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Abstract
Our objective is to determine the evolutionarily stable strategy [14]
supposed to drive the behavior of foragers competing for a common
patchily distributed resource [16]. Compared to [18], the innovation
lies in the fact that random arrival times are allowed.

In this first part, we investigate scramble competition: the game still
yields simple Charnov-like strategies [4]. Thus we attempt to compute
the optimal long-term mean rate γ∗ [11] at which resources should
be gathered to achieve the maximum expected fitness: the assumed
symmetry among foragers allows us to express γ∗ as a solution of an
implicit equation, independent of the distribution law of arrival times.

A digression on a simple model of group foraging shows that γ∗N can
be simply computed via the classical graph associated to the marginal
value theorem —N is the size of the group. An analytical solution



allows us to characterize the decline in efficiency due to group foraging,
as opposed to foraging alone: this loss can be relatively low, even in
a “bad world”, provided that the handling time be relatively long.

Back to the original problem, we then assume that the arrivals on
the patch follow a Poisson process. Thus we find an explicit expression
of γ∗ that makes it possible to perform a numerical computation:
Charnov’s predictions still hold under scramble competition.

Finally, we show that the distribution of foragers among patches is
not homogeneous but biased in favor of bad patches. It is in agreement
with common observation and theoretical knowledge [1] about the
concept of ideal free distribution [12,22].

1 Introduction

Behavioral Ecology [13] attempts to assert to what extent the natural selec-
tion process could have carved animal behavior. This evolutionary approach
focuses on optimal strategies in terms of capitalizing on genetic inheri-
tance through generations; as a common currency between survival ability
and reproductive success, we shall use the term —Darwinian— fitness [15],
analogous to the concept of “utility” in Economics.

In this respect, optimal foraging theory [20] seeks to investigate the
behavior of an animal searching for a valuable resource such as food or a
host to parasitize. In many cases, these resources are spread in the environ-
ment as distant patches of various qualities. Moreover, the resource intake
rate suffers from patch depletion. As a consequence, it is likely advanta-
geous to leave a patch not yet exhausted in order to find a richer one, in
spite of an uncertain travel time. Hence the need to determine the optimal
leaving rule.

In this context, Charnov’s marginal value theorem [4] provides a way to
gather resources at an optimal long-term mean rate γ∗ that gives the best
fitness a forager can expect in its environment.

Actually, this famous theoretical model is applied to a lone forager that
has monopoly on resources it finds; it predicts that each patch should be
left when the intake rate on that patch drops below γ∗, independently of
either its quality or on the time invested to reach it.

Naturally, the question arises of whether this result holds for foragers
competing for a common patchily distributed resource [16], i.e. whether
this is an evolutionarily stable strategy [14]. The authors of [18] assume
that somehow n foragers have reached a patch simultaneously, and they
investigate their evolutionarily stable giving up strategy. Our innovation
lies in the fact that an a-priori unlimited number of foragers reaching a
patch at random arrival times is allowed.
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In section 2, we develop a mathematical model of the problem at hand
and recall Charnov’s classical marginal value theorem. In section 3, we
investigate the so-called scramble competition case, where the only compe-
tition between foragers is in sharing a common resource.

In a companion paper [9], we extent the model to take into account actual
interference; i.e. a decline of the intake rate due to competition.

2 Model

We consider a population of independent animals foraging freely in an envi-
ronment containing a patchily distributed resource, assumed to be station-
ary; i.e. the spatial and qualitative statistical distributions of the patches
remain constant over time. In other words, there is no environment-wide
depletion but only local depletion; an ad-hoc renewal process of the resource
is then implicitly assumed, although it might not necessarily be an appro-
priate modeling shortcut [2,3]. We then focus on a single forager evolving
in this environment, among its conspecifics.

2.1 Local fitness accumulation

2.1.1 A lone forager on an initially unexploited patch

We consider the case of a single forager acquiring some fitness from a patch
of resource. We let
• q ∈ R+ be the quality of the patch, i.e. the potential fitness it initially

offers,
• p ∈ R+ be the current state of the patch, i.e. the amount of fitness

remaining,
• ρ = p/q ∈ Σ1 = [0, 1] be the fitness remaining on the patch relative to

its quality.
Let f(q, τ) be the fitness gathered in a time τ on a patch of quality q.

Our basic assumption is that the intake rate ḟ = ∂f(q, τ)/∂τ is a known
function r(ρ) continuous, strictly increasing and concave; in appendix A.3
we derive such a law from an assumption of random probing on a patch. It
yields

ḟ = r(ρ) , f(0) = 0 ,

resulting in
qρ̇ = −r(ρ) , ρ(0) = 1 . (1)

We find it convenient to introduce the solution φ(t) of the differential equa-
tion

φ̇ = −r(φ) , φ(0) = 1 .
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Theorem 2.1. Our model is given by

f(q, τ) = q

[
1− φ

(
τ

q

)]
. (2)

It yields: ∀q,
• f(q, 0) = 0,
• τ 7→ f(q, τ) is strictly increasing and concave,
• limτ→∞ f(q, τ) = q.

2.1.2 A lone forager on a previously exploited patch

Assume that the forager reaches a patch that has already be exploited to
some extent by a conspecific. The patch is characterized by its initial quality
q and its ratio of available resource ρ0 at arrival time. The dynamics are
still (1) initialized at ρ(0) = ρ0, and the fitness gathered is

f(q, ρ0, τ) = p0 − p(τ) = q[ρ0 − ρ(τ)] .

This is depicted on the reduced graph, figure 1.

-
t

6φ

1

ρ0

σ0/q

ρ

(σ0 + τ)/q
-

τ/q

6

f
q

Figure 1: The reduced graph
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2.1.3 Several foragers on a patch

Assume that n ∈ N identical foragers are on the same patch. Let
the sequence of forager arrivals times be σ = {σ1, σ2, . . . , σn} and
i ∈ {1, 2, . . . , n}. By definition, scramble competition let the intake rate
independent of n thus

∀i , ḟi = ḟ = r(ρ) , fi(σi) = 0 .

Nevertheless, the speed of depletion is multiplied by n:

ṗ = qρ̇ = −nḟ , ρ(0) = ρ0 .

2.2 Global fitness accumulation

2.2.1 The marginal value theorem

In order to optimally balance the residence times on the differing patches,
a relevant criterion is the average fitness acquired relative to the time
invested: assume the quality q of the patch visited is a random variable
with cumulative distribution function Q(q). We allow the residence time
to be a random variable, measurable on the sigma algebra generated by
q. We also assume that the travel time θ is a random variable of known
distribution and let θ̄ = Eθ. It yields

γ =
Ef(q, τ)
θ̄ + Eτ

. (3)

Theorem 2.2. Charnov’s marginal value theorem: the maximizing
admissible τ is given as a function of q by the rule

• either
∂f

∂τ
(q, 0) ≤ γ∗ and τ∗ = 0,

• or
∂f

∂τ
(q, τ∗)γ∗.

where γ∗ is obtained by placing τ∗ in (3).

Proof: Call Dγ the —Gâteaux— derivative of γ in (3). Euler’s inequality
reads, for any δτ such that τ∗ + δτ be admissible

Dγ.δτ =
1

θ̄ + Eτ∗

∫
R+

[
∂f

∂τ
(q, τ∗)− γ∗

]
δτ(q) dQ(q) ≤ 0 .

The increment δτ may have any sign if τ∗ is strictly positive, but it must be
positive if τ∗ is zero. Hence the result. This is —a marginal improvement
over— Charnov’s marginal value theorem.
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2.2.2 A lone forager evolving in our model

As in the classical model, we consider in this subsection a lone forager which
has a monopoly on resource it finds. Under the main modeling assumption
of subsection 2.1.1, the criterion becomes:

γ = E
{

q

[
1− φ

(
τ(q)
q

)]}/[
θ̄ + Eq

τ(q)
q

]
.

Charnov’s optimal patch-leaving strategy is to leave when ḟ = γ∗. In
our model, the intake rate of a lone forager only depends on ρ, hence an
equivalent threshold is ρ∗ = r−1(γ∗). One can notice that any unexploited
patch should be attacked independently of its quality since for every q,
(∂f/∂τ)(q, 0) = r(1) and r(1) > γ∗ by construction.

A simple property of our model —see equation (2)— is that τ∗(q)/q is a
constant, say z, z = φ−1(ρ∗), for any q. Hence the following expression of
γ∗, if we let q̄ = Eq:

γ∗ =
1− φ(z)
θ̄/q̄ + z

.

Therefore, one can compute the optimal value of ρ∗ —or equivalently
γ∗— via the well-known graph in figure 2. One can notice the duality
between q̄ and θ̄: multiplying by n the average level of resource is equivalent
to dividing by n the average travel time.

As a consequence, the patches should be relatively less depleted in a good
world [6] —rich and easy to find patches— than in a bad one —scarce
patches offering few resources.
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Figure 2: The marginal value theorem

Thus, in our particular case, only q̄ is relevant: “it suffices to know q̄
—rather than Q(q)— to be able to behave optimally”. Hence this model
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stands if the resource is “only” stationary in a weak sense; i.e. if the means
of the qualitative and spatial1 statistical distributions of the patches remain
constant over time.

2.2.3 An explicit formula for ρ∗

We now make use of the particular form of the function r of appendix A.3:
it allows the function φ(t) to be inverted into:

φ−1(ρ) = h(1− ρ)− α ln(ρ) . (4)

It yields an analytical solution, simply by performing an optimization in
ρ as ρ∗ = arg maxρ γ(ρ) with

γ(ρ) =
1− ρ

θ̄/q̄ + φ−1(ρ)
, ρ ∈ Σ1 .

Hence
ρ∗ = −1

/
W−1

(
−e−(1+x)

)
, (5)

where x = θ̄/(αq̄) and W−1 is the Lambert W function as defined in [7]
—this is indeed the “non-principal” branch of this multi-valued function
that contains the solution as ρ∗ ∈ Σ1 ⇒ W ≤ −1.

Thus ρ∗ depends on 1 + x, a sort of inverse duty cycle as αq̄ is the
time needed to cover an average patch in a systematic way; one can notice
that ρ∗ does not depend on the handling time h although γ∗ does. Let
y = 1/(1 + x) = αq̄/(αq̄ + θ̄); the function ρ∗(y) is plotted on figure 3.

As expected, in a bad world the patches should be relatively more
depleted than in a good one —high “duty cycle” y—, where the forager
would be harder to please.

3 Scramble competition

Scramble-competition only takes into account the fact that the resource
depletes faster due to simultaneous foraging activities on the patch. As
a consequence, the departure of a forager only slows down the depletion.
Hence there is no hope to see ρ, or equivalently the intake rate, increase.
Moreover, as foragers are assumed to be identical, they surely share the
same optimal long-term mean rate γ∗ and thus must leave at the same
time, independently of their arrival times. Hence adopting commonly the
Charnov’s patch-leaving strategy given by theorem 2.2 provides a Nash
equilibrium in non-anticipative strategies among the population. As this
latter is both strict and symmetric, this is indeed an evolutionarily stable
strategy —this is detailed in appendix B of the second part [9].
1More precisely, this is the mean travel time which has to remain stationary.
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Figure 3: The function ρ∗(y)

3.1 An attempt to get an analytical expression of γ∗

Let us assume that all foragers apply Charnov’s patch-leaving strategy, i.e.
leave when ḟ = γ∗ or equivalently when ρ = ρ∗. As a consequence, when a
patch is left, it is at a density ρ∗ which makes it unusable for any forager.
Hence all admissible patches encountered are still unexploited, with ρ0 = 1.

Let t be the time elapsed since the patch was discovered. For a fixed
ordered sequence of σj ’s, j ∈ {1, 2, . . . , n}, let us introduce a “forager sec-
ond” —as one speaks of “man month”—, s = S(t, σ) defined by

ṡ = j if σj ≤ t < σj+1 , s(0) = 0 .

Equivalently

for t ∈ (σj , σj+1) , S(t, σ) = j(t− σj) +
j−1∑
k=1

k(σk+1 − σk) . (6)

The function t 7→ S(t, σ) is strictly increasing. It therefore has an inverse
function denoted t = S−1

σ (s), easy to write explicitly in terms of the sj =
S(σj , σ):

for s ∈ (sj , sj+1) , S−1
σ (s) =

1
j
(s− sj) +

j−1∑
k=1

1
k

(sk+1 − sk) .

According to subsection 2.1.3, the dynamics of the patch are now

ṗ = qρ̇ = −jr(ρ) , for t ∈ (σj , σj+1) .
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As a consequence, the patch trajectory satisfies

ρ(t) = φ

(
1
q
S(t, σ)

)
.

We shall also let t∗ be such that ρ(t∗) = ρ∗, i.e. to be explicit, if not
clearer, t∗ = S−1

σ ◦ (qφ−1) ◦ r−1(γ∗).
Let us regroup possible combinations of σ’s by the maximum number of

foragers reached before they all leave the patch, say n̂. When they leave,
they have retrieved an amount

∑
i fi = q(1− ρ∗) of the resource. By sym-

metry, the expectation of fitness acquired is for each of them

Eσf =
q

n̂
(1− ρ∗) .

Moreover, this is exactly the amount of resource each would have acquired
if they all had arrived simultaneously, since in that case they all acquire
the same amount of resource.

Let us call central trajectory of order n̂ that particular trajectory where
all n̂ foragers arrived at time zero. We denote with an index � the corre-
sponding quantities. Hence, for all n̂, Eσ(f) = f�.

Now, for a given ordered sequence σ of length n̂, the reference forager may
have occupied any rank, from 1 to n̂. Let ξ be this rank. Call τ∗ξ its residence
time depending on ξ. Notice that since they all leave simultaneously,

∀n̂, ∀ξ ∈ {1, . . . , n̂} , τ∗ξ = σn̂ − σξ + τ∗n̂ .

Again, for reasons of symmetry,

Eξτ
∗
ξ = σn̂ −

1
n̂

n̂∑
j=1

σj + τ∗n̂ . (7)

Now, τ∗n is defined by φ(S(σn̂ + τ∗n̂, σ)/q) = ρ∗, i.e., according to equation
(6):

n̂[(τ∗n̂ + σn̂)− σn̂] +
n̂−1∑
j=1

j(σj+1 − σj)qφ−1(ρ∗).

Notice that
n̂−1∑
j=1

j(σj+1 − σj) = n̂σn̂ −
n̂∑

j=1

σj .

Hence we get

τ∗n̂ =
q

n̂
φ−1(ρ∗)− σn̂ +

1
n̂

n̂∑
j=1

σj .
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On the central trajectory of order n̂, it holds that s = n̂t = n̂τ , so that

τ∗� =
q

n̂
φ−1(ρ∗) ,

so that finally

τ∗n̂ = τ∗� − σn̂ +
n̂∑

j=1

σj .

Place this in (7), it comes Eξτ
∗
ξ τ∗�. But this last quantity is independent

on σ, so that, for any fixed q and n̂,

Eστ∗ = τ∗� =
q

n̂
φ−1(ρ∗) .

The random variables q and n̂ are surely correlated, as the foragers stay a
longer time on better patches, and are thus likely to end up more numerous.
Similarly, n̂ surely depends on ρ∗; hence we use E∗ to mean that we take
the expected value over all patch qualities and sequences of arrival under
the optimal scenario. Let then q∗ = E∗(q/n̂). We obtain the fixed point
equation:

r(ρ∗) = γ∗ =
1− ρ∗

θ̄/q∗ + φ−1(ρ∗)
. (8)

Yet, it remains a partial result as long as we do not know how to express
q∗ as a function of ρ∗.

3.1.1 A digression on a simple model of group foraging

In this subsection we relax the assumption of independent foragers provided
that they be identical —all we need up to now is symmetry among foragers.

Thus let us consider a group of N identical individuals foraging “patch-
by-patch”; i.e. the travel-times are assumed to be too long to allow the
group to cover two patches simultaneously. In this “information-sharing”
model [8], once a patch is discovered by any member of the group, the others
are assumed to join it sequentially; i.e. we assume that the group spread
itself in a radius [17] that allows every members to benefit from the poorest
patch —as a function of the optimal profitability threshold ρ∗ computed
below. This assumption results in n̂ equal to N independently of q and ρ∗.
Therefore, the formula (8) is exactly as applying Charnov’s marginal value
theorem for both deterministic patch quality q̄/N and travel time θ̄. As the
tradition wants, one can compute γ∗ graphically, as done in figure 4.

Obviously foraging in group is less2 efficient in term of fitness gathering
than foraging alone, if no advantage [5] is taken into account. However, it
2At best equal, if ever the mean travel time was divided by N while foraging in
group [5].
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Figure 4: The marginal value theorem

does not imply that the individual efficiency γ∗(N) =: γ∗N is an homoge-
neous function of degree −1; indeed, the relation γ∗N = γ∗1/N would be true
if the individuals were acting as if they were alone.

If we make use of the particular form of the function r of appendix A.3,
N 7→ ρ∗(N) is given by equation (5) with x = Nθ̄/(αq̄); as γ∗ = r(ρ∗), the
function N 7→ γ∗(ρ∗(N)) is easily obtained. Let β = α/h, µ = θ̄/(αq̄) and

Γ(N) := γ∗1/γ∗N =
[
1− βW−1

(
−e−(1+Nµ)

)]/[
1− βW−1

(
−e−(1+µ)

)]
.

Let κ = β/
[
(1− βW−1

(
−e−(1+µ)

)]
and Γ′(N) := dΓ(N)/dN ; it comes

Γ′(N) = κµW−1

(
−e−(1+Nµ)

)/[
1 + W−1

(
−e−(1+Nµ)

)]
> 0 .

Let Γ′′(N) := dΓ(N)/dN2.

Γ′′(N) = −µ2κW−1

(
−e−(1+Nµ)

)/{[
1 + W−1

(
−e−(1+Nµ)

)]3}
< 0 .

Thus Γ(N) is strictly increasing but concave. Therefore, foraging in group
should yield —far— more than only a N th of what would get a lone forager,
provided that the strategy be adapted to the size of the group.

Moreover, it is easy to see that limN→∞ Γ(N) = ∞, that limN→∞ Γ′(N) =
κµ and that Γ′′(N) increases abruptly in the vicinity of zero. Hence
Γ(N) can be approximated by an affine function of slope κµ: let
Γ̃(N) := (1− κµ) + Nκµ ∼ Γ(N). The “duty cycle” is now y = 1/(1 + µ).
Figure 5 approximately characterizes the decline in individual efficiency
resulting from foraging in group, as opposed to foraging alone. We see that
in a even in a bad world, the loss can be relatively small if the handling
time is relatively long.
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Figure 5: The function y 7→ κµ

3.1.2 Back to the original problem

As q∗ = EqE∗(q/n̂|q) = EqqE∗(1/n̂|q), we shall first consider that q is fixed.
Let ζ1 be the time a lone forager would stay on a patch of quality q if

not disturbed by an intruder: ζ1 := τ∗�n̂ = qφ−1(ρ∗). In order to perform
an optimization in ρ as in subsection 2.2.3, our purpose is now to compute
the function ζ1 7→ E∗(1/n̂). Let the successive arrival times on a patch be a
Poisson process with intensity λ > 0. This means that the successive inter-
arrival times form a sequence of mutually independent random variables
{wn}, exponentially distributed with mean 1/λ.

Once a first intruder has arrived, the maximum —in absence of further
intruder— remaining time to deplete the patch up to ρ∗ is divided by two
as the depletion speed doubles; more generally, after the nth arrival, the
maximum remaining residence time is reduced by a factor (n− 1)/n. Our
aim is now to express the cumulative distribution function of n̂ in closed
form as a function of ζ1, from which we will deduce E∗(1/n̂).

A way to formulate the problem is the following one: let ζn be the remain-
ing effort in “forager second” when the nth forager arrives. Clearly

ζn+1 = ζn − nwn , n ≥ 1.

Note that the mapping n → ζn is non-increasing. Therefore, the random
variable n̂ is characterized by ζn̂+1 ≤ 0 < ζn̂.
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We have

P (n̂ > M) = P (ζ2 > 0, . . . , ζM+1 > 0) ,

= P (ζ1 > w1 + 2w2 + . . . + MwM ) .

This is equivalent to finding the distribution law of
∑M

n=1 nwn. As the
probability density function of the sum of independent random variables
is given by the convolution product of their density functions, one can
obtain it by inverting the product of the Laplace transforms of their density
functions. This is done in appendix B and it yields

E∗(1/n̂|q) = 1−
∞∑

l=1

(
1− e−λζ1/l

)
e−l ll−1

l!
.

Hence

q∗ = E∗(q/n̂) = q̄ −
∞∑

l=1

[(
q̄ −

∫ ∞

0

e−λζ1/lqdQ(q)
)

e−l ll−1

l!

]
.

We now make use of the particular form of φ−1(ρ) given by equation (4);
it yields ζ1 = q[h(1− ρ)− α ln(ρ)].

As the Laplace transform of q(dQ(q)/dq) is the derivative of the Laplace
transform of −dQ(q)/dq, it yields:∫ ∞

0

qdQ(q)e−λζ1/l − L′(ν̂) ,

with ν̂ = λ[h(1− ρ)− α ln(ρ)]/l, where L(ν) is the Laplace-Stieltjes trans-
form of q and L′(ν) = dL(ν)/dν.

Hence

q∗ = q̄ −
∞∑

l=1

{
[q̄ + L′(ν̂)] e−l ll−1

l!

}
.

Although we now get an explicit expression of γ(ρ) as, according to
equation (8),

γ(ρ) =
(1− ρ)

θ̄/q∗ + φ−1(ρ)
,

this expression does not allow us to find an analytical expression for ρ∗ =
arg maxρ γ(ρ).

However, one can perform some numerical computations, as done in fig-
ure 6 —we took α as a time unit, β = α, a unique q = 200 units of fit-
ness, θ = 50α and L = 100 for numerical computations, as suggested in
appendix B. At λ ∼ 0, the mean inter-arrival time is infinite, thus we took
∀ρ , E(1/n̂) = 1. λ = 0.05 is a fair intensity as the mean inter-arrival time
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Figure 6: The function γ(ρ)

equal to 20α. λ = 0.5 is an extreme intensity as the mean inter-arrival time
is equal to 2α.

In agreement with Charnov’s model, the patches should be more depleted
in a bad world —now in terms of the possible presence of competitors.

4 Concluding remark

Unavoidably, the consideration of the number of foragers reaching a patch
as a function of its quality raises the issue of the relation with another
central concept in foraging theory: the ideal free distribution [12,22]. It
focuses on the distribution that corresponds to a Nash equilibrium among
the foragers; i.e. into such a configuration, no one can individually improve
its intake rate by moving instantaneously elsewhere. Hence the intake rates
of identical foragers should be permanently equalized.

A simple property of our model —see equation (2)— is that an homoge-
neous and synchronous distribution of foragers yields an permanent equal-
ization of their intake rates; i.e. if the number of foragers on any patch is
proportional to patch quality and if they all reach their respective patch
at the same time, their intake rates would remain equalized as all patch
densities would decrease at the same speed.
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Compared to that distribution, the calculations of appendix B let one
compute ζ1 7→ E∗n̂, the expected maximum number of foragers as a func-
tion of patch quality where now ρ∗ is fixed thus ζ1 proportional to q:

E∗(n̂) = 1 +
∞∑

l=1

(
1− e−λζ1/l

)
e−l ll−1

l − 1!
.

It can be easily shown that the function ζ1 7→ E∗n̂ is increasing but concave
so good patches seem under-exploited, relatively to the “ideal free” distri-
bution mentioned above. This deviation is in agreement with the common
observation [21] and previous theoretical results [1] regarding the effect of
perturbations such as non-zero travel time —or equivalently the foragers’
asynchrony here.
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A Modeling patch depletion

A.1 Discrete foraging

We consider in this subsection a situation where the resource comes as a
finite number of tokens. We let q ∈ N —for quality— be the initial number
of tokens in the unvisited patch.

In our model, a token of resource remains on the patch once exploited,
as an empty token. The forager is assumed to search for tokens at random
—it is not supposed to search the patch in a systematic way—, so that the
distribution of depleted resource tokens among the patch will be assumed
to be uniform at all times. Thus the forager finds itself more and more
often probing a possible resource that turns out to be void. As a result,
its efficiency decreases, prompting it to usually leave the patch before it
is completely depleted. The decision parameter in the theory of patch use
is the time τ that the forager spends on the patch before leaving it, or
residence time. We let α be the time it takes to move to a new token and
probe it and h, the handling time, the time it takes to actually exploit a
token of resource. Let tk be the time at which the kth valid resource token
is found. It is actually exploited at time tk + h. Let pk be the amount of
resource remaining on the patch after the kth unit is taken, i.e. pk = q− k
—and hence p0 = q. Let also ρk = pk/q be the density of good resource
tokens. We seek the law for tk+1.

The forager finds a potential item of resource, possibly already exploited,
every α units of time. For a given t = tk + h + `α, the event tk+1 = t is
equivalent to the fact that the items found at times tk + h + α, tk + h +
2α, . . . , tk +h+(`− 1)α were already exploited, and the one found at time
tk +h+`α was not. During that time, ρ does not change, so that, assuming
these events are independent —the patch is attacked in an homogeneous
fashion—, the probability of this event is

Pk,` = (1− ρk)`−1ρk .

Therefore, the expected time tk+1 is given by

E(tk+1 − tk − h) =
∞∑

`=1

(1− ρk)`−1ρk`α =
α

ρk
.
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Hence
E(tk+1 − tk) =

α + ρkh

ρk
. (9)

Deriving from there the law f , i.e. the expectation of the number of
good resource tokens found in a given time τ , is done in appendix A.2. One
computes, for n ≤ q,

Pn
k := P{tn = kα + (n− 1)h} ,

and finds that it can be expressed in terms of products an
m of combinatorial

coefficients

an
m = (−1)n−1

(
q − 1
n− 1

)
(−1)m

(
n− 1

m

)
,

as —equation(11)—

Pn
k =

n−1∑
m=0

an
m

(
m

q

)k−1

.

Then, let kn = Int[(τ − nh)/α]. The expected harvest is

f(q, τ) =
∑
n≤q

nPn
kn

.

A.2 Appendix: combinatorics of discrete foraging

We have seen, equation (9), that P{tk+1 − tk − h`α} =: Pk,` = (1 −
ρk)`−1ρk. From there, we compute the full law for the residence time τn

as follows. Let Pn
k := P{tn = kα + (n − 1)h}. It is the probability that

k attempts were necessary to find n items. It is the probability that t0 +
(t1− t0−h)+ . . .+(tn− tn−1−h) = kα. The characteristic function of the
sum of independent random variables is the product of their characteristic
functions. Let therefore

P̂k(z) =
∞∑

`=1

Pk,`z
−` ρk

z − (1− ρk)
.

The characteristic function of tn is therefore

P̂n(z) = P̂0(z)P̂1(z) · · · P̂n−1(z) ,

=
ρ0ρ1 . . . ρn−1

[z − (1− ρ0)][z − (1− ρ1)] . . . [z − (1− ρn−1)]
.

If, now, ρ0 = 1 and ρ` = 1− `/q, it comes

P̂n(z)
(1− 1

q )(1− 2
q ) · · · (1− n−1

q )

z(z − 1
q ) · · · (z − n−1

q )
. (10)



Foraging under competition 1 19

It remains to expand this rational fraction in powers of z−1 to compute the
probability sought Pn

k = P{tn = kα + (k − 1)h)}. This is done through a
decomposition in simple elements and expansion of each. If we let

P̂n(z) =
n−1∑
m=0

an
m

z − m
q

,

it comes, for n ≤ q,

an
m = (−1)n−m−1 (q − 1)!

(q − n)!m! (n−m− 1)!
(−1)n−m−1

(
q − 1
n− 1

)(
n− 1

m

)
,

and the expansion yields, still for n ≤ q:

Pn
k =

n−1∑
m=0

an
m

(
m

q

)k−1

, (11)

with the convention that 00 = 1 —useless in practice, since for k > 1, the
only interesting case, the term m = 0 can clearly be omitted.

It can be directly shown that the above formulas enjoy the desired prop-
erties that for any fixed n ≤ q, the Pn

k are null if k < n, and add up to one:

∀k < n , Pn
k = 0 , and

k=∞∑
k=n

Pn
k = 1 .

A.3 Continuous foraging

Following most of the literature, we shall use a continuous approximation
of the above theory, assuming that the resource is, somehow, a continuum:
now, q ∈ R+. Let us introduce a surface —or volume— resource density
D3. Two time constants enter into the model:
• α is the time it takes for the forager to explore a unit area that could

contain a quantity D of resource —if it were not yet exploited.
• h is the extra time —or handling time— it takes to actually retrieve a

unit of resource if necessary.
Our hypothesis is that a ratio ρ of the patch area is productive so that

an area dæ produces a quantity

df = ρDdæ

of resource and the time necessary to gather it is

dt = αdæ + ρDhdæ .

3In the body of the paper, we assume that the unit of area chosen is such that
D = 1 or equivalently, α is the time required to probe one unit of resource.
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Hence we get

ḟ =
ρD

α + ρDh
:= r(ρ).

One can relate this equation to Holling’s equation [10] by substituting α
by the attack rate, a parameter giving the amount of resource attacked per
unit time, a = D/α.

B Evaluating a probability law

Let w1, . . . , wn be mutually independent random variables with common
probability distribution P (wj < x) = 1 − exp(−λx). Define Yk = w1 +
2w2 + . . . + kwk. The Laplace-Stieltjes transform of Yk is given by

fk(s) := E(e−sYk) =
k∏

j=1

λ

λ + js
.

Denote by gk(t) the density function of Yk, namely, gk(t) = dP (Yk < t)/dt.
The function gk(t) may be computed by inverting the LST fk(s). This gives

gk(t) =
1

2πi

∫ γ+i∞

γ−i∞
estfk(s)ds ,

where γ is any real number chosen so that the line s = γ lies to the right
of all singularities of fk(s) [19]. The function fk(s) has only k simple poles,
located at points s = −λ/j for j = 1, . . . , k. We may therefore take γ = 0.

The usual way for computing the complex integral
∫ i∞
−i∞ estfk(s)ds is

first to consider the complex integral I(R) :=
∫

CR
estfk(s)ds, where CR is

the contour defined by the half circle in the left complex plane centered at
s = 0 with radius R, and the line [−iR, iR] on the imaginary axis. R is
any real number such that R > 1/λ so that all poles of fk(s) are located
inside the contour CR —see Figure 7. By applying the residue theorem we
see that

I(R) = 2πi
k∑

l=1

Residue
(
estfk(s); s = −λ/l

)
.

Since the residue of the function estfk(s) at s = −λ/l is equal to
e−λt/l(λ/l)

∏k
j=1
j 6=l

l/(l − j), we find that

I(R) = 2πi
k∑

l=1

e−λt/l λ

l

i∏
j=1
j 6=l

l

l − j
. (12)
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Figure 7: The contour CR

At this point we have shown that

gk(t) =
1

2πi
lim

R→∞

∫ iR

−iR

estfk(s)ds ,

=
1

2πi
lim

R→∞
IR −

1
2πi

lim
R→∞

∫
ΓR

estfk(s)ds ,

=
k∑

l=1

e−λt/l λ

l

k∏
j=1
j 6=l

l

l − j
− 1

2πi
lim

R→∞

∫
ΓR

estfk(s)ds ,

by using (12), where ΓR = CR − [−iR, iR].
One can find constants K > 0 and a > 0 such that |fk(s)| < K/Ra when

s = Reiθ for R large enough4, so that the integral in the latter equation
vanishes as R →∞ [19, Theorem 7.4].

In summary, the density function gk(s) of the r.v. Yk is given by

gk(t) =
k∑

l=1

e−λt/l λ

l

k∏
j=1
j 6=l

l

l − j
. (13)

Let us now come back to the original problem. Define —with ζ > 0—

n = inf{k ≥ 1 : ζ − (w1 + 2w2 + . . . + kwk) ≤ 0} ,

4Hint: always true if fk(s) = P (s)/Q(s), with P and Q polynomials and the
degree of P is strictly less than the degree of Q.
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or equivalently
n = inf{k ≥ 1 : ζ − Yk ≤ 0}.

We are interested in E(1/n). We have

P (n > M) = P (ζ − Y1 > 0, . . . , ζ − YM > 0) ,

= P (Y1 < ζ, . . . , YM < ζ) ,

= P (YM < ζ). (14)

Since P (n = M) = P (n > M − 1) − P (n > M) we see from (14) that for
M ≥ 2,

P (n = M) = P (YM−1 < ζ)− P (YM < ζ)

=
∫ ζ

0

gM−1(t)dt−
∫ ζ

0

gM (t)dt (15)

=
M−1∑
l=1

(
1− e−λζ/l

)M−1∏
j=1
j 6=l

l

l − j
−

M∑
l=1

(
1− e−λζ/l

) M∏
j=1
j 6=l

l

l − j

where the latter equality follows from (13).
The r.h.s. of (15) can be further simplified, to give

P (n = M) =
M∑
l=1

(
1− e−λζ/l

)
(−1)M−1−l M

(M − l)!
lM−2

(l − 1)!
, (16)

for M ≥ 2. It remains to determine P (n = 1). Clearly,

P (n = 1) = P (Y1 > ζ) = e−λζ . (17)

Therefore,

E(1/n) =
∞∑

M=1

1
M

P (n = M)

= 1 +
∞∑

M=1

M∑
l=1

(
1− e−λζ/l

)
(−1)M−1−l 1

(M − l)!
lM−2

(l − 1)!

= 1 +
∞∑

l=1

(
1− e−λζ/l

) 1
(l − 1)!

∞∑
M=l

(−1)M−1−l lM−2

(M − l)!

= 1−
∞∑

l=1

(
1− e−λζ/l

)
e−l ll−1

l!
. (18)

Similarly we find

E(n) = 1 +
∞∑

l=1

(
1− e−λζ/l

)
e−l ll−1

l − 1!
. (19)
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Concluding remark:
A way to avoid the calculation of the infinite series in the r.h.s. of (18)

—or similarly that of (19)— is to split the series in two parts:
∑L

l=1(1 −
e−λζ/l)e−lll−1/l! and

∑
l>L(1− e−λζ/l)e−lll−1/l! for some arbitrary —but

carefully chosen— integer L > 1. The first —finite— series can be evaluated
without any problem for moderate values of L and the second one can be
approximated by using Stirling’s formula as shown below. Indeed, if we use
the standard approximation l! ∼

√
2πl ll e−l then it follows that

∑
l>L

(
1− e−λζ/l

)
e−l ll−1

l!
∼ 1− 1√

2π

∑
l>L

(
1− e−λζ/l

)
l−3/2 .

We can further approximate the infinite series
∑

l>L

(
1− e−λζ/l

)
l−3/2

by the integral
∫∞

L

(
1− e−λζ/x

)
x−3/2 dx, which gives

∞∑
l>L

(
1− e−λζ/l

)
l−3/2 ∼ 2√

L
−
√

π

λζ
erf

(√
λζ

L

)
,

where the error function erf is defined by erf := 2/
√

π

∫ x

0

e−t2dt.


