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FRÉDÉRIC HAMELIN, PIERRE BERNHARD∗, A.J. SHAIJU† , AND ÉRIC WAJNBERG‡

Abstract. An important issue addressed by Behavioural Ecology is that of the evolutionary
relevance of foraging strategies adopted by animals in quest of a patchily distributed resource, both
in terms of diet selection and patch-leaving decisions under competition.

We revisit the classical model of diet selection concerning an isolated —not subject to competition—
forager; it yields a zero-one rule —a type of resource should be always accepted, or always rejected—
that appears to be more the exception than the rule, as partial preferences are commonly observed
in many species. Thus arises the question of its robustness to uncertainties concerning the time
available to enjoy a patch before a perturbating event occurs. We mean any event that would af-
fect its gain with respect to what it would obtain by enjoying alone the patch as long as it wants.
For instance, the sudden presence of a predator could force it to flee the patch or the arrival of a
conspecific would deprive it of some good resources.

By taking into account the potentially imminent arrival of a conspecific —but also any event that
would suddenly shorten patch exploitation—, we show that the classical policy of diet selection no
longer holds —as it changes the qualitative aspect of the optimal foraging strategies. Qualitatively,
the optimal strategy is close to, but less greedy than, the evolutionarily stable strategy that concerns
foragers actually competing for resources. It consists in accepting only the most profitable resource
until it is depleted down to a given level, after which time both resources are accepted.

The underlying mathematical technique involves the solution of non-zero-sum differential games
and synthesis techniques.

Key words. Differential Games, Evolutionarily Stable Strategies, Optimal Foraging Theory,
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1. Introduction. “Nothing in biology makes sense except in the light of evolu-
tion”1. In this respect, Behavioural Ecology [18] interprets animal behavior through
an evolutionary approach, via estimating its capacity to get through the natural se-
lection process, thus to maximize Darwinian fitness [22] —a notion analogous to that
of “utility” in Economics. Typically, in foraging theory [33] or the art of gathering
resources in the environment, fitness is related to the amount of resource gathered. In
many cases, the resource is patchily distributed and the utility function on each patch
is strictly increasing, concave and bounded with respect to time. As the intake-rate
decreases with the quantity of resource available on the patch, it is likely advantageous
to leave a patch not yet exhausted in order to find a new one, in spite of an uncertain
travel-time. Charnov’s marginal value theorem [6] reveals that the optimal giving up
time is when the intake-rate is equal to the optimal long-term mean rate γ∗ —that,
if achieved, gives the best fitness a forager can expect in its environment.

This famous theoretical model was originally designed for lone foragers in quest
of a singular patchily distributed resource. In parallel, another branch of the the-
ory started by focusing on the optimal diet selection [5, 17, 31] when the environment
offers a plural resource, varying both in profitability and abundance, but spatially reg-
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ularly and homogeneously distributed. The authors of [23] merged these two theories
afterwards.

Naturally, the question arises of whether this theory holds for foragers competing
for a common patchily distributed resource, i.e. whether this is an evolutionarily
stable strategy [20]; for instance, it might have implications in terms of population
dynamics [34, 37].

Concerning the singular resource case, Charnov’s patch-leaving rule remains qual-
itatively unchanged under scramble competition —when the only competition between
foragers is in sharing a common resource [32, 8]; γ∗ is clearly affected by the number
of potential competitors, but the patch-leaving rule is unchanged. However, if there
is interference, i.e. a decline in intake-rate due to competition, the game results in a
war of attrition [32, 9] or random patch-leaving strategies.

In the present paper, our aim is to determine the evolutionarily stable strategy
that non-interfering foragers competing for a plural and depleting resource should
adopt, both in terms of diet selection and patch-leaving decision [3, 33].

The remainder of the paper is organized as follows. In Section 2, we reformulate
the optimal diet selection policy for a lone forager free to leave the current patch of
resources at any time. On our way, we solve the optimal diet selection problem for
a single forager with a fixed end time; this is done in appendix A. In Section 3, we
investigate the foraging game involving several foragers arriving simultaneously on a
patch containing two distinct types of resources. Section 4 focuses on an asynchronous
two forager game, where the inter-arrival time is assumed deterministic. Finally, the
game considered in Section 5 lets the possible arrival of an opponent be a Poisson
variable2.

2. Foraging alone. It is well-known [5, 16] that a lone forager should accept a
unit of resource i if its —energy— value ei is worth the time required to retrieve it:
the handling-time hi. Indeed, Charnov’s marginal value theorem [6, 22] prohibits the
intake-rate from falling under a critical threshold γ∗. Hence the rule is to accept this
resource if and only if γ∗ ≤ ei/hi. We shall define profitability of resource i as the
ratio ei/hi. We shall also let δi := ei − γ∗hi.

However, let us recall this result in order to introduce our modeling and solution
approaches —the latter is close to that of [26].

Let x be the state vector containing the ratios xi ∈ [0, 1] of each type of resource
available in the patch. Let u be the control vector containing the controls ui ∈ [0, 1]
deciding the acceptance rate3 of each type of resource available in the patch. Let
ẋ := dx/dt, where t stands for the residence time.

Proceeding as in [14, 8] and most of the literature, an assumption of random
probing on a patch yields the following dynamics:

∀i ∈ {1, . . . , N} , qẋi = − uixi

α+
∑N

j=1 ujxjhj

, xi(0) = x0
i ;

N∑
i=1

x0
i = 1 ,(2.1)

where α is the time required to probe an area of the patch that could contain a unit
of resource and q is the quality of the patch or the quantity of resources it initially
contains.

2A particular case of that game is that of a single player with an exponential random end time,
such as the possible occurrence of a predator.

3Or equivalently the probability to accept a given type of resource when encountered.
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Following [22], we want to maximize the criterion:

J =
∫ t∗

0

L(x, u)dt with L(x, u) = −
N∑

j=1

ejqẋj − γ∗ ,(2.2)

where t∗ is a free final time.
We claim the following result:
Theorem 2.1. The optimal policy in the problem stated by equations (2.1) and

(2.2) is given by

• ∀t ∈ [0, t∗], take ui =

 1 if γ∗ < ei/hi

arbitrary in [0, 1] if γ∗ = ei/hi

0 if γ∗ > ei/hi

• and leave as soon as
∑N

j=1 ujxj(ej − γ∗hj)− γ∗α ≤ 0.
Proof. Let s be such that dt = qDds with D := α+

∑N
j=1 hjujxj . Let x̊ := dx/ds

and f(x, u) := x̊. The dynamics become:

x̊i = −uixi , xi(0) = x0
i .

Our criterion can now be expressed as follows: let

J := J/q =
∫ s∗

0

L(x, u)ds with L(x, u) =
N∑

j=1

ujxjej − γ∗D .

It directly yields that the optimal end time is such that L be zero on the optimal
trajectories, since ∂J /∂s∗ = L(x(s∗), u(s∗)) = 0; this corresponds to Charnov’s patch
leaving rule. Hence the claim of the theorem.

Let λ be the adjoint vector. It yields the Hamiltonian:

H = L(x, u) + 〈λ, f(x, u)〉 =
N∑

j=1

(δj − λj)ujxj − αγ∗ .

According to Pontryagin’s maximum principle [30], if a policy u∗(s) generating a
trajectory x∗(s) is optimal, then there exists an adjoint trajectory λ(s) such that

λ̊ = −∇xH(λ, u∗, x∗)
λ(s∗) = 0
H(s∗) = 0∣∣∣∣ ∀s ∈ [0, s∗] where u∗(·) is continuous,
H(λ(s), u∗(s), x∗(s)) = maxu∈[0,1]n H(λ(s), u, x∗(s))

.

The last condition above translates into the switch-functions

σi := ∂H/∂ui = (δi − λi)xi ,

and the bang-bang optimal policy:

u∗i =
{

1 if σi > 0
0 if σi < 0 .

The singular case σi = 0 allows the focal forager to either accept or reject the less
profitable resource indifferently.
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We also have

λ̊i = −∂H/∂xi = −(δi − λi)ui , λi(s∗) = 0 .

It yields σ̊i = 0. Hence the sign of σi never changes, and therefore the optimal
policy is:

∀t ∈ [0, t∗] , ui =
{

1 if γ∗ < ei/hi

0 if γ∗ > ei/hi
.

As already mentioned in [23], the reason why the author of [26] found another result
is that he —consciously— considered, as a constraint, an arbitrarily predetermined
residence time4. It has to be noticed that in this simple model, partial preferences
[21] should only occur in the non generic case γ∗ = ei/hi.

Given the optimal policy as a function of γ∗, it is possible to compute both γ∗

and the corresponding optimal diet, as done in [23], where the authors provide an
algorithm that converges to the solution.

3. The synchronous foraging game. The authors of [15] argue that when
“a large number” of foragers are competing for a plural and depleting resource, they
should maximize their intake-rate. Thus the evolutionarily stable policy consists of
being selective first and, after a while, being opportunistic1. The results of both
[26, 35] are in agreement with [15] except that they found “earlier” switch-times,
for a relatively low number of competitors. However, both approaches point to a
convergence of the switch-time towards the intake-rate maximizing one as the number
of foragers increases.

Our aim is now to determine the evolutionarily stable policy via an approach sim-
ilar to that of [26], except that we do not set any arbitrarily predetermined residence
time or final patch state.

Following Section 2, we now restrain the resource range to those which would be
included in the diet of a lone forager: ∀i ∈ {1, 2} , δi ≥ 0 —the resource types rejected
by a lone forager should a-fortiori be rejected under competition. We shall also let
ζ := e1h2 − e2h1 ≥ 0 as e2/h2 ≤ e1/h1 by hypothesis.

Proceeding as in [26], we look for the optimal policy against a strategy assumed
commonly adopted by the opponents. If it leads to the latter, this is indeed an
evolutionarily stable strategy —as this is a strict and symmetric Nash equilibrium
[13, 9]. However, to be consistent, we need to assume a state feedback strategy for
the opponents. Hence we must use a regular synthesis technique in order to recover
the co-state vector as a function of the current state, and construct a switch-manifold
in the state space. This, in turn, induces discontinuities in the adjoint variables of
the focal player and other difficulties that we must take into account. Throughout
our reasoning, we shall refer to figure 3.1, which represents the state-space (x1, x2).

Let n be the number of foragers on the patch. Let u be the decision variable
of the focal forager, i.e. the acceptance rate of resource 2 —as resource 1, the most
profitable one, should, of course, always be accepted. Similarly, let v be the decision
variable of its opponents.

Let D(u) := α+ h1x1 + uh2x2. The dynamics are now:{
qẋ1 = −x1/D(u)− (n− 1)x1/D(v) , x1(0) = x0

1

qẋ2 = −ux2/D(u)− v(n− 1)x2/D(v) , x2(0) = x0
2

.(3.1)

4This issue is addressed in appendix A.
1The author of [10] also mentioned this “expanding-specialist” strategy under competition.
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The criterion of the focal forager is:

J =
∫ t∗

0

L(x, u)dt with L(x, u) = e1x1/D(u) + ue2x2/D(u)− γ∗(3.2)

and where t∗ is a free final time.
We claim the following result —see figure 3.1:
Theorem 3.1. The unique pure symmetric state feedback Nash Equilibrium in

the game stated by equations (3.1) and (3.2) corresponds to:

• take
{
u = 0 as long as S(x) ≤ 0
u = 1 as soon as S(x) > 0 , where S(x) is given by equation (3.9)

• and leave as soon as δ1x1 + δ2x2 − γ∗α ≤ 0.

Fig. 3.1. The Nash-optimal fields of trajectories in the state-space (x1, x2).

Proof. Let s be such that dt =: qD(u)ds. Let x̊ := dx/ds and f(x, u) := x̊. The
dynamics become:{

x̊1 = −x1(1 + (n− 1)D(u)/D(v)) , x1(0) = x0
1

x̊2 = −x2(u+ v(n− 1)D(u)/D(v)) , x2(0) = x0
2

.

Our criterion can now be expressed as follows: let

J := J/q =
∫ s∗

0

L(x, u)ds with L(x, u) = e1x1 + ue2x2 − γ∗D(u) .

Clearly, ∂J /∂s∗ = L(x(s∗), u(s∗)) = 0. It directly yields that the optimal end
time is such that L—which does not depend on s— be zero on the optimal trajectories;
this corresponds to Charnov’s patch leaving rule. The oblique line sloping to the left
in figure 3.1 represents this terminal manifold.

Let λ be the adjoint vector, associated with the focal forager. It yields the Hamil-
tonian:

H = e1x1 + ue2x2 − γ∗D(u)− λ1x1(1 + (n− 1)D(u)/D(v))
−λ2x2(u+ v(n− 1)D(u)/D(v)) .
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According to Pontryagin’s maximum principle5, the optimal policy is thus bang-
bang, according to the switch-function

σ = [δ2 − λ1(n− 1)h2x1/D(v)− λ2(1 + v(n− 1)h2x2/D(v))]x2 .

We have:

λ̊1 = λ1[(1 + (n− 1)D(u)/D(v)) + (n− 1)h1x1(1/D(v)−D(u)/D(v)2)] +
λ2v(n− 1)h1x2(1/D(v)−D(u)/D(v)2)− δ1 , λ1(s∗) = 0 .

λ̊2 = λ2[(u+ v(n− 1)D(u)/D(v)) + v(n− 1)h2x2(u/D(v)− vD(u)/D(v)2)] +
λ1(n− 1)h2x1(u/D(v)− vD(u)/D(v)2)− uδ2 , λ2(s∗) = 0 .

Clearly, u∗(s∗) = 1 as σ(s∗) = δ2x2 ≥ 0 by hypothesis.
Proceeding as in to [26], we first assume that the opponents are opportunists.

The optimal strategy is then given via integrating backward the above differential
equations, with v = 1. As long —from the end time— as σ remains positive, being
opportunistic is optimal. Thus if it remains so backwards up to time zero, being
opportunistic the whole time spent on the patch is the evolutionarily stable strategy.
Otherwise, i.e. if the sign of σ changes in backward time, being selective is, at least
locally, optimal before the switch-point. Thanks to the assumed symmetry among
foragers, if such a switch-point appears, then it prevails for any competitor on the
patch. Therefore, we shall assume in a second time that v = 0 from this possible
switch-point down to s = 0. However, a prerequisite to reiterate a similar process
backward in time is that being selective be optimal against selective opponents.

Let (ŝ, x̂) be either the first —in backward time— switch-point, if there is one, or
(0, x(0)) otherwise; i.e. beyond this point, being opportunistic remains optimal up to
the end time. Let the superscript + denote the region of the state space beyond the
last switch-point; thus we postulate that in region + the Nash-optimal strategies are
u = v = 1. For instance, let D+ := D(1) = α + h1x1 + h2x2. We have ∀s ∈ (ŝ, s∗),
∀i ∈ {1, 2},

x̊i = −nxi , xi(s∗) =: x∗i and λ̊+
i = nλ+

i − δi , λ+
i (s∗) = 0 .

We also have

σ+ = [δ2 − λ+
1 (n− 1)h2x1/D

+ − λ+
2

(
1 + (n− 1)h2x2/D

+
)
]x2(3.3)

and H+ = e1x1 + e2x2 − γ∗D+ − λ+
1 x1n− λ+

2 x2n. It yields ∀s ∈ (ŝ, s∗), ∀i ∈ {1, 2},

xi(s) = x∗i e
n(s∗−s) and λ+

i (s) = δi

(
1− e−n(s∗−s)

)
/n .(3.4)

As a consequence

λ+
1 (s) = δ1(1− x∗1/x1)/n ≥ 0 .(3.5)

Moreover, one can notice from equation (3.4) that ∀s ∈ (ŝ, s∗) , x∗1/x1 = x∗2/x2 or
equivalently that x1/x2 is invariant over [ŝ, s∗] —this results from our assumption of
homogeneous probing on the patch and that is why in figure 3.1, the field of optimal
trajectories is a radial one. Furthermore, as the Hamiltonian remains constant all

5as long as the opponent use a Lipschitz continuous, here constant, strategy —w.r.t. x.
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along the optimal trajectory, it remains equal to zero here and this yields ∀s ∈ (ŝ, s∗),
∀i ∈ {1, 2},

x∗i /xi =
γ∗α

x1δ1 + x2δ2
.(3.6)

Hence the claim of the theorem.
The switch-function can also be rewritten as follows:

σ+ =
[
(e2 − λ+

2 )(α+ h1x1)− (e1 − λ+
1 )h2x1

]
x2/D

+ .

Let us now assume that there is a switch-point by definition such that σ+(ŝ) = 0. Our
aim is now to verify that switching —in backward time— u to zero remains optimal if
v switches to zero simultaneously at time ŝ. Let the superscript − denote the region
of the state space where we conjecture that the Nash-optimal strategies are u = v = 0.
For instance, let D− := D(0) = α+ h1x1. We have

σ−(ŝ) = [δ2 − λ−1 (ŝ)(n− 1)h2x̂1/D
−(ŝ)− λ−2 (ŝ)]x̂2 .

One also has H−(ŝ) = e1x̂1 − γ∗D−(ŝ)− λ−1 (ŝ)x̂1n.
Notice that the time instant ŝ depends on the trajectory considered, and thus

x(ŝ) describes a switch manifold S(x) = 0 —the curve in figure 3.1. Therefore, λ−1 (ŝ)
and λ−2 (ŝ) must satisfy the system of equations below —the difference of the adjoint
vectors is a normal to the manifold, see, e.g., [1]: λ−1 (ŝ)

λ−2 (ŝ)
−H−(ŝ)

 =

 λ+
1 (ŝ)
λ+

2 (ŝ)
−H+(ŝ)

+ κ

 ∂S(ŝ)/∂x1

∂S(ŝ)/∂x2

∂S(ŝ)/∂s

 ,(3.7)

where κ is a scalar that remains to be determined and S is any function that character-
izes the manifold σ+ = 0 in the plane (x1, x2). Indeed, equation (3.5) and (3.6) clearly
show that σ+ can be expressed as a function of x1 and x2 alone, and not s. Hence
∂S/∂s = 0. Therefore, H−(ŝ) = H+(ŝ) = 0 and it yields λ−1 (ŝ) = [e1x̂1−γ∗D−]/x̂1n;
thus λ−1 (ŝ)− λ+

1 (ŝ) = (δ1x∗1 − γ∗α)/(x̂1n) ≤ 0 as L(s∗) = δ1x
∗
1 + δ2x

∗
2 − γ∗α = 0.

Moreover, using H−(ŝ) = 0, σ−(ŝ) can be rewritten as follows:

σ−(ŝ) =
[
(e2 − λ−2 (ŝ))(α+ h1x̂1)− (e1 − λ−1 (ŝ))h2x̂1

]
x2/D

−(ŝ) .

Using the fact that σ+(ŝ) = 0 yields

σ−(ŝ) = κ

(
∂S(ŝ)
∂x1

h2x̂1 −
∂S(ŝ)
∂x2

(α+ h1x̂1)
)
x̂2/D

−(ŝ)

and we have

σ−(ŝ) = [λ−1 (ŝ)− λ+
1 (ŝ)]

(
h2x̂1 − (α+ h1x̂1)

∂S(ŝ)
∂x2

/
∂S(ŝ)
∂x1

)
x̂2/D

−(ŝ) .(3.8)

Describing the switch manifold via an implicit function x̂1 = ξ(x̂2), equation (3.8)
also reads

σ−(ŝ) = [λ−1 (ŝ)− λ+
1 (ŝ)]

(
h2x̂1 + (α+ h1x̂1)

dξ(x̂2)
dx2

)
x2/D

−(ŝ) .
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Choose S(x1, x2) := n(x1δ1 + x2δ2)D+σ+/x2 and S can be expressed as follows:∣∣∣∣∣∣∣∣∣∣∣∣

S(x1, x2) = a(x2)x2
1 + b(x2)x1 + c(x2) or S(x1, x2) = d(x1)x2 + e(x1), where∣∣∣∣∣∣∣∣

a := −(n− 1)δ1ζ ≤ 0
c := x2δ2h/δ1 + δ2γ

∗α2 ≥ 0
d := −fx1 + δ2h/δ1 = δ2(ax1 + h)/δ1
e := −ax2

1 + (g + h)x1 + δ2γα
2

,

∣∣∣∣∣∣∣∣
b := −fx2 − g + h with:
f := −δ2a/δ1 ≥ 0
g := ζγ∗α ≥ 0
h := αδ1(e2n− δ2) ≥ 0

.
(3.9)

Hence ξ(x2) =
(
−b−

√
b2 − 4ac

)
/2a and one has

dξ(x2)
dx2

= − d

2aξ(x2) + b
=
δ2
δ1

aξ(x2) + h

2aξ(x2) + b
= − δ2

2δ1

(
1 +

b− 2h√
b2 − 4ac

)
.

As b− 2h ≤ 0, it yields

dξ(x2)
dx2

= − δ2
2δ1

(
1−

√
(b− 2h)2

b2 − 4ac

)
= − δ2

2δ1

(
1−

√
1 +

ι

b2 − 4ac

)
≥ 0

as ι = 4[ac−h(b−h)] = 4nζγ∗2α2δ1h2 ≥ 0. Hence ∀x2 , dξ(x2)/dx2 ≥ 0 —it justifies
the orientation of the curve in figure 3.1. As a consequence, σ−(ŝ) ≤ 0.

As long as u remains equal to zero while going backward in time from ŝ, one has{
x̊1 = −nx1 , x1(ŝ) =: x̂1

x̊2 = 0 , x2(ŝ) =: x̂2
,

and σ− =
[
(e2 − λ−2 )(α+ h1x1)− (e1 − λ−1 )h2x1

]
x2/D

−, with{
λ̊−1 = nλ−1 − δ1 , λ−1 (ŝ) = [e1x̂1 − γ∗D−(ŝ)]/x̂1n

λ̊−2 = 0 , λ−2 (ŝ) = ·
.

Thus, still going backward in time from ŝ with u = v = 0, one has{
x1(s) = x̂1en(ŝ−s)

x2(s) = x̂2
and

{
λ−1 (s) = (e1x1 − γ∗D−)/x1n
λ−2 (s) = λ−2 (ŝ)

.

Introducing y(x1) := e1h2(n− 1)x1/[n(α+ h1x1)] yields σ−− σ−(ŝ) = y(x̂1)− y(x1).
It is easy to see that y(x1) is increasing. Thus ∀s ∈ [0, ŝ] , σ− ≤ 0. Hence there is at
most one switch-point.

Finally, it is also necessary to check that if the focal forager does not switch to the
generalist strategy upon reaching the switch manifold, the state nevertheless crosses
the said manifold, and enters the region where the optimal behavior for all players is
to be opportunistic. The so-called “permeability condition” [1]6.

To that aim, let ν = (−1,dξ/dx2) be a normal vector to the switch-manifold
pointing in the same direction as the outgoing trajectories. Thus

〈ν, f(x, 1, 1)〉 =
(
x1 − x2

dξ
dx2

)
> 0 .

6Yet, this is a non-zero sum game, and one cannot conclude as in [1] that the adjoint variables
are continuous.
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We calculate

〈ν, f(x, 0, 1)〉 = x1 + (n− 1)
α+ h1x1

α+ h1x1 + h2x2

(
x1 − x2

dξ
dx2

)
,

which, taking the previous inequality into account, is clearly positive. Hence the
permeability condition is satisfied.

Therefore, the evolutionarily stable strategy is indeed either to be opportunistic
the whole time spent on the patch, or it consists of being selective first and, after a
while, being opportunistic.

Our aim is now to characterize this possible switch-point. Clearly, x̂2 = 1 − x0
1

thus x̂1 = ξ(1− x0
1).

Figure 3.2 shows the switch-manifolds associated to several values of e2 in the
state space (x1, x2). Interestingly, we see that the threshold x̂1 is almost independent
from x2. In other words, the curve in figure 3.1 seems to be qualitatively very close
to a straight line of constant x1.

Fig. 3.2. The switch-manifolds associated to several values of e2 in the state space (x1, x2).
We took n = 2, e1 = 1, α = 1, h1 = h2 = 1, γ∗ = 0.1 and from the left to the right, e2 =
{0.125, 0.25, 0.375}.

Figure 3.3 shows the mapping n 7→ x̂1. Interestingly, the greater the number of
foragers on the patch, the closer becomes the evolutionarily stable strategy to intake-
rate maximization.

3.1. Partial conclusion. Our results are in agreement with those of [26], ob-
tained via a similar approach —although this author ignored the discontinuities on
the adjoint variables, see equation (3.7). Our innovation lies in the fact that we do not
consider any arbitrarily predetermined residence time or final patch state. It allows us
to analyze the sensitivity of the switch-point to the initial conditions and our model
reveals7 that it seems almost independent from them. Qualitatively, the evolution-
arily stable strategy is then close to intake-rate maximization, a policy that consists
in being selective until the best resource is depleted down to an optimal threshold

7compared to [26], as the author of [35] also observed that the switch-point is “nearly independent
of [. . . ] the ratio of the prey types [. . . ] initially present on the patch.”
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Fig. 3.3. The mapping n 7→ x̂1. We took e2 = 0.25, x0
1 = 0.5, n ∈ [2, 100] and let the others

parameters unchanged. The horizontal axis has a logarithmic scale. The dashed line represent the
threshold x̌1 that corresponds to intake-rate maximization; indeed, intake-rate maximization consists
of being selective while x1 remains larger than a given threshold x̌1 := e2α/ζ, independent of x2.

—whatever the abundance of the less profitable resource. However, the intake-rate
maximization threshold remains a lower bound; for instance, the larger the number
of foragers on the patch, the closer the evolutionarily stable strategy to intake-rate
maximization. Moreover, these results are also in agreement with those of [15, 35]
obtained by quite different approaches.

As the diet selection policy of an isolated —not subject to competition— forager is
really different from the evolutionarily stable strategy relevant in a situation of actual
competition, the question that arises then is “what should a lone forager entering a
patch do if the probability of facing a situation of competition is non-zero ?”.

4. An asynchronous but deterministic foraging game. As a preliminary
approach, this section focuses on an asynchronous two forager game, where the arrival
time ta of the second one is assumed deterministic —this might be relevant in a case
of group foraging with “information sharing” [7], assuming that the first forager on a
patch has some time to take advantage of its discovery.

Once the second forager arrives, the evolutionarily stable policy only depends on
the current patch-state x and is detailed in Section 3. It thus remains to determine
the optimal strategy before the intruder’s arrival.

We claim the following result —see figure 4.1:

Theorem 4.1. In the deterministic arrival time problem, the optimal strategy of
the first forager before the arrival of the second one is:

• Any admissible policy that leads to S(x) = 0 at t = ta, provided that it is
feasible —if so, there exists an infinite number of optimal trajectories.

• Otherwise, take u = 0, respectively u = 1, all along the trajectory if this leads
to S(x) < 0, respectively S(x) > 0, at time t = ta.

Proof. As we now need to consider the variable t explicitly, we let it be a state
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is optimal
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region A
−: t>ta, S

<0

region A+: t>ta, S>0

S=0

t=ta t

x

Fig. 4.1. This graph represents the optimal fields of trajectories in the state-space (t, x). The
regions B —before the opponent’s arrival— and A —after— correspond respectively to t < ta and
t ≥ ta —or equivalently to n = 1 and n = 2. The signs − and + denote respectively that being
strictly selective or strictly opportunistic is the —Nash— optimal policy in the region considered. In
the latter case, optimal trajectories are, symbolically, linearly plotted. The vertical line represents the
manifold t = ta. The horizontal one in region A represents the switch-manifold given by S(x) = 0.
The curvilinear trajectory starting in the white —non cross-hatched by “linear” trajectories— region
reflects the fact that any trajectory that remains in this region is optimal.

variable; thus the dynamics are extended as follows:
x̊1 = −x1[1 + (n− 1)D(u)/D(v)] , x1(0) = x0

1

x̊2 = −x2[u+ v(n− 1)D(u)/D(v)] , x2(0) = x0
2 = 1− x0

1

t̊ = D(u) , t(0) = 0
.

From now on, we shall refer to figure 4.1 to support our reasoning; we stress that
this is just a rough sketch that only pretends to a symbolic value. In region A, the
Nash-optimal fields of trajectories are perfectly known, thanks to Section 3; i.e. the
evolutionarily stable strategy only depends on the sign of S(x).

It remains to determine the optimal fields of trajectories in region B.
For ease of notations, we let µ and H be respectively the adjoint vector and

the Hamiltonian associated to the trajectories evolving in region B —the part of
the game during which the forager is still alone. Connecting µ to λ is a matter of
transversality conditions relative to the manifold t = ta —or possibly only to its
intersection with the switch-manifold given by S(x) = 0. The plane t = ta, parallel
to the x subspace, is consequently transparent for this patch-state variable. Thus the
only possible discontinuity concerning the adjoint vector is on the co-state variables
associated to t, say µ3 and λ3 —except on the intersection of the two manifolds. Thus,
apart from this particular 1-D curve, we have the following relation:

µ1(sa)
µ2(sa)
µ3(sa)
−H(sa)

 =


λ1(sa)
λ2(sa)
λ3(sa) = 0
−H(sa) = 0

+ ν


0
0
1
0

 ,

where ν is a scalar that remains to be determined and sa is such that t(sa) = ta.
To be exhaustive, the transversality condition associated to the curve given by the
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intersection of the two manifolds is the following, but we shall not need it:
µ1(sa)
µ2(sa)
µ3(sa)
−H(sa)

 =


λ1(sa)
λ2(sa)
λ3(sa)
−H(sa)

+ κ̃


∂S(sa)/∂x1

∂S(sa)/∂x2

∂S(sa)/∂t = 0
∂S(sa)/∂s = 0

+ ν̃


0
0
1
0

 .

As, in region B, n = 1, one has H = L − µ1x1 − µ2ux2 + µ3D(u).
Let ς = ∂H/∂u = (δ2 − µ2 + h2µ3)x2. The fact that H(sa) = H(sa) = 0 yields

µ3(sa) = ν = − µ1x1(sa) + µ2ux2(sa)
α+ h1x1(sa) + h2x2(sa)

.

Thus ς(sa) = σ(sa): the discontinuity on the co-state variable associated to t precisely
maintains the switch-function continuous. Moreover, one has µ̊1 = −∂H/∂x1 = δ1 − µ1 + h1µ3 , µ1(sa) = λ1(sa)

µ̊2 = −∂H/∂x2 = −u(δ2 − µ2 + h2µ3) , µ2(sa) = λ2(sa)
µ̊3 = −∂H/∂t = 0 , µ3(sa) = ν

,

and it yields ς̊ = 0. We now investigate the possible geometry of the trajectory fields
refering the reader to the four sketches of figure A.2. As it is clear that being oppor-
tunistic does not deplete the best resource as much as being selective during the same
time, the fourth quadrant represents an impossible scenario. If being selective until
the the intruder’s arrival yields S(x(sa)) < 0 —second quadrant—, this is optimal. In
a similar fashion, if being opportunistic yields S(x(sa)) > 0 —first quadrant—, this is
optimal. Otherwise —third quadrant—, the optimal policy is such that S(x(sa)) = 0.
Moreover, as dξ/dx2 ≥ 0, the scenario of the third quadrant, now considering the
dashed line as the switch-manifold, cannot happen. Hence there is no state prior to
ta through which trajectories of the two extremal fields would pass. On the contrary,
there is indeed a gap —a region uncovered by our extremal fields— between regions
+ and − in region B of figure 4.1.

43

21

x2x2

x2

x1

x1

x1

x2

x1

Fig. 4.2. Each quadrant represents a state-space (x1, x2). The thick arrows are possible trajec-
tories. The solid curves represent the switch-manifold S(x) = 0. The time horizon is the same for
both trajectories plotted: ‘being selective’ and ‘being opportunistic’.
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Appendix A provides a relation giving the time spent to move from a point of the
state-space (x1, x2) to another —as it does not depend on the trajectory followed—,
via the same dynamics if taken with n = 1. It thus yields the locus of all points
attainable in a time ta from a given point (x0

1, x
0
2) —the manifold represented by

the dot-dashed line in the third quadrant of figure 4.2 contains the said locus. More
precisely, this manifold corresponds to the application

x1 7→ x0
2 − [ta − α ln(x0

1/x1)− (x0
1 − x1)h1]/h2 ,

clearly monotonously decreasing. Hence for each initial condition, there is a unique
point (x̂1, x̂2) such that S(x̂1, x̂2) = 0 at time ta —this is the intersection of the two
manifolds. Therefore, any trajectory that remains in the gap has to reach this unique
point and therefore yields the same overall payoff. Further, since optimal trajectories
cannot penetrate any of the two extremal fields, any trajectory remaining in the gap
and reaching the switch manifold at t = ta is optimal.

5. An asynchronous stochastic foraging game. It remains to be known how
to forage optimally under the risk of competition, i.e. if the intruder’s arrival is no
more deterministic.

As in the last section, once the possible intruder arrives, the optimal policy only
depends on the current patch-state x and is detailed in Section 3. Therefore, the
optimal total future reward V2(x) is known. It thus remains to determine the optimal
strategy before a possible intruder’s arrival.

Notice that taking V2 = 0 addresses the question of the optimal diet selection
when the end time is random —for instance, the sudden arrival of a predator could
oblige the forager to flee from the patch.

Let this possible perturbation be a Poisson variable of intensity π.
Yet, we still let the time have a cost —in terms of missed opportunities— of γ∗

per unit, thus the forager is nevertheless incited to leave the patch in order to avoid
wasting its time.

Let t∗ be the time the forager would remain on the patch if not interrupted before
and ε be the random event time, exponentially distributed with mean 1/π.

Our dynamics are: {
qẋ1 = −x1/D(u) , x1(0) = x0

1

qẋ2 = −ux2/D(u) , x2(0) = x0
2

.(5.1)

Let our criterion be:

G = E J with J =
∫ ε∧t∗

0

L(x, u)dt+
{
V2(x(ε ∧ t∗)) if ε < t∗

0 otherwise(5.2)

and L(x, u) = e1x1/D(u) + ue2x2/D(u)− γ∗.
We claim the following result:
Theorem 5.1. The optimal policy in the stochastic arrival time problem stated by

equations (5.1) and (5.2) is a bang-bang one with a single switch from u = 0 to u = 1,
occurring before reaching the manifold S(x) = 0. The leaving policy is unchanged
from theorem 3.1.

Proof. Using the fact that P (ε > t∗) = e−πt∗ , we have

G = Eε<t∗

[∫ ε

0

L(x, u)dt+ V2(x)
]

+ e−πt∗
∫ t∗

0

L(x, u)dt
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=
∫ t∗

0

[(∫ ε

0

L(x, u)dt
)

+ V2(x)
]
πe−πεdε+ e−πt∗

∫ t∗

0

L(x, u)dt ,

=
∫ t∗

0

L(x, u)

(∫ t∗

t

πe−πεdε

)
dt+

∫ t∗

0

V2(x)πe−πεdε+ e−πt∗
∫ t∗

0

L(x, u)dt ,

=
∫ t∗

0

[
L(x, u) + πV2(x)

]
e−πtdt .

Having in mind these equivalent dynamics f(x, u),{
x̊1 = −x1 , x1(0) = x0

1

x̊2 = −ux2 , x2(0) = x0
2

,

our criterion can also be expressed as follows:

G = q

∫ s∗

0

L(x, u)e−πt(s)ds , L(x, u) = δ1x1 + uδ2x2 − γ∗α+ πV2(x)D(u) ,

with t(s) := αs+ h1(x0
1 − x1) + h2(x0

2 − x2) —see appendix A— and t(s∗) := t∗.
However, let us consider an equivalent criterion:

G = eπ(h1x0
1+h2x0

2)G/q =
∫ s∗

0

L(x, u)e−π(αs−h1x1−h2x2)ds .

Our stochastic end-time optimization problem is thus equivalent to the above
deterministic one. Formulated in such a fashion, it directly yields that the end time
is such that L is zero. As V2 is zero beyond the manifold δ1x1 + δ2x2 − γ∗α = 0, the
latter is the terminal manifold corresponding to this problem. Therefore, we introduce
the value function V , or the optimal total future reward, the solution of the following
Hamilton-Jacobi-Bellman equation:{

∀x , V (x, s∗) = 0 and ∀(x, s < s∗) ,
−∂V (x, s)/∂s = maxu

[
〈∇xV (x, s), f(x, u)〉+ L(x, u)e−π(αs−h1x1−h2x2)

] .

Let V (x, s) =: e−π(αs−h1x1−h2x2)V(x), ∀i ∈ {1, 2} , µi := ∂V/∂xi and V(x) :=
V(x)− V2(x); V is thus solution of the following stationary Hamilton-Jacobi-Bellman
equation:{

∀(x|L ≤ 0) , V(x) = 0 and ∀(x|L > 0) ,
απV(x) = maxu [x1(δ1 − πh1V(x)− µ1) + ux2(δ2 − πh2V(x)− µ2)− γ∗α] .

Let us notice that V(x) is indeed the optimal value of our payoff G. Hence V(x)
is non-negative.

As it is clear that the optimal control is bang-bang, let us introduce the switch-
function σ = δ2 − πh2V(x)− µ2. We conjecture that there is at most one switch. Let
the superscript + denote the region of the state space beyond the switch-point, where
we postulate that the optimal strategy is u = 1. For instance, let D+ := D(1) =
α+ h1x1 + h2x2.

We have ∀i ∈ {1, 2} , µ+
i (s∗) = 0. It yields σ+(s∗) = δ2 ≥ 0 by hypothesis. Thus

at the end time, the optimal policy is to be opportunistic, i.e. to take both resources.
The Hamilton-Jacobi-Bellman equation states that ∀(x|L > 0) in region +,

πD+V+(x) = x1(δ1 − µ+
1 ) + x2(δ2 − µ+

2 )− γ∗α .
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Let ∀i ∈ {1, 2} , νi := ∂V/∂xi = µi − λi, as λi = ∂V2/∂xi.
According to the classical theory of characteristics [4], ∀i ∈ {1, 2},

µ̊+
i = πD+ν+

i − (δi − πhiV
+(x)− µ+

i ) , µ+
i (ŝ) = µ̂i .

It thus comes σ̊+ = πh2(x1ν
+
1 + x2ν

+
2 )− µ̊+

2 = πh2x1ν
+
1 − πD−ν+

2 + σ+.
Our aim is now to show that, if σ+ becomes zero while going backward in time,

switching u to zero remains optimal down to the initial time. Let the superscript −
denote the region of the state space where we conjecture that the optimal strategy is
u = 0. For instance, let D− := D(0) = α+ h1x1.

In the latter region, the Hamilton-Jacobi-Bellman equation states that ∀x,

πD−V−(x) = x1(δ1 − µ−1 )− γ∗α .(5.3)

Via a similar calculation of the characteristics:{
µ̊−1 = πD−ν−1 − (δ1 − πh1V

−(x)− µ1) , µ−1 (ŝ) = µ̂1

µ̊−2 = πD−ν−2 , µ−2 (ŝ) = µ̂2
,

where ŝ is the time at which the switch-manifold is reached.
It thus comes σ̊− := πh2x1ν

−
1 − µ̊−2 = πh2x1ν

−
1 − πD−ν−2 . Hence on the switch-

manifold, σ̊−(ŝ) = σ̊+(ŝ) ≥ 0.
Using equation (5.3), we have

µ̊1 = πD−ν−1 − (απV−(x) + γ∗α)/x1

= πD−µ−1 −
[
(απV−(x) + γ∗α)/x1 + πD−λ1

]
.

Let Θ(x) := [(απV−(x) + γ∗α)/x1 + πD−λ1] ≥ 0,

χ(s, ŝ) := exp
(
π

∫ s

ŝ

D−d`
)

= eπ[t(s)−t(ŝ)] ,

and

φ(s, ŝ) := απ

∫ ŝ

s

Θ(x)χ(s, `)d` ≥ 0 ,

as it is clear from Section 3 that ∀x , λ1(x) ≥ 0.
We have ∀s ∈ [0, ŝ], {

µ−1 (s) = µ̂1χ(s, ŝ) + φ(s, ŝ)
µ−2 (s) = µ̂2χ(s, ŝ)

.

Let ψ(x1) := πh2x1µ̂
−
1 − πD−µ̂−2 = π(h2µ̂1 − h1µ̂2)x1 − παµ̂2 and it yields

σ̊− = ψ(x1)χ(s, ŝ) + φ(s, ŝ)πh2x1 .

As ψ(x̂1) = σ̊−(ŝ) ≥ 0, (h2µ̂1 − h1µ̂2) is clearly positive. Thus ψ(x1) is increasing
in x1. Therefore σ̊− remains positive in region −. As an expected consequence, the
trajectory generated by taking u = 0 backwards from the switch-manifold implies that
σ− remains negative down to the initial time. Hence the optimal strategy is indeed
an at most one-switch bang-bang one.
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5.1. A digression on the random end time problem. In this subsection,
our aim is to numerically characterize the switch-manifold for a random end time
problem, i.e. taking ∀x , V2(x) = 0.

Integrating forward the trajectory field where u = 1 yields

V+(x) = ∆B1(β)− γ∗αB0(β) ,

with ∆ := δ1x1 + δ2x2, β := π(h1x1 +h2x2) and the function Bn is defined as follows,
n ∈ N:

Bn(β) :=
∫ s∗

0

e−(n+πα)s−β(1−e−s)ds .

Integrating by parts easily yields:∣∣∣∣ B1(β) = (1− z0(β)− παB0(β))/b
B2(β) = (1− z1(β)− (1 + πα)B1(β))/β ,

with zn(β) := e−(n+πα)s∗−β(1−e−s∗ ).
Using either the explicit form of s∗8 or the remark that it maximizes G and the

envelope lemma, it yields

∀i ∈ {1, 2} , µ+
i = δiB1(β)−∆πhi(B1(β)−B2(β)) + γ∗απhi(B0(β)−B1(β)) .

As σ+ := δ2 − πh2V+ − µ+
2 , it yields

σ+ = δ2 − δ2B1(β)−∆πh2B2(β) + γ∗απh2B1(β)
= (δ2 −∆πh2(1− z1(β))/β)− (δ2 − (1 + πα)∆πh2/β − γ∗απh2)B1(β) .

The switch-manifold is thus given by σ+(x) = 0. Figure 5.1 shows the switch-
manifolds associated to various values of π.

5.2. Implications for the original problem. It is clear that the switch-
manifold corresponding to the original problem is bounded by that of the synchronous
foraging game characterized in Section 3, as it corresponds to being disturbed by a
conspecific with a probability one. Besides the latter point, it is likely that qualita-
tively, the optimal policy remains equivalent to the random end time problem, i.e.
switching at a given x1, depending on the intensity of the Poisson process.

6. Conclusion. Our aim was to determine the evolutionarily stable strategy
[20] that foragers competing for a plural and depleting resource should adopt, both
in terms of diet-selection and patch-leaving decision [3, 33].

First, we reformulated the optimal diet selection policy [23] for a lone forager, in
a similar fashion to [26] except that we allow for a free patch-leaving time. On our
way, we solved the optimal diet selection problem for a single forager with an end
time either fixed or possibly random.

Next, we investigated the foraging game involving several foragers arrived si-
multaneously on a patch containing two distinct types of resources. The resulting
differential game involves discontinuous state feedback strategies constructed via a
classical synthesis technique, and hence requires for its solution a careful analysis of

8As s∗ is the time to leave the patch as a function of the current state, we have s∗ = − ln(γ∗α/∆),
see equation (3.6) and the dynamics taken with u = 1.
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Fig. 5.1. The switch-manifolds in the state space (x1, x2) associated to several value of π; from
right to left, π = {0.1, 0.25, 1, 5}, with α = 1, h1 = 1, h2 = 1, e1 = 1, e2 = 0.25 and γ∗ = 0.1. The
left bound corresponds to the intake rate maximization switch-manifold, i.e. x̌1 = e2α/ζ.

the induced discontinuities of the adjoint variables. The end result is a one-switch
bang-bang evolutionarily stable strategy. This is in agreement with [15, 26, 35] and
more precise in several respects.

As there is a qualitative gap between the optimal behavior of an isolated forager
and that of competing foragers, the question that thus arose was that of the optimal
strategy of a single forager, subject to a potentially imminent competition.

As a preliminary approach, we solved an asynchronous two forager game, where
the inter-arrival time was assumed deterministic. Partial preferences arose in several
fashions.

Finally, we no longer considered a deterministic inter-arrival time but let the
probability that an opponent enters the game follow a Poisson distribution. We
showed that the optimal policy belongs to a qualitative continuum that fills9 the gap
that separates the two extremal policies found previously.

Thus, although the classical diet selection policy states that a lone forager should
take both resources indifferently during the whole time spent on the patch —see Sec-
tion 2—, we showed that it suffices to add some stochasticity in the model to predict
a qualitatively different behaviour. Indeed, under the risk of viewing a predator —
resp. a conspecific— shorten the time spent —resp. alone— on the patch, a lone
forager should be selective for a while, at least if the probability of being disturbed is
non-negligible.

7. Discussion and prospects. Our results are based on the assumption that
foragers are identical in terms of their ability to find and consume resources and of the
relative values they attribute to resources with respect to both other resources and
their environment. The game is symmetric in this sense. In recent years, however,
foraging theory has looked more at the effect of foragers’ state, see [16]. Thus arises
the question of the robustness of our results to relevant differences in forager state
such as, for instance,

• competitive ability, which may be correlated to the size of the animal [25, 24],

9By playing on the intensity of the Poisson variable.
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• level of satiation or body reserves, acting on the relative values of food re-
sources compared to other resources or opportunities in the environment, such
as finding a mate,

• as well as the time away from nest, acting on the “cost of the time”,
• or simply the life expectancy of the animal [36], i.e. a time horizon,

as the game would no longer be symmetric. Moreover, the question of the informa-
tion on the opponent state would also arise. Yet, we conjecture that, of course, the
foragers would probably not switch nor leave simultaneously, but a qualitatively sim-
ilar behavior would persist; i.e. switching from being selective to opportunistic and
leaving according to —their own, this time— Charnov’s rule.

Also, in our model, foragers’ ability to gather resources is not affected by the
presence of conspecifics; the present paper ignores interference (i.e. contacts or fights)
that could occur among them. As in the single resource case, as long as there is no
interference, the evolutionarily stable strategy is pure, in particular in terms of patch-
leaving policy. We conjecture that including interference in the model would result in
a war of attrition, or random patch-leaving times, but would not qualitatively affect
the resource acceptance policy. More accurately, we conjecture that a war of attrition
occurs after foragers have switched from a selective diet to an opportunistic one.
Yet, this makes sense to us as long as interference intensity does not depend on the
resource-acceptance policy. If it does, i.e. if interference is greater when both players
focus on the best quality resource, the question is open (see [25, 24] for experimental
evidence of a competition avoidance behavior).

Last, but not least, the question arises of the relevance of this model with respect
to the real life. A field study in the Negev Desert, Israel, [12] was realized on Nubian
ibex Capra nubiana, wild social goats that actually compete for resources. Interest-
ingly, an indirect observation based on ‘giving-up densities’ [2] tends to show that
Nubian ibex “forage selectively on plants of higher quality until a certain threshold
density, switching later to a more opportunistic foraging”. Also, such an interpreta-
tion may hold with respect to similar observations made on kangaroo rats Dipodomys
merriami foraging on the same patch, in Arizona [3]. As pointed out by [11], diet
selection dynamics are rarely directly observed10. Nevertheless, the authors of [27]
observed, through laboratory experiments with the cichlid fish Haplochromis picea-
tus (a predator accustomed to forage in group) a switch in their resource acceptance
policy, whether they were alone or by pair. However, the switch-point occurred at
a higher density of the preferred resource when foraging by pair than when foraging
alone [35]. In the light of the present model, an inverse ranking of the switch points
would have been expected; i.e. if uncertainty with respect to the time available to
exploit resources —possibly before the expected arrival of a competitor— makes a
single forager focus on the best resources first, such a selectivity is expected to be
exacerbated, or at least unaffected, under competition. Our simple model is there-
fore falsifiable and seems to be so in this species. Moreover, white king pigeons,
which also forage in group under natural conditions, have been shown [29, 28] to be
more “choosy” alone than in presence of a competitor. More accurately, the authors
actually observed that pigeons switch “earlier” under competition. It may be that
interference occurring when focusing on the preferred resource qualitatively changes
the resource acceptance policy. Further theoretical investigations are thus needed to
better understand how competition affects the dynamics of diet selection.

10yet, this article refers to other (of a physiological nature) dynamics, ignoring resource depletion
and competition.
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Appendix A. Optimal diet selection with a fixed end time.

In the body of the paper, we allow the forager for a free patch-leaving time, given
that the time itself has a cost γ∗ per unit. This section is a digression on the optimal
diet selection problem under a fixed residence time constraint, as already addressed
by some authors [26, 19] —the example of an intertidal forager is mentioned. Our
patch dynamics are closer to that of [26]11, whose author argues that there is a partial
preference region in the state space; our aim is to prove this statement.

Although the question addressed be other, our basic model remains that detailed
in the body of the paper. As we consider a lone forager in an environment that offers
two types of resources, the notations we shall use are those introduced from Section
3. For instance, we assume that resource 1 is more profitable than resource 2, i.e.
e1/h1 ≥ e2/h2.

We claim the following result, see figure A.1:

Theorem A.1. In the fixed end time problem, the optimal strategy is as follows:
let x̂1 = e2α/ζ,

• Any admissible strategy that leads to x1(T ) = x̂1, provided that it is feasible. If
so, there exists an infinite number of optimal trajectories, all of them reaching
the same point (x̂1, x̂2); x̂2 being given by equation (A.1).

• Otherwise, take u = 0, respectively u = 1, all along the trajectory if this leads
to x1(T ) > e2α/ζ, respectively x1(T ) < e2α/ζ.

11The dynamics of [19] are, them, really stochastic, as they allow for “a run of back luck” that
leads the forager to “become more selective as the time left in the patch runs out”.
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x2

x1

Fig. A.1. Three of the optimal trajectories in the state-space (x1, x2): “accepting the less prof-
itable resource with a constant optimal acceptance rate”, “switching from selective to opportunistic”
and vice versa. The intersection of the vertical and horizontal lines represents the point (x̂1, x̂2).

Proof. As we need to consider the variable t explicitly, we let it be a state variable.
We thus have the following dynamics f(x, u):

x̊1 = −x1 , x1(0) = x0
1

x̊2 = −ux2 , x2(0) = x0
2 = 1− x0

1

t̊ = D(u) , t(0) = 0
.

Our criterion is:

J = K(x(T )) where K(x) := e1(x0
1 − x1) + e2(x0

2 − x2)

and T is a fixed final time.
Let S be the final s, i.e. t(S) = T . Let λ be the adjoint vector. It yields the

Hamiltonian:

H = 〈λ, f(x, u)〉 = −λ1x1 − λ2ux2 + λ3D(u) .

According to Pontryagin’s maximum principle if a policy u∗(s) generating a tra-
jectory x∗(s) is optimal, then there exists an adjoint trajectory λ(s) such that

λ̊ = −∇xH(λ, u∗, x∗)
λ(s∗) = ∇xK(x∗) + v
H(s∗) = 0∣∣∣∣ ∀s ∈ [0, s∗] where u∗(·) is continuous,
H(λ(s), u∗(s), x∗(s)) = maxu∈[0,1]H(λ(s), u, x∗(s))

,

where v is a normal vector to the target manifold. As the latter is the plane t = T ,
the only non-zero component of v is that in t, say ν. We have

λ̊1 = −∂H/∂x1 = λ1 − λ3h1 , λ1(S) = ∂K/∂x1 = −e1
λ̊2 = −∂H/∂x2 = u(λ2 − λ3h2) , λ2(S) = ∂K/∂x2 = −e2
λ̊3 = −∂H/∂t = 0 , λ3(S) = ∂K/∂t+ ν = ν

.

The last condition above translates into the switch-function

σ = ∂H/∂u = x2(λ3h2 − λ2) .
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As S is free, the final value of the Hamiltonian is zero. It yields

∀s , λ3(s) = ν = − e1x1(S) + ue2x2(S)
α+ h1x1(S) + h2x2(S)

.

Thus

σ(S) = x2(S)
(
e2α+ x1(S)(e2h1 − e1h2)
α+ h1x1(S) + h2x2(S)

)
.

It is easy to show that ∀s , σ̊ = 0. Let x̂1 = e2α/ζ. Hence if x1(S) > x̂1 then ∀s , σ < 0 ⇒ u∗ = 0
if x1(S) = x̂1 then ∀s , σ = 0 ⇒ u∗ ∈ [0, 1]
if x1(S) < x̂1 then ∀s , σ > 0 ⇒ u∗ = 1

.

We now investigate the possible geometry of the trajectory fields refering the
reader to the four sketches of figure A.2. Therefore, if being opportunistic yields
a ratio of the best resource that remains lower than x̂1 —first quadrant—, this is
optimal. In a similar fashion, if being selective yields a ratio of the best resource that
remains greater than x̂1 —second quadrant—, this is optimal. Otherwise —third
quadrant—, the optimal policy is such that the ratio of best resource equals x̂1 at the
end time. As it is clear that being opportunistic does not deplete the best resource
as much as being selective during the same time, the fourth quadrant represents an
impossible scenario.
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x2

x2

x2

x2

x1x1

x1x1

Fig. A.2. Each quadrant represents a state-space (x1, x2), the vertical lines the manifold x1 =
x̂1. The temporal horizon is the same for both trajectories plotted: ‘being selective’ and ‘being
opportunistic’.

However, Pontryagin’s maximum principle provides only necessary conditions; it
does not prove that any policy that leads to x1(S) = x̂1 is optimal.

It is easy to see that

∀u, s , t(s) = αs+ [x0
1 − x1(s)]h1 + [x0

2 − x2(s)]h2 ,

and that S = ln(x0
1/x̂1). Hence there is a unique x2(S) such that x1(S) = x̂1; i.e.

x2(S) =: x̂2 is such that

T = α ln(x0
1/x̂1) + [x0

1 − x̂1]h1 + [x0
2 − x̂2]h2 .(A.1)
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However, it does not mean that the optimal trajectory is unique as the time needed
to move from a point (x1, x2) to another does not depend on the path followed.
Therefore, any strategy that leads to x1(S) = x̂1 is indeed optimal. For instance,
figure A.1 represents some possible optimal trajectories in the state space (x2, x1).

Figure A.3 shows the differing regions in the parameter space (x0
1, T ) that corre-

spond to each policy: being selective, opportunistic and having “partial preferences”.
The manifold separating the ‘selective’ region and the ‘partial preferences’ one is given
by the application

x0
1 7→ α ln(x0

1/x̂1) + [x0
1 − x̂1]h1 ,

as x0
2 = x̂2 on this boundary, and the other one is given by

x0
1 7→ α ln(x0

1/x̂1) + (x0
1 − x̂1)[h1 + h2x

0
2/x

0
1],

as on this boundary, x0
1/x

0
2 = x̂1/x̂2.

Fig. A.3. The differing regions in the parameter space (x0
1, T ). We took α = 1, e1 = 1, e2 = 1,

h1 = 1 and h2 = 5.


