J™(2) in two parts :

T =T/ + THQ).

To pass to the limit, we use same ideas as for Z™() (see (4.27)) : the Lemma 4.5,
a subset ' “close enough” from 2 and the dominated convergence Theorem. So we
prove that :

< A(o}), 0] >——< Sj,0 >

J n— 00

and so :

<8 = Alp) o —p> > 0

Choosing ¢ of the form ¢ = o, + hd for all h > 0 and ¥ € C>°(Q2), we have :

<8 —Algj+h0),0> <0 V9eCE@),Vh>0.

But the function h — A(o; + h?) is a continuous function which tends to A(c;) as
h goes to zero. Moreover, it is uniformly bounded (as soon as h is bounded) by an
integrable function. So we can apply the dominated convergence Theorem :

< A(o; + h9),9 >ﬁ< Alo;),0 >

So, for all ¢ in C(Y) :
<80 > < < Aoj), 9>

We deduce easily that S; = A(o;), that is to say o is the solution of the expected
FEuler-Lagrange equations. O

4.3. Some details about the algorithm. This short section is a precise
description of the algorithm. It is presented in table 4.1.

5. Numerical experiments.

To show the capabilities of this approach, we made numerical experiments on
both synthetic (thus enabling error computations) and real images. Notice that
a pre-smoothing of the data by a gaussian kernel has been done to reduce noise
effects for real sequences. We also compared our method with the method of Lucas
& Kanade [39] which has been designated as the best among the class of differential
techniques [8]. Roughly speaking, the idea is to choose a model of velocity over a
window of fixed size (for instance constant) and to look for which value best fit the
OFC. It is a weighted least-square method (see [39] for more details). Naturally,
the results depend strongly on the size of the window and choosing it too wide may
induce some smoothing effects.

We first used a synthetic sequence (Figure 5.2) The main interest is that, as
the true optical flow is known, one may have a quantitative estimation of the error.
To this end, we are considering the following indicators (See Figure 5.1) :

SN (|l ||/ lloell) = 1010g (pariideefirs )

where E(6) is the mean and o2(#) is the variance of the angular error between the
true and the estimated optical flow.
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/* Extract information from the sequence */
Compute Vu and u; by finite differences
(Eventual pre-smoothing with Gaussian kernel)

/* Initializizations */
=0, a®=1, bgzl

/* General loop */
for ((It=0;It<ItNumber;It++) {

- Compute mask discretization coefficients (pit,j+i)(ki)eD
corresponding to divergence terms div(b;Vo;)j=1» (see
Appendix)

- Find o™*! solution of the linear system :
div(bpVol ™) = 2a™ (0™ - Vu + ug)ug, + 2¢(x)opt?
div(byVoy ™) = 2a™ (" - Vu + us)ug, + 2¢(x)oy

(An iterative method like Gauss-Seidel’s may be used)

- compute a"*!

!
nt1 _ O (0" Vu+ )
lo™ - Vu 4

a
- compute b;”'l
o/
¢z (IVa; 1D

bn+1 _
j - 1
! Vo

} /* Loop on It */

TABLE 4.1
Detailed algorithm

Estimated

Fic. 5.1. To estimate the quality of the results, we need to estimate both the angular error
and the norm differences.

Notice that the last indicator, the SN R is usually used in image restoration
and is a scale invariant indicator for errors on norms. Finally, we propose results for
two real sequences (Figures 5.3 and 5.4) for which qualitative observations may be
done. Particularly, this method permits an accurate reconstruction of a regularized
discontinuous optical flow.
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(c) (d)
| Method | o(s) | E6) o%(8) [ SNR(llo-l/lloc]]) ]
Horn & Schunk 8.06 12.29 8.79
Lucas & Kanade 3.94 9.15 10.23
Proposed model | 2v/1+s2—2 | 3.87 9.20 12.27
log(1 + s2) 432 924 12.51
©

Fia. 5.2. (a) Description: the texture is moving with the constant speed o = (1.585,0.863)
pizel/image (b) Real optical flow (c) Horn & Schunk (d) Proposed model (e) Error estimations
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Fia. 5.3. (a) The rubick’s cube is posed on a rotating plate. This sequence is available via
anonymous ftp from ftp.csd.uwo.ca in the directory pub/vision. (b) Zoom on the plate (¢) Horn
& Schunk (d) Lucas € Kanade (e) Proposed model



22 G. Aubert, R. Deriche and P. Kornprobst

a7

4 -

.l..i.'\.i".lr.'ﬂ.'ﬂ."'-.lﬂ.r?.l'?

- W -
L o4 7
h RTINS R Y

-
-
L]
4

*

__r"_':'-"!:r...l
F] -||-—|n-"""-"""-'-'l
R

i

-
.
L
L]
"
-

-.-.l.-,.-;_n.-'"_ﬂ"_-.-‘_l
—

n A
7
7z
o
7

ERE I
a = 7

}‘.ﬂ’f!-...rl!ﬁ':l.*"."‘l.ﬂl
A s q e F T R R
P T T

4
r
r
-
-
-
"
-
-
0
M
a
T
-

LI L |
.|_n.r'.-'|:|-|,_|

e Bl I

a7 1

o PN

IR T i T T S
(g, ) TP = 4 & kR ox o

(e)

Fig. 5.4. (a) One image of the sequence which is described in figure (Voir Figure 2.1) (b)
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6. Conclusion.

Describing the movement in a sequence of images is very useful for many low
level vision procedures. However, it is something hard to define what we are able
to find, since it is strongly related to our perception, that is to say the reflected
intensity. What we see is not always in relation with a physical displacement.
We first presented an overview of main existing techniques trying to emphasize
on differential techniques and their variety. Secondly, we proposed a variational
technique that we justified both theoretically and numerically. Some numerical
experiments concluded that work showing the capabilities of this approach.
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Appendix A. On discretizing the divergence operator.. Let d and A
given at nodes (7, 7). The problem is to get an approximation of div(dVA) at the
node (i,7). We denote by 6t and 62 the finite difference operators defined by :

X —

I lAi’j _Ai+%7j _Aifé,j
X —

02 A; —Ai7j+% — A

.1
L)J—3%

Using that notation, Perona and Malik [54] proposed the following approximation :

div(dVA); = 2 (d 6‘4) ;2 (d aA) 0 671 (d6™ As ) + 672 (d6%2 A; ;)

Ory \021) " 0z \ Oxa
0 djy O
~ di—%,j -S di-‘r%,j *A7/7] (A].)
0 d 0

|
1,J—3%

where the symbol * denotes the convolution and ST is the sum of the four weights
in the principal directions. Notice that we need to estimate the function d at
intermediate nodes. Our aim is to extend this approximation so that we could take
into account the values of A at the diagonal nodes :

0 diger O
div(dVA)g=ap | diy; —ST diyg | Ay

1—3)

0 dijg
diyjey 0 dipgjey
+ ap 0 -sP 0 * Ai’j (A2)
gy 0 iy

where ap and ap are two weights to be discussed, and SP is the sum of the four
weights in the diagonal directions. Approximation (A.2) is consistent if and only if

ap +2ap =1 (A3)

Now, there remains one degree of freedom. Two possibilities have been considered :

(ap,ap) = constant and for instance = <%, i) (A.4)
(ap,ap) = functions depending on d (See Figure A.1) (A.5)

Qualitative and quantitatives tests have been done to estimate different, possibili-
ties. We worked on the image restoration problem which permits a good apprecia-
tion of results. More precisely, for a given noisy image Iy, the problem becomes to
find I as the minimum of the following functional :

ir}f/Q(I—IN)2da:+ar/9¢(||VI||)dx

where the function ¢ verify hypotheses (3.13)-(3.14). Then, using the Theorem 4.3,
the problems is to find I and d; minimizing :

inf/(I—IN)2dac+of/ DIV I + T (b)de
Q Q

I,dr
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Fia. A.1l. ap = ap(0) is a /2 periodic function where 0 is the direction of the gradient of
d. Notice that ap can be deduced from the consistency condition is then computed thanks to the
consistency condition.

It is easy to check that we have the same kind of divergence term that we need to
discretize. We refer to [13, 37] for more details. The value of d} (: %) at

intermediate nodes is computed by interpolation (see [54]).

We tested these different discretizations on a noisy test image using quantitative
measures. We checked that (A.2) permits to restore identically edges in principal
or diagonal directions. Moreover, we observed that choosing ap adaptatively (A.5)
gave more precise results than (A.4). We used this approximation (A.5) in our
experiments.
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