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Abstract We consider the question of eradicating disease in plants through
the optimal usage of clean seeds. Optimal control theory is used to set up
optimization of plant disease S-I model.

1 Introduction

We consider the problem of optimally controlling vectored viral diseases in
plant populations, which hamper the production of staple food crops especially
in lesser developed countries. Examples are Cassava production, and Cassava
Mosaic virus which is spread by whiteflies.

Traditionally control strategies used to combat viral diseases in vegetatively
propagated crops include control of vectors by insecticides, roguing or removal
of infected plants, breeding plants to be resistant to the virus, using clean
seeds and using healthy planting material for vegetative propagation.

Using mathematical modeling and analysis, we consider the question of
how to control clean seed usage while optimizing revenue from harvesting of
both healthy and infected plants. Using a continuous time S − I model based
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on ordinary differential equations, we divide the host plant population into
two compartments; susceptible to disease or healthy plant compartment, S,
and infected plant compartment I. We assume that the viral disease is trans-
mitted directly, which in the case of a vectored disease, could be interpreted
as a model in which the vectors are at a quasi-equilibrium. We assume that
growers are not able to detect between healthy and infected seeds and so both
are used to propagate the host plant, so that the model incorporates vertical
transmission via the usage of infected seeds. Both the healthy and infected
plants are harvested though we assume that the infected plants are worth less
per unit price than the healthy plants. Using the mathematical theory of op-
timal control we optimize over the revenue from harvesting by controlling the
fraction of clean seeds that are used in planting.

2 S − I Model of Plant Disease with Clean Seeds and Harvesting

PUT the full van den Bosch et al 2006 model with reversion r and roguing
ρ and p the probability to detect that a seed is infected to explicitly show
that our model is a simplification of vdB’s model with (r = ρ = ω = 0) BUT
adding vertical transmission ν that they implicitly assumed equal to 1. Try to
generalize our approach to p > 0.

PUT the equivalent I dynamics and criterion equations to make explicit
the different with optimal harvesting models in fisheries?

We consider a plant disease model with clean seed usage that is a modifica-
tion of the model presented in [1]. Our model is an S−I model with harvesting
that includes vertical transmission and use of clean seeds. The model equations
for the S and I compartments are given as

dS

dt
= σφ+ σ(1− φ)

(1− ν)I + S

N
− µS − βIS, (1a)

dI

dt
= σ(1− φ)

νI

N
− µI + βIS, (1b)

where N = I + S is the total density of the plant host, with S and I, the
density of susceptible, and infected hosts, respectively. We incorporate density
dependent direct transmission of disease.

Descriptions of the variables and parameters in the S−I model are given in
Table 1 with default values used in our simulations and corresponding ranges
of values.

The basic reproduction number for this model is

R0 = (1− φ)ν︸ ︷︷ ︸
vertical transmission

+
β

µ︸︷︷︸
horizontal transmission

, (2)

and can be seen as the sum of two modes of transmission of disease.
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Variables/ Description Range Default
Parameters of Values Value
S Susceptible Plant Population density [0, 1]
I Infected Plant Population density [0, 1]
N Total Plant Population density [0, 1]
φ Fraction of in-vitro seeds used in replanting [0, 1]
σ Replanting Rate [0,∞) 1
µ Harvest Rate [0,∞) 1
β horizontal transmission rate [0, βs] 2
ν vertical transmission rate [0, 1] 2

3
or 1

pS Profit from selling uninfected plants [0,∞) 3
pI Profit from selling infected plants [0,∞) 0
c Unit Cost of using in-vitro seeds [0,∞) 1
PS End profit of selling remaining uninfected plants [0,∞) 0 or 2
PI End profit of selling remaining infected plants [0,∞) 0

Table 1 List of variables and parameters in the S − I model (Equation 5) and objective
functional (Equation 4).

Our goal in this paper is to look at the optimal control problem with control
variable φ(t), for which the objective functional

J(φ(·)) = PSS(T ) + PII(t) +

T∫
0

[pSµS(t) + pIµI(t)− cσφ(t)] dt (3)

is maximized. Thus, our objective if to maximize revenue by controlling the
introduction of uninfected in-vitro seeds. The objective functional represents
the total profit from the patch of crops. It contains the total profit from the
sale of the healthy plants at the final time, selling of both healthy and infected
crops over the season, minus the cost of replenishing harvested crops through
in-vitro seeds.

In the sequel, we will consider two subcases, 1) PS = 0 (we don’t care
about the disease prevalence in the end), and 2) PS > 0.

Assuming σ = µN (there are as many plants sowed as plants harvested),
we have from the equation for the total plant density,

dN

dt
= σ − µN = 0 ,

that N is a constant. Assuming N = 1 without loss of generality, we have
µ = σ. Then I = 1 − S, and the state equations and the optimal control
problem simplify to maximizing

J(φ(·)) = PSS(T ) + PI(1− S(T ))

T∫
0

[pSµS(t) + pIµ(1− S(t))− cµφ(t)] dt .

(4)
subject to the state equation

dS

dt
= (µφν − βS + µ(1− ν)) (1− S) . (5)
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The optimal control problem in this form looks similar to the problem of opti-
mal harvesting of a logistically growing population. We can rewrite Equation 4
in the form

J(φ(·)) = (PS − PI)S(T ) + (PI + TµpI) +

T∫
0

[(pS − pI)µS(t)− cµφ(t)] dt

From this we determine that maximizing this objective functional is the same
as maximizing the functional

J(φ(·)) = (PS − PI)S(T ) +

T∫
0

[(pS − pI)µS(t)− cµφ(t)] dt .

Therefore, without loss of generality, we assume that both pI = 0 and PI = 0.
In the case where either of these quantities is not zero, we can instead consider
PS or pS to be the difference in the cost of clean plants and the cost of infected
plants, in the case of terminal payoff and running payoff respectively.

3 Maximizing the long-term running payoff

In this section, we are interested in maximizing

¯̀(φ) = pSS̄(φ)− cφ

with respect to φ ∈ [0, 1], where S̄(φ) is the equilibrium value asymptotically
reached by

dS

dt
= (µφν − βS + µ(1− ν))(1− S) .

There are two equilibrium values of S, either S̄ = 1, or S̄ =
µ

β
(φν + (1− ν)),

that are reached depending on whether R0 < 1 or R0 > 1, respectively. We
can rewrite the S equation as

dS

dt
= β(S̄ − S)(1− S). (6)

with S̄ = 1+
1−R0

R
(EE). Thus, S̄ exists and is biologically feasible whenR0 >

1. In this case, the equation for S indicates that S̄ is locally asymptotically
stable, while S = 1 is unstable. When R0 < 1, S = 1 (DFE) is the only
equilibrium that is biologically feasible and is stable.

To analyze the combined effects of horizontal and vertical transmission on
the disease as well as the optimal revenue we consider the ratio R/ν, where
the quantity

R :=
β

µ
. (7)

The quantity R/ν is the ratio of the rates of horizontal versus vertical trans-
mission and will be important in the analysis of optimal revenue.
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3.1 Dynamics of the epidemic model

In this section, we analyze the S− I model for its equilibria. Two cases are to
be distinguished:

(A)
R

ν
=

β

µν
> 1: In this case, S asymptotically reaches the endemic equilib-

rium (EE), S̄ =
µ

β
(φν + (1− ν)) for all φ ∈ [0, 1]. In particular, for φ = 1,

S̄ = µ/β = 1/R0 = 1/R < 1, meaning that the prevalence of the disease is
Ī = 1− 1/R > 0, i.e. one cannot get rid of the disease.

(B)
R

ν
=

β

µν
< 1: Here S attains the EE, S̄ =

µ

β
(φν + (1 − ν)) over the

interval φ ∈
[
0,
R

ν

)
only. For φ ∈

[
R

ν
, 1

]
, S approaches the disease free

equilibrium (DFE), S̄ = 1, meaning that the disease goes extinct. That is,

φ =
R

ν
is sufficient to get rid of the disease.

In either case, in absence of control (φ = 0), then S̄ =
1− ν
R

, meaning that

the pathogen will invade the entire plant population when there is full vertical
transmission, i.e. ν = 1.

φ0 1

1

S

EE

DFE

R
ν

φ0 1

1

S

EE

DFE

R
ν

Fig. 1 Dynamics of the S−I disease model. DFE = Disease free equilibrium, EE = endemic
equilibrium. The biologically reasonable region is in white. (Left) Case B: Dynamics for the
case R/ν < 1. (Right) Case A: Dynamics for the case R/ν > 1.

3.2 Static optimization

In this section, we consider static optimization of the problem. In this case, the
relative unit price of healthy plants versus clean seeds also becomes important,



6 Bowen, B. et al.

and so we define the quantity

r :=
pS
c
. (8)

We start with distinguishing the same two cases as in the dynamics of the
S − I model. Within each case, we encounter subcases that depend on the

relative values of r and
R

ν
.

(A) R/ν =
β

µν
> 1. Then, for all φ ∈ [0, 1], we have

¯̀(φ) = pS
µ

β
(φν + (1− ν))− cφ

= φ

(
pS
µ

β
ν − c

)
+ pS

µ(1− ν)

β

= φc
(rν
R
− 1
)

+
psµ(1− ν)

β
.

(9)

Two sub-cases are then to be distinguished:

(A1)
R

ν
< r. Then φ? = 1.

(A2)
R

ν
> r. Then φ? = 0.

(B)
R

ν
=

β

µν
< 1. Then, we have

¯̀(φ) =


φc
(rν
R
− 1
)

+ pS
1− ν
R

for φ ∈
[
0,
R

ν

)
,

c(r − φ) for φ ∈
[
R

ν
, 1

]
.

We note that ¯̀(φ) is continuous over [0, 1]. The derivative of ¯̀w.r.t. φ then
is:

¯̀′(φ) =


c
(rν
R
− 1
)

for φ ∈
(

0,
R

ν

)
,

−p3 < 0 for φ ∈
(
R

ν
, 1

)
.

Note that ¯̀′(φ) has a discontinuity at φ =
R

ν
. Two sub-cases are then to

be distinguished:

(B1) If
R

ν
< r, then ¯̀′(φ) > 0 for φ ∈

[
0,
R

ν

]
and ¯̀′(φ) < 0 for φ ∈

(
R

ν
, 1

]
.

Therefore, φ? =
R

ν
.

(B2) Otherwise (if
R

ν
> r) then ¯̀′(φ) < 0 for φ ∈ [0, 1]. Therefore, φ? = 0.



Optimal Control of a Plant Disease Model 7

φ0 1R
ν

l∗

l(φ)

φ
0

1
R
ν

l(φ)

R
ν

Fig. 2 Long term payoff for different values of r. (Left) Case B1: the maximum occurs at

φ =
R

ν
. (Right) Case B2: the maximum occurs at φ = 0.

R
ν

0 1

1

r

φ∗ = 0
EE

φ∗ = 1
EE

φ∗ = R
ν

DFE

Fig. 3 Results of static optimization: The

(
R

ν
, r

)
plane is divided into distinct regions

with differing control strategies. The epidemiologic parameter R
ν

represents the ratio of
horizontal transmission to vertical transmission, while the economic parameter r represents
the ratio of the cost of clean plants to the cost of clean seeds.

3.3 Discussion of Static Optimization Results

The results from static optimization can be summarized in the parameter plane(
r,
R

ν

)
as below.

(S1) φ? = 0 if
R

ν
> r.

(S2-1) φ? = 1 if
R

ν
< r and

R

ν
> 1.

(S2-2) φ? =
R

ν
if
R

ν
< r and

R

ν
< 1.
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Figure 3 displays this summary by dividing the

(
R

ν
, r

)
plane into distinct

regions of differing control strategies. Biologically we may interpret the results
from static optimization as follows:

(S1) If
R

ν
> r then the disease transmission rate (β/µ) is too large relative to

the the plant renewal rate or vertical transmission (ν), to make it worthy
to use clean seeds (which have a relative cost 1/r). Hence φ? = 0 and the
disease is left uncontrolled.

(S2) If
R

ν
< r then it is worthy to use clean seeds, and the fraction to be used

depends on the relative importance of horizontal versus vertical transmis-
sion

(S2-1) If R > ν, then the optimal strategy is to use as many clean seeds
as possible (φ? = 1) to minimize the prevalence of the disease, which
remains at an endemic equilibrium. Thus, when horizontal transmission
dominates vertical transmission, we use all clean seeds.

(S2-2) If R < ν, then it is possible to get rid of the disease by using an

intermediate proportion of clean seeds (any φ ∈
[
R

ν
, 1

]
). Since clean

seeds are costly, the optimal proportion of clean seeds is φ? =
R

ν
, and

the disease goes extinct. Thus, the fraction of clean seeds to use is
exactly the ratio of the rates of horizontal to vertical transmission.

Prospects

Case (i) is discouraging. One may wonder whether subsidizing clean seeds may
help controlling the disease. Let s be the discount on the unit price of clean
seeds due to the subsidies, i.e. the unit price of clean seeds is now c(1 − s)
instead of c. Thus, r = pS/c is now replaced with r/(1− s), and the condition
R

ν
< r becomes

R

ν
<

r

1− s
.

Therefore, the discount due to subsidies should exceed a critical fraction, i.e.,

s > 1− rν

R
.

4 Optimal Control equations

Given the previous system and objective functional, we get the following
Hamiltonian:

H = µ [pSS(t)− cφ(t)] + λ(t) [(νµφ(t)− βS(t) + µ(1− ν))(1− S(t))] . (10)
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This gives us the following adjoint equation:

dλ

dt
= −∂H

∂S
= −µpS + λ(t)[(1− S(t))β + (νµφ(t)− βS(t) + µ(1− ν))] . (11)

Since the Hamiltonian is linear in φ, we define

ψ(t) =
∂H
∂φ

= µ (−c+ λ(t)(1− S(t))ν) , (12)

and let

φ?(t) =

{
0 if ψ(t) ≤ 0
1 if ψ(t) > 0

.

According to Pontryagin’s maximum principle, we have

λ(T ) = PS .

Defining ST = S(T ),

ψ(T ) = −µc+ PS(1− ST )νµ .

Let

ŜT = 1− c

νPS
.

If ST > ŜT , then ψ(T ) < 0 and φ?(T ) = 0. Otherwise (if ST < ŜT , which
implies ŜT > 0 or equivalently νPS > c), ψ(T ) > 0 and φ?(T ) = 1.

From now on, we focus on the φ?(T ) = 0 case to derive a switching curve
in the (t, S) plane.

As long as φ = 0 (in backward time), we have, introducing a dot to denote
differentiation w.r.t. time,

Ṡ = (1− S)(−βS + µ(1− ν)) ,

λ̇ = λ(β(1− 2S) + µ(1− ν))− µpS , λ(T ) = PS ,

and

ψ = µ [νλ(1− S)− c]⇐⇒ νλ(1− S) =
ψ

µ
+ c .

This yields

ψ̇ = νµ
[
λ̇(1− S)− Ṡλ

]
,

= νµ(1− S) [λ(β(1− 2S) + µ(1− ν))− µpS − λ(µ(1− ν)− βS)] ,

= νµ(1− S) [λβ(1− S)− µpS ] ,

= νµ(1− S)

[
β

ν

(
ψ

µ
+ c

)
− µpS

]
,

= µ(1− S)

[
β

µ
ψ + βc− µνpS

]
,
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with ψ(T ) = µ[νPS(1 − ST ) − c] < 0 (since we assume φ?(T ) = 0). One may
notice that

ψ̇(T ) = νµ(1− ST )(βPS(1− ST )− µpS) < 0

if R/ν < r.
Let t? be a switching time such that ψ(t?) = 0. Then

ψ̇(t?) = µ(1− S(t?)) [βc− µνpS ] .

Consequently, switching from φ = 0 to φ = 1 (in backward time) is possible iff

βc− µνpS < 0⇐⇒ R

ν
< r .

(The adjoint and state variables are necessarily continuous, so the switch func-
tion ψ is continuous as well.) As a corollary, the condition R/ν > r implies
that the switch function ψ never crosses zero and so the optimal control is
φ? = 0 for all t < T .

If R/ν < r, then ψ̇ < 0 (since ψ(T ) < 0) as long as φ = 0 (in backward
time).

Since the Hamiltonian is constant all along the optimal trajectory (see
appendix A), we have, for all t such that φ? = 0:

H(T ) = H(t) ,

µpSST + PS(µ(1− ν)− βST )(1− ST ) = µpSS + λ(µ(1− ν)− βS)(1− S) ,

which yields

λ(t) =
µpS(S(t)− S(T )) + PS(1− ST )(βST − µ(1− ν))

(βS(t)− (1− ν)µ)(1− S(t))
.

Thus,

ψ(t) = µ

[
ν(µpS(S(t)− ST ) + PS(1− ST )(βST − µ(1− ν)))

βS(t)− (1− ν)µ
− c
]
.

We get

S(t?) =
cµ+ ν(PSβST (1− ST )− µ((1− ν)(1− ST )PS + ST pS + c))

βc− νµpS
. (13)

Solving Ṡ = (1− S)(−βS + µ(1− ν)) with terminal condition S(T ) = ST , we
get, for all t ∈ [t?, T ]:

S(t) =
(βST − µ(1− ν)) exp[(β − µ(1− ν))(T − t)] + µ(1− ν)(1− ST )

(βST − µ(1− ν)) exp[(β − µ(1− ν))(T − t)] + β(1− ST )
.

(14)
Equating the expressions of S(t?) given by Equations (13) and (14) yields at
most 3 possible solutions for ST as a function of t?: the first one is (1−ν)µ/β,
which corresponds to the endemic equilibrium in absence of control (for φ = 0).
Using ST = (1 − ν)µ/β into Equation (13) yields S(t?) = ST = (1 − ν)µ/β.
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Since it is an equilibrium line, it cannot be crossed and so does not correspond
to a switching curve.

While we can get closed-form expressions of the two remaining solutions,
they are not that explicit so they are not presented here at the moment. We
conjecture that only one solution is positive and therefore biologically relevant.
This is the one we used to draw the switching curves in Figure 4.

4.1 Special case ν = 1 and PS = 0

In the special case ν = 1 and PS = 0, there are only two solutions, zero and

ST = 1− βc

µpS

1

1− exp(β(t− T ))
.

Using Equation (13) finally yields the switching curve (t?, S(t?)) in the plane
(t, S) (Figure 4):

S(t?) =

(
1− βc

µpS

1

1− exp(β(t− T ))

)
µpS

µpS − βc
.

4.2 Special case ν = 1 and PS > 0

In the special case ν = 1 and PS > 0, it can be shown that

lim
t?→T

S(t?) = 1− c

PS
= ŜT ,

meaning that the switching curve crosses the t = T vertical line when PS > c.
Moreover, it crosses it exactly at S = ŜT , meaning that trajectories starting
(in backward time) with φ? = 1 are below the switching curve already, which
does not open an empty space in which singular optimal solutions could occur.

5 Discussion

– Bio-economical implications
– Static optimization yields 3 possible strategies, depending on param-

eter values: (i) no control, (ii) intermediate control, (iii) full control.
Reiterate the biological interpretation from (S1–S2).

– Subsidizing clean seeds enables switching from the uncontrolled case
(i) to the controlled cases (ii) or (iii). We derived a very simple bio-
economical threshold for the minimal amount of subsidies to make it
economically viable for an individual grower to control the disease.
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Fig. 4 Dynamics of different combinations of R, Ps, and ν. Blue curves are trajectories
under optimal control, Red curve is the switching curve, and dashed lines are equilibrium
values for φ = 0 and φ = 1 when they differ from S̄ = 0 and S̄ = 1 respectively.

– However, subsidizing clean seeds does not make it possible to switch
from full control (iii), where the pathogen persists at endemic equilib-
rium, to intermediate control (ii), where the pathogen goes extinct. The
transition from (iii) to (ii) can only be made possible through other pos-
sible control methods decreasing horizontal transmission (e.g. partially
resistant plants).

– Decreasing vertical transmission has the opposite effect as it decreases
the utility of clean seeds. Conversely, increasing vertical transmission
may allow one to get rid of the pathogen (transitions from (i) to (iii)
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R
ν

0 1

1

r

φ∗ = 0
EE

Bang-Bang
Control
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0.9

1

Fig. 5 Results of dynamic optimization: (Right) The

(
R

ν
, r

)
plane is divided into distinct

regions with differing control strategies. (Left) Trajectories showing the optimal bang-bang
control strategy for specific values of R, r, and ν.

to (ii), or from (i) to (ii), depending on whether the unit price of clean
seeds is greater than the unit price of healthy plants) as its makes con-
trol economically beneficial. Depending on whether full control enables
getting rid of the disease, the epidemiological dynamics converge either
to the endemic equilibrium or to the disease-free state. Hence, decreas-
ing vertical transmission can have a counter-productive effect. Breeding
for partially resistant plants decreasing the vertical transmission rate
of the pathogen should therefore be given caution.

– An alternative way to decrease vertical transmission is to sort out dis-
eased seeds from the local pool of seeds to be replanted, which amounts
to considering an additional parameter in the model (the probability
not to detect that a seed is infected, p in van den Bosch et al 2006
notations). This opens an interesting avenue for future (if not present)
research.

– However, a dynamic optimization approach maximizing an economi-
cally relevant finite-time horizon criterion shows that the above dis-
tinction between (ii) and (iii) is likely oversimplified as in practice, it
may take a long time to reach an equilibrium. Rather, the optimal strat-
egy is either (i) no control or (iv) bang-bang control, i.e. full control
followed by no control. Intermediate control is not optimal/rational. If
a grower uses clean seeds, she should use only clean seeds.

– Although static and dynamic optimization approaches yield qualita-
tively contrasting results, the subsidies threshold is the same following
both approaches.

– Do not forget to mention that there may be an incentive to control
even if the unit cost of clean seeds is greater than the unit benefit of
harvested healthy plants. This reflects at population-scale effect (a few
clean seeds may apparently protect a greater number of plants).
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– Connections to logistic model and differences
– Next paper p, omega

– Discuss non bang-bang and smoothing on control
– Connections to animal disease control?

6 Conclusions

7 Appendix A

We define an extremal trajectory as one where the control φ maximizes or
minimizes the hamiltonian. We write it φ̂. It is a function of both the state
variable(s) (here S) and the adjoint variable(s) (here λ). We want to prove the
theorem:

Theorem 1 (First integral of the energy) If both the dynamics and the
running cost are time-invariant, the hamiltonian is constant along an extremal
trajectory.

Proof To avoid any confusion in the notation, we use here Dieudoné’s notation
for the partial derivatives of the hamiltonian H(S, λ, φ) as

D1H(S, λ, φ) = −λ̇(S, λ, φ) ,

D2H(S, λ, φ) = Ṡ(S, λ, φ) .

Let Ĥ(S, λ) := H(S, λ, φ̂(S, λ)). It follows from Danskin’s theorem (see [2])

that, if the extremalizing φ̂ is unique,

D1Ĥ(S, λ) = D1H(S, λ, φ̂(S, λ)) ,

D2Ĥ(S, λ) = D2H(S, λ, φ̂(S, λ))

Moreover, the only way φ̂ could be non-unique would be on a singular arc,
where D3H = 0, so that the conclusion of Danskin’s theorem would still hold.
Hence we have

dĤ
dt

= D1Ĥ(S, λ)Ṡ(S, λ, φ̂) + D2Ĥ(S, λ)λ̇(S, λ, φ̂) = −λ̇Ṡ + Ṡλ̇ = 0 .

Q.E.D.

8 Appendix B

In order to numerically compute the optimal control for various values for
each parameter, we modified a method named Forward-Backward Sweep as
described in [3]. This method uses the defined initial conditions of S(τ) = Sτ
and λ(T ) = λT and an initial guess of the control φ(t) = φ0(t) and refines this
guess until some convergence criterion has been met. The steps in this method
are described in the below steps:
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1. Determine an initial guess for the control φ0(t).
2. Solve S(t) by moving forward in time on the region [τ, T ] and backward in

time on the region [0, τ ] using Runge-Kutta methods (RK4) to approximate
the solution to the ODE.

3. Use these values of of S(t) to approximate the solution of the ODE for λ(t)
by moving backward in time on the region [0, T ] and using RK4 with the
same timesteps.

4. Calculate an approximation to ψ(t) using S(t) and λ(t) and use this to
determine an update function φfix(t).

5. Update the guess using values of φi−1(T ) and φfix(t), we use φi(t) =
(1− α)φi−1(t) + αφfix(t) for some α ∈ (0, 1).

6. Continue this process from step 2 until some set of convergence criteria is
reached.

We used this method to compute the optimal trajectories in Figure 4. In
our case, we found that α = 0.1 was sufficient to generate the optimal control
trajectories represented, with ∆t = 10−3 the timestep for RK4 and φ0(t) = 0.5
the initial guess for the control.

9 [Appendix C]

To show that there is no singular region of the optimal control in the cases
observed, we turn to proof by contradiction.

Assume φ∗ is singular. Then, by the definition of φ∗, this means that there
exists some interval I such that ψ(t) = 0 on this interval,

ψ(t) = µ(−c+ λ(t)(1− S(t))ν) = 0.

Solving for λ, we get that

λ(t) =
c

ν(1− S(t))

whenever S(t) 6= 1. We can then take the time derivative of this quantity and
use the definition of dS

dt to get the relationship

dλ

dt
=

c

ν(1− S(t))
(−βS(t) + µφν + µ(1− ν)).

We then equate this to the relationship for
dλ

dt
derived from the Hamiltonian

in Equation 11 and cancel out terms to get that

−µps +
c

ν
β = 0.

However, we can easily use the definitions of R and r to rewrite this as

R

ν
= r,

which is on the line dividing the regions in Figure 5. Therefore, there is no
singular region of the optimal control along the switching curve as we are only
considering the cases R

ν > r and R
ν < r.
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10 [Appendix D]

In the case of an infinite horizon, we are interested in maximizing

J(φ(·)) = µ

∞∫
0

e−δt(pSS(t)− cφ(t))dt, (15)

with respect to φ ∈ [0, 1], subject to

dS

dt
= (1− S(t))(−βS + µφν + µ(1− ν)). (16)

To show that the integral in Equation 15 converges, we use the property that
both S(t) and φ(t) are bounded between 0 and 1:∣∣∣∣∣∣µ

∞∫
0

e−δt(pSS(t)− cφ(t))dt

∣∣∣∣∣∣ ≤ µ
∞∫
0

∣∣e−δt(pSS(t)− cφ(t))
∣∣ dt

≤ µ
∞∫
0

e−δt |(pSS(t)− cφ(t))| dt

≤ µ
∞∫
0

e−δt max(pS , c)dt

=
µmax(pS , c)

δ
.

The Hamiltonian H and the switch function ψ(t) are slightly modified in
respect to the finite-horizon problem addressed in Section 4. This results in
the adjoint equation

dλ

dt
= −µpSe−δt + λ(t)[(1− S(t))β + (νµφ(t)− βS(t) + µ(1− ν))],

and switch function

ψ(t) = µ
(
−ce−δt + λ(t)(1− S(t))ν

)
.

We are interested in a singular control φ∗ ∈ (0, 1) such that ψ = 0 all long
the singular part of the optimal trajectory. This yields

λ(t) =
ce−δt

ν(1− S(t))
,

and differentiating this in respect to time gives us

dλ

dt
= ce−δt

−δ + µφν − βS + µ(1− ν)

ν(1− S(t))
.
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Setting these two equations for the time derivative of λ equal to each other
and solving for S(t) results in the following equation for S∗

S∗ = 1− δ

νµ
(
r − R

ν

) .
A necessary condition for the singular control to exist is S∗ < 1, which occurs
whenever

r >
R

ν
.

This ratio has appeared in previous analysis, and represents the conditions
where it is economically beneficial to use clean seeds. From here, we have that
S∗ > 0 if and only if

δ < νµ

(
r − R

ν

)
,

meaning the discount rate must be small enough for long term interests to
prevail over short term interests.

If φ∗ ∈ (0, 1) is constant, then the dynamics of the system result in the
equilibrium point

S̄ =
1

R
(φ∗ν + (1− ν)) .

Equating S̄ and S∗ results in the following expression for φ∗

φ∗ =
1

ν

(
R

(
1− δ

νµ
(
r − R

ν

))− (1− ν)

)
=

1

ν
(RS∗ − (1− ν)) .

From this, we get that φ∗ > 0 only if

δ >
1

R
(1− ν)

(
νµ

(
r − R

ν

))
,

and φ∗ < 1 only if

δ > νµ

(
r − R

ν

)(
1− ν

R

)
.

This leads to three conditions on δ for there to be a singular solution.
Letting K = νµ

(
r − R

ν

)
, these can be represented as

K
(

1− ν

R

)
< δ < K (17)

when R > 1, and

K
1− ν
R

< δ < K (18)

when R < 1.
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