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Abstract

Many problems that parasitoids face in nature are state-dependent. For
example, the optimal decision regarding encounters with already-parasitized
hosts often depends upon the egg load (egg state) of the focal organism.
Furthermore, many biologically relevant events (e.g., host encounters) oc-
cur with some probability. Thus, an appropriate model for analyzing such
problems is a stochastic state variable model, with Dynamic Programming
(DP) as the appropriate tool to derive an optimal policy (Together known as
SDP). In this paper, we consider two case studies where SDP models provide
solutions to parasitoid foraging problems. These include, optimal attacks on
target and non-target hosts in the context of biological control as well as op-
timal attacks on hosts of known size but unknown instar. Using these case
studies, we show a rather general form of DP, and its infinite horizon form
for which we discuss algorithmic solution methods, as the DP equation is
not constructive in that case. The application to life time processes induces
a slight generalization of classical infinite horizon DP. We also stress that,
using Kolmogorov’s equation, essentially the same computer code that lets
one compute an optimal policy can be used to compare its efficiency against
that of other policies, avoiding lengthy simulations.

1 Introduction

It is becoming increasingly clear that many parasitoid behaviors are state depen-
dent. As just a sample of many such relationships, Ueno (1999) and Sirot et al.
(1997) showed that oviposition decisions (superparasitism) depend upon eggload
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(egg state), Desouhant et al. (2005) showed that feeding decisions depend on nu-
trition state, Roitberg et al. (1993) demonstrated that host discrimination can be
a function of information state, while Wajnberg et al. (2006) showed that patch
leaving decisions are a function of age.

Of course, one could go on citing many other examples, but the important
question that emerges is: how does one incorporate such states into predictions of
parasitoid behaviour? The answer can be found in the form of Stochastic Dynamic
Programming models (Bellman 1957). Though these models were first developed
to solve problems in human economics, they have now been adapted to address
issues in natural non-human systems, including parasitoids, thanks to the efforts of
Clark & Mangel (2000), Houston & MacNamara (1999) and others. The models
take many forms but in general, optimal decisions are calculated based upon maxi-
mizing expected lifetime reproductive success (the most common fitness proxy see
Roitberg et al. 2001) as a function of current state(s). As noted above, this state
dependant theory has shown great utility for predicting a variety of parasitoid be-
haviours. In particular, of late dynamic programming models have been employed
to solve a number of parasitoid problems, including: (1) patch time allocation (see
review by Wajnberg 2006), (2) egg versus time limitation (Rosenheim 1999, Ellers
et al. 2000), (3) oviposition decisions (Mangel 1989) and (4) host feeding (Collier
1995).

Dynamic programming models have been reviewed elsewhere and, as such, we
refer readers to Houston et al. (1988) for background reading. Here we will use
this opportunity to show readers in detail how to formulate and analyze dynamic
programming models. To do so, we have chosen two classic problems in para-
sitoid behavioral ecology, optimal fidelity and optimal instar discrimination. These
problems provide a kind of window into state variable challenges that parasitoids
typically face. We shall also show how the same formulation, in terms of dynamic
state models, lets one replace Monte-Carlo simulations by a faster and more pre-
cise approach, namely Kolomogorov’s equation, which turns out to have a close
kinship with Bellman’s equation.

Fidelity

In biological control, one of the big questions that researchers face is the possibil-
ity of attacks on non-target hosts (Bigler et al. 2006). Thus, the key issue here is
fidelity i.e., will the agent restrict its attacks to targets (as chosen by the biocontrol
practitioner)? As noted above, there already exists considerable theory on optimal
host selection and this question neatly falls into that category i.e., are there con-
ditions where the parasitoid will attack (presumably) the lower quality, non-target
host? It is difficult to provide a general answer for biological control practitioners
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because this answer is likely to be context-dependent with the context here being
life history. However, as a simple starting point and drawing from Roitberg (2000)
we will consider two major categories of parasitoids, those that are proovigenic
versus those that are synovigenic. The former types are comprised of individuals
who begin adult life with a full complement of eggs and then deplete those eggs
over time through parasitizing hosts. The latter individuals continually mature new
eggs following eclosion. In the former case, each time an egg is laid, the para-
sitoid will move into the future with one less egg available than before oviposition
compared to the latter whereupon future egg availability will depend upon egg mat-
uration rates and ovarioles. Further, we must consider gregarious parasitoids i.e.,
individuals not only have to “decide” whether to accept or reject hosts but also with
acceptance they must decide how many eggs to lay in a given host (e.g., Hoffmeis-
ter et al. 2005). Here is the scenario that we consider: An individual forages within
a large non-depleting universe of hosts. When hosts are encountered, target hosts
are accepted with requisite clutch size decision but when non-target hosts are en-
countered, acceptance/rejection decisions are required. Below, we develop a theory
for non-target host acceptance decisions.

Size discrimination

Many parasitoids choose hosts on the basis of size (e.g., Wang & Messing 2004).
Size is a useful criterion because it often correlates well with nutrient content (Vin-
son & Iwantsch 1980) and host defensive ability (Gerling et al. 1990). However,
when parasitoids are koinobionts wherein their larvae exploit developing hosts,
then host instar is also extremely important due to differences in growth rates and
time limitations. This should not pose a problem for parasitoids that are host spe-
cialists because size and instar are highly correlated. However, when parasitoids
are generalists, they may encounter a vast range of different sized individuals
within the same instar. So, how should koinobiont parasitoids choose hosts?

This question arises from work being conducted by Henry et al. (2005, 2006).
Henry works with the parasitoid Aphidius ervi, a generalist wasp that attacks a
variety of aphids. It turns out that, regardless of host species, instars 2 and 3 are
the best hosts and 1 and 4 are often unsuitable. In addition, independent of host
species, the larger the aphid, the more dangerous that aphid is to A. ervi via his de-
fensive maneuvers, e.g. kicking. These two factors are interesting in of themselves
but they become complicated in that there is no obvious manner by which the par-
asitoid can determine instar across host species, especially if size is the criterion
employed. For example, for the pea aphid Acyrthosiphon pisum, the high quality
second instar is approximately the same size as the low quality fourth instar of the
foxglove aphid Aulacorthum solani and as noted above, Henry et al. 2005 suggests
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that A. ervi cannot identify instar directly and probably uses sized-based cues. As
such, there are six distinct size classes when one combines foxglove and pea aphids
of different instars. Let af(i) and ap(j) denote the i-th instar and the j-th instar of
foxglove and pea aphids respectively, the six classes are [af(1)]; [af(2)]; [af(3),
ap(1)]; [af(4), ap(2)]; [ap(3)]; [ap(4)]. The italicized classes above indicate pos-
sible misidentification of species, and could thus be problematic. So, what should
the parasitoid do? Of course, the problem is complicated by parasitoid state in that
identification errors are more costly when eggload is low than when it is high. We
develop a model that specifically i ncorporates possible misidentification into host
acceptance policy.

2 Egg laying decision problems

2.1 Fidelity: proovogenic gregarious parasitoids

Designing a (discrete-time) state variable model

Identify

1. the stages of the process,

2. the control variables, those that have to be “chosen” at each stage

3. the disturbances and the probability laws governing them,

4. the state variables, i.e. the necessary information at any given
stage to let one compute the future evolution of the system if the
future control and disturbance variables are known,

5. the dynamical equation giving the state at stage k+1 as a function
of state, control and disturbances at stage k.

Designing an dynamical optimization problem

With the state variable model, write the benefit accrued (or cost in-
curred) at each stage as a function of that stage’s variables and, if any,
the terminal benefit (or cost) as a function of terminal state. The crite-
rion to be maximized (or minimized) should be the sum of all of these.
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2.1.1 The model

We now describe the fidelity problem in the formalism of a state variable dynamic
system and a criterion to be maximized. Classically, the decisision variables them-
selves may depend on some current information. Here, the available information
at any stage will be the current state, a considerable simplification of the theory.
Dynamics Let

• t ∈ [0,∞) ⊂ R+ the current time, a state variable here,

• x ∈ {0, 1, . . . , X} ⊂ N the number of eggs available, a state variable,

• c ∈ {0, 1, . . . , x} the clutch size in a given host, the decision variable,

• h(c) the “handling time” it takes to lay a clutch of size c (with h(0) = 0),

• T , a random variable, the travel time to the next host encounter.

The variables t, x, c, and T take on new values for each of the encounters of
the parasitoid with a host. Let tk, xk, ck, and Tk be the value they have at the
encounter number k, k ∈ N. The whole sequence of the ck’s will be written as
{ck} and likewise for other variables.

Trivially, these variables obey the following dynamical equations:

tk+1 = tk + h(ck) + Tk ,

xk+1 = xk − ck .

Criterion Let

• ω ∈ {T ,NT } the nature of the host encountered, T arget or Non T arget,
a random variable (there could be an arbitrary number of host types in this
model),

• λT and λNT the probabilities that ω = T or ω = NT respectively,

• ξ(t) ∈ {0, 1} the life status indicator, equal to 1 if the parasitoid is alive at
time t, 0 if it is dead, a random variable,

• P (t) the probability that ξ(t) = 1, or the expectation of ξ,

• f(ω, c) the fitness gained, say the expected number of offspring, as a func-
tion of the nature of the host and the clutch size. It is assumed to be increas-
ing and concave, with f(ω, 0) = 0, and bounded by some positive fmax(ω).
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Again, we shall consider sequences of values of the variables {ωk}.
The “decision” to lay c eggs at a given stage may bring less fitness than f(ω, c),

because the parasitoid may die before it has laid its c eggs. We therefore consider
the conditional expected utility of that decision given that it is alive at time t. To
do so, introduce the ratio ρ defined as:

ρ(t, τ) =
P (t + τ)

P (t)

which is the probability of the parasitoid surviving until the time t + τ conditioned
on its being alive at time t. The conditional expected utility sought is then:

g(ω, t, c) =
c∑

`=1

[f(ω, `)− f(ω, `− 1)]ρ(t, h(`)) .

Obviously, one has:

∀ω, t, c, 0 ≤ g(ω, t, c) ≤ f(ω, c) ,

and therefore also:
∀ω, t, g(ω, t, 0) = 0 .

The foraging activity ends when the parasitoid dies, a random variable, so that
we do not know a priori the number of encounters to be considered, nor even a
bound on that number (although for a realistic set of data, a bound could be found
for any practical purpose). We therefore take the criterion to be maximized as

J(t0, x0; {ck}) = E
∞∑

k=0

ξ(tk)g(ωk, tk, ck) .

Parallel with Charnov’s patch leaving problem
The problem considered here is completely equivalent to Charnov’s classical patch
leaving problem (Charnov, 1976) for a solitary parasitoid, up to the exact shape of
the fitness function which may differ. As a matter of fact, we have the correspon-
dence shown in Table 1 (the function f̃ is defined hereafter):

Fidelity Patch leaving
Host Patch
Time h(c) to lay c eggs Time t spent on the patch
Type of host ω Quality of the patch
Fitness gain f(ω, c) Cumulative umber of eggs laid f̃(ω, t)
Travel time Travel time
Table 1: Parallel between the fidelity and patch leaving problems.
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The number of eggs laid in Charnov’s problem is classically given as a function,
here f̃ , of the time t spent on the patch. To relate it to the clutch size c, we no-
tice that h(c) being strictly increasing, to any given time t corresponds formally
a clutch size c = h−1(t) (the largest clutch size c such that h(c) ≤ t). Thus we
let f̃(ω, t) = f(ω, h−1(t)). Hence the analytic form commonly used in the patch
leaving problem has no reason to hold here, but the only important point in the the-
ory is that this function be concave. This is insured in the patch leaving problem
by search efficiency decrease due to patch depletion, and in the fidelity problem by
the law of decreasing return of eggs laid.

As a consequence, the work presented here may be viewed in a large extent as
an extension of that of Wajnberg et al. (2006) to proovigenic parasitoids, and we
treat it in a similar way.

2.1.2 Dynamic programming

From the above description, we can derive Bellman’s Dynamic Programming equa-
tion. Classically, we let:

G(t0, x0) = max
{ck}

J(t0, x0; {ck}) , (1)

and notice that the problem is stationary in the sense that G does not depend on the
number of the initial stage.

The decision variable ck may depend on xk and ωk, and on ξ(tk) which is
known as a consequence of Descartes’ law “cogito, ergo sum”, but not on Tk which
is not known at time tk. Hence, we get:

G(t, x) = Eω,ξ max
c≤x

ET [G(t + T + h(c), x− c) + ξ(t)g(ω, t, c)] .

Notice, first,, that there is no loss of performance in requesting that the decision
taken is the same whether the parasitoid is dead or alive, since our formulation
allows for a decision taken by a dead parasitoid but with no effect on the perfor-
mance. Hence, we may shift the Expectation operator in ξ to the right of the max
operator and inside the square bracket, resulting in:

G(t, x) = Eω max
c≤x

[ET G(t + T + h(c), x− c) + P (t)g(ω, t, c)] . (2)

In this equation, G(t, x) is the maximal expected fitness gained from time t
on, if x(t) = x. The equation means that the forager has to balance the benefit
expected from laying more eggs, i.e., increasing c and thus g(ω, t, c), against the
loss in future ability to gain fitness, measured through the decrease in the function
G due to the decreasing egg load x− c available.

7



Now, G(t, x) is an a priori expectation. If, say, the probability of being alive at
time t is very small, then G(t, x) will accordingly be very small. It turns out to be
preferable for some purposes to work with the conditional expectation, given that
the parasitoid is alive at time t. Let

F (t, x) =
1

P (t)
G(t, x) (3)

be that conditional expectation.
Dividing through equation (2) by P (t), we get:

F (t, x) = Eω max
c≤x

[ET ρ(t, T + h(c))F (t + T + h(c), x− c) + g(ω, t, c)] . (4)

Notice that, since ω assumes only two values, the expectation operator in ω can
be decomposed as:

F (t, x) = λT max
c≤x

[ET ρ(t, T + h(c))F (t + T + h(c), x− c) + g(T , c)]

+λNT max
c≤x

[ET ρ(t, T + h(c))F (t + T + h(c), x− c) + g(NT , c)].
(5)

That forms displays the fact that different decisions may be taken for different host
types, since there is a maxc, hence a separate choice of c, for each type.

Now, the test of fidelity is that, ∀c ∈ {1, . . . , x},

ET ρ(t, T +h(c))F (t+T +h(c), x−c)+g(NT , c) < ET ρ(t, T )F (t+T, x) , (6)

which means that for any non-zero clutch size, the expected fitness gained from
laying eggs in a non target host is less than that gained by bypassing this host.
However, the measure of the fitness gained is in terms of the function F , solution
of Bellman’s equation, so that performing this test requires to solve that equation.

2.1.3 Solving Bellman’s equation

The process of solving Bellman’s equation is usually a numerical one, since there
is no reason why there should exist a closed form solution for realistic data. This is
a functional equation, therefore not easy to solve. There are classically two algo-
rithms used to solve it, both iterative, called iteration on the value —or Howard’s
algorithm—, and iteration on the policies. (These are just names.) The second
one is known to converge faster, but it is so much more complex to program that
we shall stick here with the simpler Howard’s algorithm. To a mathematician, this
is a simple Picard iteration for the fixed point equation (2) or (4). It can also be
understood as the limit of a finite horizon Bellman iteration process as the hori-
zon becomes very large. It looks simpler written for G, but the fact that G may
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take very small values may make it numerically ill-behaved. If there is a possi-
bility of computing ρ(t, τ) with reasonable accuracy, even for “large” t, then the
following algorithm is better-behaved. We denote Fn, n = 0, 1, . . . the successive
aproximations of F .

F 0(t, x) = 0 ,

Fn+1(t, x) = Eω max
c≤x

[ET ρ(t, T + h(c))Fn(t + T + h(c), x− c) + g(ω, t, c)] .

(7)
The expectation in ω can be decomposed as in equation (5). Since c ranges

over a finite and presumably rather small set, the maximization can be performed
by simply computing the bracket for each possible value of c and keeping the best.
As for the expectation in T , it is with respect to a scalar variable, so that the most
efficient method is to use a simple integration scheme such as the trapezoidal rule.

We notice that this algorithm presents the desirable feature that all approxima-
tions Fn satisfy Fn(t, 0) = 0 for all t. Thus, so does the limit, as it should.

We offer the following theorem, which is a slight extension of a classical result
for Bellman’s stationary equation:

Theorem 1 If there exists r < 1 such that ρ(t, t+T ) is almost surely less or equal
to r, then

1. equations (2) and (4) have a unique bounded solution G or F , respectively,

2. these solutions coincide with the definitions (1) and (3), respectively, and the
maximization operator in (2) or, equivalently (4), yields the optimal strategy,

3. The sequence Fn converges uniformly to the unique solution of the corre-
sponding Bellman equation and so does the equivalent recursion for G.

An hypothesis that insures that ρ(t, T ) be almost surely bounded is the follow-
ing:

Hypothesis 1

1. T is almost surely larger than or equal to some positive T0,

2. P (t + T0)/P (t) ≤ r

The first of the above two properties suffices to insure convergence of Howard’s
algorithm in another realsitic case:

Theorem 2 If the lifetime of the parasitoid is almost surely less than a fixed pos-
itive number L, and if the first hypothesis above holds, then we have the same
conclusions as in theorem 1.
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Numerical experiments
We have conducted a limited set of numerical experiments to validate the method-
ology, and draw some early biological conclusions.

We have used the following parameters, that are not specific to any particular
system but are well within range of many parasitoids species: :

• computational horizon: 36 hours,

• handling time: 1 minute per egg (i.e. proportional to c),

• initial eggload ≤ 144,

• fitness law f(ω, c) = fmax(ω)(1− exp(−c/π)) with π = 2.5,

• cmax= 10 (level beyond which superparasitism would reduce the fitness gain
by threatening the survival of the host, or severely decreasing survivorship
of parasitoid larvae via competition),

• relative fitness value of target vs. non target hosts for a clutch of any given
size: 5,

• law of travel time: exponential with an expectation of 30 minutes, truncated
at T ≥ 1min,

• survival law: Weibull law with scale parameter: 12 hours, shape parameter:
4,

• frequency of target hosts vs. non targets: 4.

We stopped the algorithm when the precision has reached 0.01. The results are
depicted in figures 1 and 2.

There are several aspects in these results that are relevant to biological con-
cerns regarding non-target effects when the target (the pest insect) is common rel-
ative to non-targets favour and would be particularly pertinent to situations where
non-targets are rare, threatened species (Lynch et al. 2002). First, notice that, as ex-
pected, the optimal clutch size varies as a function of age and eggload. By contrast,
and similar to that of solitary parasitoids (Roitberg 2000), there are conditions un-
der which the optimal response to non-target hosts will be rejection. These are the
conditions that biological control workers should strive to create. Second, the opti-
mal clutch size for attacks on target hosts largely tracks eggload up the maximum,
is nearly independent of age for young but not old parasitoids, and almost always
exceeds that of optimal clutch size on non-targets, eggload constraints notwith-
standing. This is a good thing from a biological control perspective especially if
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damage to hosts (i.e. via mortality or fecundity) is clutch-size dependent. What the
figures also tell us is that parasitoid rejection of non-target can be accomplished
by releasing specialist biocontrol agents that have relatively low egg loads or are
long-lived, relative to egg load (cf. Louda et al. 2003). An important caveat is that
once the parasitoid has attacked some hosts the problem becomes both frequency
dependent and strongly linked to population dynamics.

2.1.4 The stationary case

We turn now to a simpler situation where we can derive more analytical results
from dynamic programming. Assume that,

1. the parasitoids are not egg-limited, having a large enough initial egg load,

2. the survival law is exponential P (t) = exp(−ρt), with a fixed intensity ρ,

and, to simplify the calculations, the less critical hypotheses that,

3. the time to lay eggs is proportional to the number of eggs laid, i.e. h(c) = hc,
h a positive constant,

4. the random variable T has a bounded support [0, Tmax].

Because of the first hypothesis, the egg state is no longer a factor, and F is not a
function of x anymore. Thanks to the second hypothesis, ρ(t, τ) = exp(−ρτ) with
a fixed parameter ρ, thus it is independent from t. It is convenient to introduce the
parameter

Θ = Ee−ρT .

Then F will also be constant, satisfying the stationary Bellman equation

F = Eω max
c

[Θe−ρhcF + g(ω, c)] . (8)

If we accept the hypothesis of decreasing return of the eggs laid in a single host,
the maximum in (8) above is reached at:

c∗(ω) = min{c | Θe−ρhcF + g(ω, c)−Θe−ρh(c+1)F + g(ω, c + 1) ≤ 0} .

Or, using the definition of g above, and after a simple calculation

c∗(ω) = min{c | f(ω, c + 1)− f(ω, c) ≤ ΘF (eρh − 1)} .
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Figure 1: The optimal clutch size from attacks on target hosts by proovigenic par-
asitoids as a function of egg load and age.

Figure 2: The optimal clutch size from attacks on non-target hosts by proovigenic
parasitoids as a function of egg load and age.
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In order to investigate the effect of the mortality rate, we expand the above
equations in the neighborhood of ρ = 0, hence letting exp(ρh) ' 1 + ρh. The
above eqution becomes:

c∗(ω) = min{c | f(ω, c + 1)− f(ω, c)
h

≤ ΘρF} . (9)

Let the optimal c be c∗(ω), and write c̄ for its expectation, and ḡ = Eωg(ω, c∗(ω))
for the expectation of g. It is a simple matter to see that (8) now reads

F = FΘ(1− ρhc̄) + ḡ .

Furthermore, the hypothesis that T is bounded by some Tmax lets us expand Θ '
1− ρT̄ where T̄ is the expected value of T . As a result, we get

ρF ' ḡ

T̄ + hc̄
. (10)

This equation has several consequences.
First, notice that, as ρ goes to zero and if we let γ be the limit foraging rate,

F converges to
∫∞
0 exp(−ρt)γdt = γ/ρ, so that ρF converges to γ, while g

converges to f , and, of course, Θ converges to 1. Hence, in the limit as ρ → 0,
equations (9) and (10) are just just Charnov’s Marginal Value Theorem (MVT),
stating that the parasitoid should leave the resource it is exploiting when the intake
rate is about to drop below the optimal overall mean intake rate in the environment.
Thus for very small mortality rate, simple rate maximizing is optimal (Mangel
1989).

Second, it shows that, as ρ varies, ρF can only decrease, since the ratio f̄/(T̄ +
hc̄) is maximal at the MVT solution. Hence, since Θ is also decreasing with ρ, in
equation (9), the right hand side (r.h.s.) decreases as ρ is increased from 0 to a
positive value. According to the law of diminishing return, this means that c∗(ω)
has to increase for all types of hosts.

2.1.5 Evaluating the selective pressure

The “optimal” behaviour determined by the above theory is more likely to ap-
proximate the real behaviour of parasitoids in that it gives likely a larger fitness
superiority over simpler behaviours. It is therefore important to be able to evaluate
this difference. The Dynamic Programming theory gives us G(0, x0) which is the
expected fitness acquired under the optimal strategy for an initial egg load of x0.
We need now to evaluate the fitness gained using other strategies. (e.g., Roitberg
& Mangel 1997)
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A classical means of evaluating this is via Monte-Carlo simulation runs with
the assumed simpler strategy c(ω, t, x). We note here that there is a simpler, faster,
and more precise way of doing that. According to Kolmogorov’s equation, the
expected efficiency of a given strategy c(ω, t, x) is a solution of the same equation
(2), without the maxc operator, when plugging our c(ω, t, x) in the right hand side
instead of the optimal c∗. As a consequence, the corresponding Howard’s algorithm
converges to the desired fitness expectation. The same computer code can be used,
replacing the max operation by the choice of the given decision strategy. It is
therefore much faster and more acurate in that role. (With some more work, one
may also obtain the variance of the fitness gained by a similar procedure.)

Another valuable check would be to compare the optimal fitness gain with the
optimum obtained if the parasitoid does not discriminate T from NT hosts. This
is obtained by almost the same computation, just interchanging the max and E
operators in the r.h.s. of Bellman’s equation (4). See section 2.3 for more details.

With the parameters chosen in figures 1 and 2, the corresponding optimal clutch
size for the “blind” parasitoids is shown in figure 3.

Figure 3: The optimal clutch size from attacks on all hosts by a so-called “blind”
proovigenic parasitoid that cannot discriminate target from non-target hosts. The
optimal clutch varies as a function of egg load and age.

The ratio of fitness obtained in the blind behaviour to that of the optimal be-
haviour is above 98%, indicating that the “optimal” behaviour has very little selec-
tive benefit. This result, though, is very much dependant on the parameters. Figure
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4 gives a plot of this dependance.

Figure 4: Relative efficiency of a “blind” parasitoid that cannot discriminate target
from non-target hosts as a function of initial egg load

We see that, e.g., with a smaller initial eggload of 30, this ratio drops below
90%.

2.2 Fidelity: synovigenic gregarious parasitoids

We turn now to the case of a parasitoid still having a predetermined egg load, but
immature. Eggs mature at a fixed rate of m eggs per unit time, and mature eggs are
available to be laid. We assume that egg maturation does not impact the mortality
rate, but see Roitberg (1989).

2.2.1 Model and dynamic programming

Let y(t) denote the number of immature eggs left at time t, and y0 = y(0). Since
we assume that the egg maturation rate is constant, we have:

y(t) = max{y0 −mt, 0} .

As a simple function of t, we do not need to make it an extra state variable. We shall
write the dynamics in terms of the “state” variables t and x, the control variable c
and the random variable T . Let for any τ

δ(t, τ) = min{y(t),mτ} = min{max{y0 −mt, 0},mτ} .

This expression looks awkward, but it can be interpreted as a “saturation” function:

δ(t, τ) =


0 if y0 −mt ≤ 0 ,
y0 −mt if 0 ≤ y0 −mt ≤ mτ ,
mτ if y0 −mt ≥ mτ .
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The dynamics are now

tk+1 = tk + h(ck) + Tk ,

xk+1 = xk − ck + δ(tk, h(ck) + Tk) .

And we restrict ck to be no more than xk.
Two comments are in order here. On the one hand, xk is no longer an integer

here, since the products mtk and m(h(ck)+Tk) are not integers. Yet, the constraint
ck ≤ xk is correct, insisting that ck is an integer. That way, an egg “partially
matured” is not counted as available.

On the other hand, there is a slight error here, since we restrict ck to be no
more than the number of available mature eggs, but this holds at the beginning of
the oviposition on the current host only. It neglects eggs that might mature during
the oviposition. Yet, this should be a very good approximation for most systems
(Godfray 1994).

If there is no lower bound on possible values of the random variable T , we
cannot give an a priori bound on the number of host encounters. So we, again, use
infinite-stage dynamic programming. Using the same notations as previously, the
dynamic programming equation now reads

F (t, x)=Eω max
c≤x

ET [ρ(t, h(c)+T )F (t+h(c)+T, x−c+δ(t, h(c)+T ))+g(ω, t, c)].

The numerical procedure and convergence theorems follow as previously, mutatis
mutandis.

Here again, we have run a few numerical experiments to validate the theory.
We have used the same parameters as for the proovigenic case, with furthermore
a maturation rate of one egg per 10 minutes. Results are given in figures 5 and 6.
What we now see is that,, qualitatively, the clutch size policies for attacks on target
and non target hosts is similar but optimal clutch size is almost always lower on
non-targets. The contrast in policies for these gregariouis synovigenic vs. proovi-
genic parasitoids is analagous to the significant differences Roitberg (2000) found
for solitary wasps with different reproductive strategies. Once again, we find that
there are abrupt changes or step functions in optimal clutch size due to the inter-
action between egg maturation rates and expectation of life for synovigenic par-
asitoids compared to the nearly monotonic policies when individuals are proovi-
genic and, as before, we caution against release of such organisms without very
thorough studies of host acceptance policies.

2.3 Size acceptance policy

We now turn to a problem with imperfect information, but easy to handle. In that
problem, we deal with a solitary parasitoid, i.e., there is no clutch size decision to
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Figure 5: The optimal clutch size from attacks on target hosts by synovigenic par-
asitoids as a function of egg load and age.

Figure 6: The optimal clutch size from attacks on non-target hosts by synovigenic
parasitoids as a function of egg load and age.
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take, only one egg can be laid in each host. The only decision, thus, is to accept
or to reject it. The new feature of this problem is that there are several classes
of hosts, e.g., size classes, and in each class there are several types of hosts, e.g.,
different instars of different species with the same size. The classes need not be
disjoint, but their union must be the whole set Ω of types. This is because, while
every type belongs to at least one class, some may have varying characteristcs
among individuals that make it possible to belong to one class or another. The
parasitoid is assumed to be unable to discriminate the types within the class of a
host it encounters. Yet, the expected fitness gained from laying an egg in a host of
a given class may vary widely across types within the class.

We may notice that the comparison strategy proposed in subsection 2.1.5 is of
this nature. It amounts to have a single class of hosts for both target and non target
hosts.

2.3.1 The model

We use similar variables and notations as previously, with the following differ-
ences.

• Let Ω denote the (finite) set of possible types.

• There are n classes of hosts, which are subsets Ωi of the set Ω of types.

• The probability of encountering a host of class i is λi,

• The probability of a host of class i being of type ω is µi(ω), with µi(ω) > 0
if and only if ω ∈ Ωi.

• The fitness gain expected from laying an egg f(ω) only depends on the host
type ω.

The variables t, x, h (now fixed), and T are as previously, as well as the life
probability P (t), the conditional probability ρ(t, τ) = P (t+ τ)/P (t) of surviving
from time t to time t + τ , and

g(ω, t) = f(ω)ρ(t, h)

the conditional expected fitness gain of deciding to lay an egg, taking into account
the possibility that the parasitoid dies before finishing its oviposition.

We let Gi(t, x) be the expected future fitness gain when attacking a host of class
i at time t with an egg complement of x. The dynamic programming equation is
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now

Gi(t, x) = max
{ n∑

j=1

λjET Gj(t + T, x) ,

∑
ω∈Ωi

µi(ω)P (t)g(ω, t) +
n∑

j=1

λjET Gj(t + h + T, x− 1)
}

.

This form clearly displays the fact that the optimal policy, i.e. reject the host if
the first term in the max operation is larger, accept it if the second term is larger,
depends on the class i of the host, but not on its precise type ω.

As previously, it is possible, and may be advisable, to use the conditional ex-
pected gain Fi(t, x) = Gi(t, x)/P (t) instead of Gi(t, x). Moreover, introducing
the expected return function F (t, x) =

∑
i λiFi(t, x), we easily derive from the

above that it satisfies

F (t, x) =
n∑

i=1

λi max
{

ET ρ(t, T )F (t + T, x) ,∑
ω

µi(ω)g(ω, t) + ET ρ(t, h + T )G(t + h + T, x− 1)
}

.

(11)
Again, for each class i, the optimum decision is to lay an egg if the second term
in the max operation is larger. We see that, not unexpectedly, the only class de-
pendent term in these equations is the expected utility of deciding to lay an egg
knowing the class i of the host,

∑
ω µi(ω)g(ω, t).

The derivation of Howard’s algorithm to numerically solve that equation and
its convergence proof goes as in the preceding section. The graphics of figures 5
and 6 show results of a special case of that theory, with only one size class.

3 Final remarks

Parasitoids are complex organisms that display a great deal of adaptive plasticity to
circumstances (Godfray 1994). In many cases those circumstances or conditions
are state dependent. In this chapter we have shown that this plasticity can be pre-
dicted by way of dynamic programming models. How might we use such a tool
when working with parasitoids? When it comes to their use in biological control,
the key is to elucidate the aforementioned plasticity of individual insects in light
of their effects at the population or community level (e.g. impact of parasitoid
clutch size on pest population dynamics – Heimpel 2000). This scaling up from
the individual to the population level is made more difficult by the extraordinary
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range of behaviors that parasitoids can display. However the task is manageable if
the individual behaviors can be assembled into a kind of policy that is embedded
within population-level models (e.g. Mangel and Roitberg 1992). Roitberg (2007)
provides a list of parasitoid-based state-dependent opportunities for applied behav-
ioral ecologists working in agricultural settings that range from mass production of
parasitoids to pre-release conditioning.

We close by issuing a plea for theoreticians and experimental lab and field par-
asitoid biologists to work together on parasitoids. Our models clearly show that
parasitoid behavior can be greatly affected by physiological constraints and envi-
ronmental conditions thus the utility for such models in biological control relies
on a good understanding of those constraints and conditions. Likewise our models
point to novel experiments and approaches for experimental biologists that might
otherwise be ignored.
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5 Appendix

5.1 Proof of theorem 1

We work with equation (4) and algorithm (7). By its very definition, F is a bounded
function. We view equation (4) as a fixed point equation in the space C0 of bounded
continous functions, and algorithm (7) as a Picard sequence for this equation. Items
1 and 3 of the theorem will therefore be a consequence of Banach’s fixed point the-
orem, if we can prove that the r.h.s. of (4) is a contraction in a norm for which
C0 is complete. As is classical, we choose the norm of the uniform convergence:
‖F‖ = sup(t,x)∈R2

+
|F (t, x)|. Item 2 is then a consequence of Dynamic program-

ming theory.
We are left with the task of proving that the application F 7→ K(F ) with

K(F )(t, x) = Eω max
c≤x

[ET ρ(t, T + h(c))F (t + T + h(c), x− c) + g(ω, t, c)]

is a contraction in C0. Let also

H(F )(ω, t, x, c) = ET ρ(t, T + h(c))F (t + T + h(c), x− c) + g(ω, t, c) .

Let therefore V and W be two bounded continuous functions. We seek a uni-
form bound to

∆(t, x) = |K(V )(t, x)−K(W )(t, x)| .

We have

∆(t, x) = |Eω maxcH(V )(ω, t, x, c)− Eω maxcH(W )(ω, t, x, c)|
≤ Eω|maxcH(V )(ω, t, x, c)−maxcH(W )(ω, t, x, c)| .

For any two bounded continuous functions v(c) and w(c), it always holds that
|maxc v(c)−maxc w(c)| ≤ maxc |v(c)−w(c)|. Using this and the monotonicity
of the mathematical expectation operator, and then the monotonicity of the max
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operator, we get

∆(t, x) ≤ Eω maxc |H(V )(ω, t, x, c)−H(W )(ω, t, x, c)|
= Eω maxc |ET ρ(t, T + h(c))V (t + T + h(c), x− c)−

ET ρ(t, T + h(c))W (t + T + h(c), x− c)|
≤ Eω maxc ET ρ(t, T + h(c))|V (t + T + h(c), x− c)−

W (t + T + h(c), x− c)| .

We have T + h(c) ≥ T ≥ T0 almost surely, by hypothesis, and therefore, almost
surely, ρ(t, T +h(c)) ≤ ρ(t+T0) ≤ r. By definition of the norm we have endowed
C0 with, |V (t + T + h(c), x− c)−W (t + T + h(c), x− c)| ≤ ‖V −W‖. Hence
we end up with ∆(t, x) ≤ r‖V −W‖, and taking the supremum in (t, x)

‖K(V )−K(W )‖ ≤ r‖V −W‖ ,

showing that K is indeed a contraction, and the theorem is proved.

5.2 Proof of theorem 2

We assume now that for t ≥ L, P (t) = 0, and also that T ≥ T0 > 0 almost surely.
We have rather work with the recursion for G: G0(t, x) = 0,

Gn(t, x) = Eω max
c≤x

[ET Gn−1(t + T + h(c), x− c) + P (t)g(ω, t, c)] .

Substitute for Gn−1 in the r.h.s. in terms of Gn−2 using the same recursion.
This yields

Gn(t, x) = Eω1 max
c1≤x

{
P (t)g(ω1, t, c1)+

ET1Eω2 max
c2≤x−c1

[
P (t + T1 + h(c1))g(ω2, t + T1 + h(c1), c2)+

ET2G
n−2(t + T1 + T2 + h(c1) + h(c2), x− c1 − c2)

] }
.

We introduce the notation, for all integer k,

θk = t +
k∑

i=1

(Ti + h(ci))
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and carry out this substitution recursively for ` steps, to get

Gn(t, x) = Eω1 max
c1≤x

{
P (t)g(ω1, t, c1)+

ET1Eω2 max
c2≤x−c1

[
P (θ1)g(ω2, θ1, c2)+

ET2Eω3 max
c3≤x−c1−c2

(
P (θ2)g(ω3, θ2, c3)+

...
ET`−1

Eω`
max

c`≤x−
P`−1

k=1 ck

[P (θ`−1)g(ω`, θ`−1, c`)+

ET`
Gn−`(θ`, x− c1 − . . .− c`)] . . .

) ] }
.

It follows from the hypothesis that T ≥ T0 almost surely that we may restrict the
expectations with respect to T to T ≥ T0. But then, for ` such that `T0 ≥ L, both

P (t + T1 + . . . + T` + h(c1) + . . . + h(c`)) = 0

and thus

Gn−`(t + T1 + . . . + T` + h(c1) + . . . + h(c`), x− c1 − . . .− c`) = 0,

so that the above expression can be written without its last term. But then, the r.h.s
is independent from n, showing that the recursion reaches a steady state in no more
than ` steps. The solution of the dynamic programming equation is therefore

G(t, x) = Eω1 max
c1≤x

{
P (t)g(ω1, t, c1)+

ET1Eω2 max
c2≤x−c1

[
P (θ1)g(ω2, θ1, c2)+

ET2Eω3 max
c3≤x−c1−c2

(
P (θ2)g(ω3, θ2, c3)+

...

ET`−1
Eω`

max
c`≤x−

P`−1
k=1 ck

[P (θ`−1)g(ω`, θ`−1, c`)] . . .
) ] }

.

Although not needed, it may be a useful exercize to place this back in the r.h.s.
of equation (2), and check that, upon shifting all mute indices by one, we recover
identically the same expression.

This shows the theorem, except for the uniqueness of the solution of (2). This
uniqueness follows from the remark that, using ρ(t, t + T0) < 1 suffices to show
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that the mappingK of the previous proof still satisfies a weak contraction property:
for all V,W in C0, ‖K(V ) − K(W )‖ < ‖V − W‖, which suffices to get the
uniqueness (if not the existence) of the fixed point.
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