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École Polytechnique de l’Université de Nice Sophia Antipolis
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Abstract
Our objective is to determine the evolutionarily stable strategy [14]
supposed to drive the behavior of foragers competing for a common
patchily distributed resource [15]. Compared to [17], the innovation
lies in the fact that random arrival times are allowed.

In this second part, we add interference in the model: it implies
that a “passive” Charnov-like strategy can no longer be optimal. A
dynamic programming approach leads to a sequence of wars of attri-
tion [14] with random end times. This game is solved in appendix
A. Under some conditions that prevail in our model, the solution is
independent on the probability law of the horizon. As a consequence,
the solution of the asynchronous foraging problem investigated here,
expressed as a closed loop strategy on the number of foragers, is iden-
tical to that of the synchronous problem [17].

Finally, we discuss the biological implications such as a possible
connection with the genetic variability in the susceptibility to inter-
ference observed in [22].
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1 Introduction

As the main concepts and notations are introduced in a companion paper
[9], we just summarize them hereafter.

‘ ‘Nothing in biology makes sense except in the light of evolution”1. In
this respect, Behavioral Ecology interpret animal behavior through an evo-
lutionary approach, via estimating its capacity to get through the natural
selection process, thus to maximize Darwinian fitness [12] —a notion anal-
ogous to that of “utility” in Economics. Typically, in foraging theory or
the art of gathering resources in the environment, fitness is related to the
quantity of resource gathered. In many cases, the resource is patchily dis-
tributed and the utility function on each patch is strictly increasing, con-
cave and bounded with respect to time. As the intake rate decreases with
the quantity of resource available on the patch, it is likely advantageous
to leave a patch not yet exhausted in order to find a new one, in spite of
an uncertain travel-time. Charnov’s marginal value theorem reveals that
the optimal giving up time is when the intake-rate is equal to the optimal
long-term mean rate γ∗ —that, if achieved, gives the best fitness a forager
can expect in its environment. This famous theoretical model is actually
applied to a lone forager that has a monopoly on resources it finds.

Naturally, the question arises of whether this result holds for foragers
competing for a common patchily distributed resource, i.e. whether this is
an evolutionarily stable strategy [14]. The authors of [17] assume that some-
how n foragers have reached a patch simultaneously, and they investigate
the evolutionarily stable giving up strategy. Our innovation lies in the fact
that an a-priori unlimited number of foragers reaching a patch at random
arrival times is allowed. We shall refer to these situations as, respectively,
synchronous and asynchronous foraging.

In the first part [9], we investigate the so-called scramble competition
case where the only competition between foragers is in sharing a common
resource: Charnov’s patch-leaving rule remains qualitatively unchanged.
In this second part, we extend that model to take into account actual
interference [18], i.e. the decline of the intake rate due to competition. The
complete solution of the new game is obtained in section 2, and makes use
of the solution of a war of attrition [14] with random end time, solved in a
more general setup in appendix A.

We freely refer to the concepts of evolutionarily stable strategy and repli-
cator dynamics provided by evolutionary game theory. Appendix B gathers
some basic facts concerning these topics and their relationship to classical
game theory.

1Theodosius Dobzhansky, geneticist, 1900–1975.
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2 Interference competition

In this second part, we assume that beyond sharing the same resource, com-
petition on a patch yields a decline of the intake rate of all the contestants
[18]. This effect might even increase with the scarcity of the resource. As a
consequence, the departure of a forager surely causes an abrupt rise of the
intake rate. It implies that the latter does not only depend on the ratio of
available resource but also on the current number of foragers present on
the patch. A passive Charnov-like strategy, where the foragers only moni-
tor their own intake rate to decide whether to stay or leave, should no more
be optimal.

Indeed, previous papers [17] reveal that synchronous foragers should trig-
ger a war of attrition, i.e. leave at random —but optimally distributed—
times, except the lucky one which remains alone on the patch, expected to
stay to exhaust the patch up to its profitability threshold.

The question arises to know whether this result holds for asynchronous
foragers or to what extent. The doubt mainly arises from the fact that
unexpected newcomers can now enter the game.

2.1 Model

Assume that n ∈ N identical foragers are on the same patch. Let
the sequence of forager arrivals times be σ = {σ1, σ2, . . . , σn} and
i ∈ {1, 2, . . . , n}. We let
• q ∈ R+ be the quality of the patch, i.e. the potential fitness it initially

offers,
• p ∈ R+ be the current state of the patch, i.e. the amount of fitness

remaining,
• ρ = p/q ∈ Σ1 = [0, 1] be the fitness remaining on the patch relative to

its quality.
Let m ∈ R+ be a parameter which quantifies interference intensity among

foragers [18]; m = 0 corresponds to scramble competition. Let r(ρ, n,m)
be a known function such that
• ∀n, m, ρ 7→ r(ρ, n,m) is continuous, strictly increasing and concave.
• ∀ ρ, m, n 7→ r(ρ, n,m) is strictly decreasing if m > 0 , invariant otherwise.
• ∀ ρ, n, m 7→ r(ρ, n,m) is strictly decreasing if n > 1 , invariant otherwise.
Our basic assumption is that the fitness gathered by forager i is given

by the differential equation:

∀i , ḟi = ḟ = r(ρ, n,m) , fi(σi) = 0 ,

and
ṗ = qρ̇ = −nḟ , ρ(0) = ρ0 .
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Let the fitness accumulated by forager i after a residence time τi be
fi(τi, τ−i, σi) where τ−i stands for the set {τj} , j 6= i, which surely impacts
fi.

Following [17,12], we use an equivalent criterion to that of [9] which is
the effective fitness compared to the optimal —Nash— average one for a
given residence time:

Ji(τi, τ−i, σi) = fi(τi, τ−i, σi)− (θ̄ + τi)γ∗ ,

where θ̄ is the mean travel time. We may notice that by definition γ∗ is
such that the maximum expected J is zero.

2.2 The game

A-priori, we cannot exhibit any Nash equilibrium in pure strategies; hence
the need to deal with mixed strategies, say Pi, i ∈ {1, 2, . . . , n} for n for-
agers. We shall use the subscript −i to mean all players except player i.

So our criterion becomes the following generating function:

Gi(Pi, P−i, σi) = EPi,P−i
τi,τ−i

Ji(τi, τ−i, σi) . (1)

As a consequence of the above definition of γ∗,

EGi(P ∗
i , P ∗

−i, σi) = 0 .

Let us define a stage as a stochastic period during which the number
of foragers n remains constant on the patch; notice that in such a stage
the intake rate is only affected by ρ. Let the superscript k ∈ N denote the
number of the stage; k = 0 indicates the stage at which the reference forager
started the game. As their exists a profitability threshold ρ∗, the patch can
not be indefinitely exploited; the total number of stages K ∈ N and the
total number of players N ∈ N are thus finite, but a-priori unknown.

We define the state at the beginning of stage k as

χk =
(

ρk

nk

)
∈ Σ1 × N .

For each stage, each player commits to a persistence time xk
i ∈ R+; i.e.

if the stage is not yet finished at that time it quits the game and so its
own horizon is Ki = k. We find it convenient to let the exceptional —zero-
measure— case, where all xi are equal, end the current stage: it means
that all players are invited to play again in order to make the patch surely
exhausted once visited.

Let us introduce the stochastic variable:

αk =

 1 if an arrival ended stage k
−1 if a departure ended stage k
0 otherwise

.



Foraging under competition 2 5

It depends on the strategies of the players, but if the arrival times are
Markovian, as we shall assume, as well as the strategies, it is a Markov
process itself.

Let δk be the duration of stage k and

κk
i =

{
0 if xk

i = δk &maxxk
−i > xk

i

1 otherwise ,

i.e. κk
i = 1 if player i remains in the patch beyond the current stage. It

yields the following dynamics:{
ρk+1 = ρk −∆ρ(ρk, nk, δk) =: Λρ(ρk, nk, δk)
nk+1 = nk + αk ,

with ∆ρ(ρ, n, δ) a known function that can be derived from the dynamic
model of 2.1, and which enjoys the following properties:
• ∀ ρ , n ,∆ρ(ρ, n, 0) = 0 ,
• ∀ ρ , n , δ 7→ ∆ρ(ρ, n, δ) is increasing and concave,
• ∀ ρ , n , limδ→∞ ∆ρ(ρ, n, δ) = ρ.
Each criterion can be expressed as

Gi = E

{
Ki∑
k=0

L(χk, δk)

}
,

with
L(χ, δ) = L(ρ, n, δ) =

q

n
∆ρ(ρ, n, δ)− γ∗δ .

Previous assumptions made on ∆ρ yield
• ∀ ρ , n ,L(ρ, n, 0) = 0 ,
• ∀ ρ , n , δ 7→ L(ρ, n, δ) is concave,
• ∀ ρ , n , limδ→∞ L(ρ, n, δ) = −∞.
To solve the corresponding dynamic game problem via dynamic pro-

gramming, we introduce the function V k
i (χ) which is the optimal expected

total future reward for entering stage k in the state χ. We get the following
functional equation of dynamic programming:

V k
i (χk) = E∗

[
L(χk, δk) + κk

i V k+1
i (χk+1)

]
∀k ≤ Ki , (2)

where E∗ means that we look for a set of strategies which yield a Nash equi-
librium at each stage. As the game is surely stationary, Vi does not depend
on the stage number k and (2) becomes the following implicit equation

Vi(ρ, n) = E∗ [L(ρ, n, δ) + κiVi(Λρ(ρ, n, δ), n + α)] ∀ρ > ρ∗ .

As a consequence, it suffices to solve the game restricted to one stage
to obtain the Nash-optimal2 strategy in closed loop. Furthermore, this is
2The Nash is clearly strict so that this is also an ESS, see appendix B.2.
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surely a war of attrition with a stochastic end time as defined in appendix A.
Indeed the one-stage game can be stated as follows. Let Vi(Λρ(ρ, n, δ), n) =:
Vi(δ, n) and thus, the game has a utility function

Ui(xi, x−i, δ) = L(n, δ) +


0 if xi = δ &maxx−i > xi

Vi(δ, n) if xi = δ &maxx−i = xi

Vi(δ, n + 1) if δ < min{xi, x−i}
Vi(δ, n− 1) otherwise

.

Let x̌ be such that Λρ(ρ, n, x̌) := ρ∗; it is the time after which a forager,
even alone, has no incentive to stay on the patch, i.e. Vi(x̌, ·) = 0.

Let then x̂ = arg maxx L(n, x) —both x̂ and x̌ depend on ρ and n.
As a consequence, ∀n ,∀x > x̂ ,L′(n, x) < 0. Moreover, if there is no

departure, the L function of the next stage is still decreasing. Thus its
x̂ is zero and according to appendix A, its value is zero. Hence if δ ∈
[x̂, x̌] ,Vi(δ, n) = Vi(δ, n + 1) = 0.

We show in appendix A that the value of the game is, as in the classical
war of attrition, equal to L(x̂, n). As a consequence,

Vi(x, n− 1) = max
y

L(Λρ(ρ, n, x), n− 1, y) =: V(x, n) .

We therefore obtain the following result,

Theorem 2.1. The Nash equilibrium of the game (1) is

P ∗(x, n) =


0 ∀x < x̂

1− e−
1

n−1

R x
x̂

h(y,n) dy ∀x ∈ [x̂, x̌]
1 ∀x ≥ x̌

,

with

h(x, n) = −L
′(x, n)

V(x, n)
.

Hence the solution of the asynchronous foraging problem investigated
here, expressed as a closed loop strategy on the number of foragers, is
identical to the synchronous problem of [17].

3 Concluding remarks

3.1 How does a war of attrition influence the residence time

A question that is not addressed by the model is “does interference, thus
a war of attrition, imply that foragers should stay longer on a patch than
a lone one ?”: we cannot answer in a general way.
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It is an established fact [17] that a war of attrition causes the forager to
stay longer than the “Charnov time”. Yet, this Charnov time itself, here x̂,
depends in a complex fashion on the detailed interference model.

In this respect, the article [7] does not invalidate the theoretical model;
to the contrary, this paper seems to corroborate the model of [17], as the
larger the number of animals on the patch, the larger is their tendency to
leave. First, a part of the contestants leave almost immediately the patch;
this can be connected to the “n−K” of [17]. Then the remaining contestants
leave sequentially, as in [17].

3.2 On a possible connection with population genetics

Up to now, we focused on mixed-strategies in their classical sense: a random
strategy x distributed according to a probability density function p(x). Let
p∗(x) equalize the opponent’s payoff on its spectrum as in a solution of a
Nash game.

One can notice that in a war of attrition, the value of the game is the
reward which would have been earned without entering the game. Never-
theless, the Nash solution requires to play; the question that arises then is:
“why should I play if my expected gain is not greater than my guaranteed
value ?”. In the context of evolutionary game theory, the answer makes
sense: “to prevent the proliferation of any mutant that would alternatively
stay longer on the patch”; i.e. the mutant is equivalent to a cheater into a
population commonly and conventionally adopting a simple Charnov-like
strategy: by breaking off the convention, it would obtain more fitness and
would consequently invade. One can notice that in return, adopting such
an evolutionarily stable strategy has no extra-cost as the value of the game
remains the same.

Evolutionary game theory provides another viewpoint to implement
mixed-strategies: instead of considering a monomorphic population playing
a common random strategy, let us now consider a polymorphic population
in which pure strategies are distributed homogeneously according to p∗ —
see appendix B. Since p∗ is equalizing, all the individuals of the population
can expect the same fitness.

In a population involved in ‘war of attrition’ contests, it simply means
that distributing a deterministic persistence time to each individual accord-
ing to p∗ is evolutionarily stable. In other words, a variability in terms of
individuals’ ability to sustain interference would be expected among the
population. Indeed, in this model, interference is taken as a perturbation,
not as a decision variable like in a hawk-dove contest [14,6,5]; interference
affects equally all the contestants.

Interestingly, the authors of [22] observed “the existence of a signifi-
cant intra-population genetic variability in the susceptibility of females to
interference”, acting on the “time they are willing to invest”. Moreover,
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there was no significant genetic variability in terms of aggressiveness —
unpublished data. Thus these intra-specific interactions seem to be gov-
erned by a ‘war of attrition’ game rather than a hawk-dove one.

However, the connection with these “emigration-threshold genotypes”
[15] seems somewhat premature as the stability of the replicator dynamics
[10] in a continuous strategy space —as it is the case for a war of attrition—
is still under investigation [3,4].
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A A war of attrition with a stochastic end time

We consider the following non-zero sum game:
• n players.
• Player i chooses xi ∈ R+.
• ε, the end time, is a positive stochastic variable independent of players

decisions.
• The criterion of player i is as follows, where x−i stands for {xj} , j 6= i:

Ui(xi, x−i, ε) =


Li(xi) if xi ≤ min{x−i, ε}& maxx−i > xi

Di(xi) if xi ≤ min{x−i, ε}& maxx−i = xi

Ei(ε) if ε < min{xi, x−i}
Wi(minx−i) otherwise

.

The hypotheses are: ∀i,
• ∃ ! x̂ = arg maxx Li(x).
• Li is strictly decreasing for x > x̂.
• Wi(x) > Di(x) ≥ Ei(x) ≥ Li(x)∀x ∈ [x̂, x̌).
• either ∃ {x̌ ≥ x̂ | ∀x ≥ x̌ , Li(x) = Wi(x)},
• otherwise let x̌ = ∞.

We seek a Nash equilibrium, with Pi(x) the cumulative distribution func-
tion of player i. We claim the following

Theorem A.1. A Nash equilibrium set of strategies must satisfy the fol-
lowing properties:
• the Nash-optimal probability density function is continuous over [x̂, x̌)

and zero elsewhere but may exhibit a Dirac weight at x̌.
• Let

hi(x) = −
{

P ′
ε(x)

1− Pε(x)
Ei(x)− Li(x)
Wi(x)− Li(x)

+
L′i(x)

Wi(x)− Li(x)

}
,

•
H∗

i (x) = 1− e−
R x

x̂
hi(y) dy ∀x ∈ [x̂, x̌] ,

• and

Hi(x) :=
∏n

k=1[1−H∗
k(x)]

1
n−1

1−Hi
.

• The unique Nash-optimal strategy is ∀i,

P ∗
i (x) =

 0 ∀x < x̂
1−Hi(x) ∀x ∈ [x̂, x̌)
1 ∀x ≥ x̌

.
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A.0.11 Proof The hypotheses made clearly show that everyone share a
common spectrum, i.e. mixed strategy support, [x̂, x̌]. Let now Pi, Hi and
Pε be the cumulative distribution functions of respectively xi, minx−i and
ε. The generating function is then

Gi(x, Hi, Pε) =
∫

y∈[x̂ ,x̌]

∫
z∈[x̂ ,∞)

Ui(x, y, z)dPε(z)dHi(y) ,

Gi(x, Hi, Pε) =
∫

y∈[x̂ ,x)

[∫
z∈[x̂ ,y)

Ei(z)dPε(z) +
∫

z∈[y ,∞)

Wi(y)dPε(z)

]
dHi(y) +

∫
y∈[x ,x̌]

[∫
z∈[x̂ ,x)

Ei(z)dPε(z) +
∫

z∈[x ,∞)

Li(x)dPε(z)

]
dHi(y) .

As the optimal strategy is equalizing on the opponents’ spectrum, in any
open set Ω in [x̂, x̌), one must have

∂

∂x
Gi(x,H∗

i , Pε) = 0 ∀x ∈ Ω .

Differentiating Gi(x,Hi, Pε) yields

0 = [Ei(x)− Li(x)][1−H∗
i (x)]P ′

ε(x) +
[1− Pε(x)]

{
L′i(x)[1−H∗

i (x)]− [Wi(x)− Li(x)]H∗
i
′(x)

}
.

Hence
H∗

i (x) = 1− e−
R x

x̂
hi(y) dy ∀x ∈ [x̂, x̌] ,

with

hi(x) = −
{

P ′
ε(x)

1− Pε(x)
Ei(x)− Li(x)
Wi(x)− Li(x)

+
L′i(x)

Wi(x)− Li(x)

}
.

Hence the Nash optimal strategies are given by

∀i , 1−H∗
i (x) =

∏
j 6=i

[1− P ∗
j (x)] ,

where the Hi’s are known.
It implies ∏

i

[1−H∗
i (x)] =

∏
i

[1− P ∗
i (x)]n−1 .

Therefore,

P ∗
i (x) = 1−

∏n
k=1[1−H∗

k(x)]
1

n−1

1−Hi
=: 1−Hi(x) ∀x ∈ [x̂, x̌) .
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Hence the unique Nash equilibrium such that

∀i , P ∗
i (x) =

 0 ∀x < x̂
1−Hi(x) ∀x ∈ [x̂, x̌)
1 ∀x ≥ x̌

.

An atom of probability takes place on x̌. Indeed, a Nash equilibrium
requires Gi(x,H∗

i , Pε) = G∗
i ∀x ∈ [x̂, x̌), where G∗

i is the value of the game.
Up to now, we implicitly assumed that Hi was continuous in [x̂, x̌). Indeed,
let x̃ ∈ [x̂, x̌] and suppose this is a point of discontinuity of amplitude j —
for “jump”. As the convention wants, Pi is cadlag. If x̃ < x̌ , limx↓x̃ Gi(x)−
Gi(x̃) = j(1 − Pε(x̌)(Wi(x̌) − Li(x̌)) —if the draw is taken into account,
in the case where all other foragers have a Dirac at the same x̌, Li(x̌)
is replaced by a convex combination of Li(x̌) and Di(x̌)—, therefore a
Dirac is impossible for any x̃ < x̌. Moreover, if a jump occurs in Hi at x̌,
limx↑x̃ Gi(x)−Gi(x̃) = j(1−Pε(x̌)(Li(x̌)−Di(x̌)) = 0 by the definition of
x̌. Hence a jump is possible on x̌. To conclude, it is obvious that, from the
previous hypotheses on Li, ∀x 6∈ [x̂, x̌) , Gi(x,H∗

i , Pε) ≤ G∗
i , as G∗

i = Li(x̂).
Hence, if the game is symmetric,

P ∗(x) =


0 ∀x < x̂

1− e−
1

n−1

R x
x̂

h(y) dy ∀x ∈ [x̂, x̌)
1 ∀x ≥ x̌

.

One can notice that, if ∀x ∈ [x̂, x̌] , Pε(x) = 0, the above solution of the
war of attrition coincides with the classical solution [8,1,2].

B ESS and classical game theory

B.1 Notations and setup

We consider a compact metric space X the space of traits or phenotypes or
pure strategies. Three cases of interest are
• X is finite (the finite case), X = {x1, x2, . . . , xn},
• X is a line segment [a, b] ⊂ R,
• X is a compact subset of Rn.

We shall use letters x, y, for elements of X.
We let ∆(X) denote the set of probability measures over X. In the finite

case, we shall also denote it as ∆n. We notice that in the weak topology,
∆(X) is compact and the mathematical expectation is continuous with
respect to the probability law. We shall use letters p, q, for elements of
∆(X).

A population of animals is characterized by the probability p ∈ ∆(X)
governing the traits of its individuals. There is no need to distinguish
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whether each individual acts many times, adopting a strategy in A ⊂ X
with probability p(A) —the population is then monomorphic and its mem-
bers are said to use the mixed strategy p—, or whether each animal behaves
in a fixed manner, but in a polymorphic population, p being the distrib-
ution of traits among the population: for any subset A ⊂ X, p(A) is the
fraction of the population which has its trait x in A. Then, p also governs
the probability that an animal taken randomly in the population behaves
a certain way.

We are given a generating function G : X × ∆(X) → R jointly contin-
uous (in the weak topology for its second argument). Its interpretation is
that it is the fitness gained by an individual with trait x in a population
characterized by p.

A case of interest, called hereafter the linear case, is when G derives from
a function H : X ×X → R giving the benefit H(x, y) that an animal with
trait x gets when meeting an animal with trait y, according to the expected
benefit for trait x:

G(x, p) =
∫

X

H(x, y) dp(y) . (3)

Then G and F below are linear in their second argument. But this is not
necessary for many results to follow.

The fitness gained by an animal using a mixed strategy q in a population
characterized by p is

F (q, p) =
∫

X

G(x, p) dq(x) .

Notice that if δx ∈ ∆(X) denotes the Dirac measure at x, G(x, p) =
F (δx, p).

The most appealing definition of an ESS is as follows [14]:

Definition B.1. The distribution p ∈ ∆(X) is said to be an ESS if there
exists ε0 > 0 such that for any positive ε < ε0,

∀q 6= p∗ , F (p, (1− ε)p + εq) > F (q, (1− ε)p + εq) .

Using only the linearity, it coincides with the original definition of [13]:

Theorem B.1. If F is linear in its second argument, definition B.1 is
equivalent to definition B.2 below.

Definition B.2. The distribution p ∈ ∆(X) is said to be an ESS if

((I)) ∀q ∈ ∆(X) , F (q, p) ≤ F (p, p),
((II)) ∀q 6= p , F (q, p) = F (p, p) ⇒ F (q, q) < F (p, q).
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B.2 Relation with classical game theory

Consider a two-player game, between, say, player 1 and player 2. Both
choose their action, say q1 and q2, in ∆(X). Let their respective reward
functions, that they seek to maximize, be

J1(q1, q2) = F (q1, q2) ,

J2(q1, q2) = F (q2, q1) .

We have the obvious proposition:

Proposition B.1.
• Condition (I) of definition B.2 is equivalent to the statement that (p, p)

is a Nash equilibrium of this game. For that reason, any p satisfying
that condition is called a Nash point.

• If (p, p) is a strict Nash equilibrium, p is an ESS.

It immediately follows, by a theorem due to Von Neumann [21, assertion
(17:D) p. 161] in the finite case, and noticed at least since the early 50’s in
the infinite case 3

Theorem B.2. Let p be an ESS, then

((I)) ∀x ∈ X , G(x, p) ≤ F (p, p),
((II)) let N = {x ∈ X | G(x, p) < F (p, p)}, then p(N) = 0.

A proof completely similar to —but slightly distinct from— the existence
proof of the Nash equilibrium lets one state the following result, which
applies here:

Theorem B.3. Let P be a compact space, F : P×P → R be a continuous
function, concave in its first argument. Then there exists at least one p ∈ P
satisfying condition (I) of definition B.2.

B.3 Further analysis of the linear finite case

B.3.1 Characterization in terms of the game matrix

In the finite linear case, the problem is entirely defined by the matrix
A = (aij) with aij = H(xi, xj), as

G(xi, p) = (Ap)i , F (q, p) = 〈q, Ap〉 = qtAp .

We rephrase theorem B.2 in that context. To do so, introduce the notation
1l to mean a vector —of appropriate dimension— the entries of which are
3Von Neumann’s proof applies to zero sum games. Its extension to a Nash equi-
librium is trivial, and can be found, e.g., without claim of novelty, in [11]
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all ones, and the notation for vectors u and v of same dimension u < v to
mean that the vector v − u has all its coordinates strictly positive.

We obtain the following more or less classical results:

Theorem B.4. In the finite linear case, the two conditions of definition
B.2 are respectively equivalent to (I) and (II) below.

((I)) There exists a partition X = X1 ∪ X0, |X1| = n1, |X0| = n0, such
that, reordering the elements of X in that order and partitioning Rn

accordingly, there exists a vector p1 ∈ ∆n1 , a real number α and a
vector h ∈ Rn0 such that,

p =
(

p1

0

)
, Ap =

(
α1l
h

)
, h < α1l . (4)

((II)) Partitioning A accordingly in

A =
(

A11 A10

A01 A00

)
,

∀q1 ∈ ∆n1\{p1} , 〈q1 − p1, A11(q1 − p1)〉 < 0 . (5)

—Notice that the vectors 1l in the second and third expression of (4) do
not have the same dimension. Notice also that p1 may still have some null
coordinates.

B.3.11 Proof For condition (I), this is just a rephrasing of theorem
B.2. Concerning condition (II), the vectors q ∈ ∆(Rn) such that F (q, p) =
F (p, p) are all the vectors of the form

q =
(

q1

0

)
, q1 ∈ ∆n1 .

As a matter of fact, for all such vectors, 〈q, Ap〉 = α. So that condition
(I) of definition B.2 says that ∀q1 ∈ ∆n1\{p1}, 〈q1 − p1, A11q1〉 < 0. But
we have seen that 〈q1 − p1, A11p1〉 = 0. Therefore, we may subtract that
quantity to get (II) above.

Theorem B.3 above says that there always exists at least one solution of
equations (4). The question thus is to know whether that solution satisfies
condition (II) of the definition. To further discuss that question, let p2 ∈
Rn2 be the vector of the non zero entries of p1, so that, reordering the
elements of X1 if necessary,

p1 =
(

p2

0

)
.
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Let also A22 be the corresponding sub-matrix of A, and for i = 1, 2, define
Bi := Aii + At

ii and the ni × (ni − 1)-dimensional matrices Qi obtained
by deleting one column from the symmetric projector matrix Pi := [I −
(1/ni)1l1lt]. The condition that the restriction of the quadratic form to the
orthogonal subspace to 1l be negative definite translates into:

Corollary B.1.
• A necessary condition for a solution of equation (4) to be an ESS is

that Qt
2B2Q2 < 0 —negative definite.

• A sufficient condition is that Qt
1B1Q1 < 0, and a fortiori that B1 < 0.

We may notice the following fact:

Proposition B.2. Matrices Bi, i = 1, 2 that satisfy the conditions of
corollary (B.1) have at most one nonnegative eigenvalue.4

Another easy corollary is that the number of ESS is bounded by n. More
precisely, we have the following statement:

Corollary B.2. If there is an ESS in the relative interior of a face, there
is no other ESS in that face, and in this statement ∆n is itself an n − 1-
dimensional face. —In particular, if there is an ESS in the relative interior
of ∆n, it is the unique ESS.

B.3.2 Stability of the replicator dynamics

Some authors ([19,20]) define an ESS —in the finite case— as a stable point
p of the replicator dynamics

q̇i = qi[G(xi, q)− F (q, q)] . (6)

Notice first that a consequence of (6) is that

qi(t) = qi(0) exp
(∫ t

0

[G(xi, q(s))− F (q(s), q(s)] ds

)
so that if all qi(0) are non-negative, this is preserved over time. Moreover,
one sees that

∑
i q̇i =

∑
i qiG(xi, q)− (

∑
i qi)F (q, q) = (1−

∑
i qi)F (q, q) =

0, so that the hyperplane {q |
∑

i qi = 1} is invariant. The conclusion of
these two remarks is the following:

Proposition B.3. Under the replicator dynamics,
• ∆(X) is invariant, as well as its interior,
• the the faces of ∆(X) are invariant as well as their interiors.

4Some authors have mistakenly replaced at most one by exactly one.
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It is known —see, e.g. [16] for a much more detailed analysis— that in
the finite linear case, the relationship between these two concepts is as in
the next theorem. It should be noticed that in the continuous case, the
situation is far more complex and still open. In the later case, the evolution
equation in Rn is replaced by one in a measure space, so that the definition
of stability depends on the topology used —and the Lyapunov function
used here is not continuous in the natural weak topology.

Theorem B.5. In the finite linear case, every asymptotically stable point
of (6) is a Nash point. Every ESS is a locally5 asymptotically stable point
of (6), and its attraction basin contains the relative interior of the lowest
dimensional face of ∆(X) it lies on.

Two particular cases of that theorem are as follows:

Corollary B.3. In the finite linear case,
• If an ESS is an interior point of ∆(X) it is globally stable in the interior

of ∆(X).
• Every pure strategy, whether an ESS or not, is a rest-point of (6). The

above theorem implies nothing more for pure ESS.

B.3.21 Proof of the theorem To prove the necessity, assume p is not
a Nash point, so that there is an index k such that pk = 0, but G(xk, p) >
F (p, p). Take an initial q with qk > 0. Then, it is impossible that q(t) → p,
as this would require that qk(t) → 0, hence that∫ t

0

[G(xk, q(s))− F (q(s), q(s)] ds → −∞

while in a neighborhood of p the integrand would be positive.
For the sufficiency, restrict the attention to the subspace Rn2 of corollary

B.1 above, where all coordinates of p are strictly positive, and further to
∆ := ∆n2 . And consider the Lyapunov function

V (q) =
∑

i

pi ln
pi

qi
.

It is zero at p. It can be written V (q)−
∑

i pi ln(qi/pi), and using the fact
that lnx < x−1 as soon as x 6= 0, V (q) > −

∑
i pi(qi/pi−1) = 0 as soon as

D 3 q 6= p. Thus its restriction to ∆ is indeed a valid Lyapunov function.
And trivially, on a trajectory

dV (q(t))
dt

= −
n2∑
i=1

pi[G(xi, q)− F (q, q)]− F (p, q) + F (q, q)

5relative to the face we are refereing to
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which is by hypothesis negative on ∆n2 .
As a matter of fact, one can prove more, using the following fact, the

proof of which (based upon compactness) we skip.

Definition B.3. A strategy p ∈ ∆n is called locally superior if there
exists a neighborhood N of p in ∆n such that, for any q ∈ N , q 6= p,
F (q, q) < F (p, q).

Theorem B.6. In the finite linear case, p is an ESS if and only if it is
locally superior.

Corollary B.4. In the finite linear case, the basin of attraction of an
ESS contains a neighborhood in ∆n of the relative interior of the lowest
dimensional face of ∆n on which that ESS lies.


