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Summary. We investigate the optimal behaviour of foragers reaching a patch at random ar-
rival times. In the case where competition is limited to sharing a common resource, we show
that the optimal behaviour can be obtained via a Charnov rule with carefully chosen param-
eters. In the case with interference, we in effect extend the model of [7] to asynchronous
arrivals. In order to solve the resulting problem, we need to solve a war of attrition with ran-
dom end-time. This is done in an appendix. In both cases our analysis holds independant of
the arrival law, provided that it be Markov.

1 Introduction

Behavioral Ecology attempts to assert to what extent the natural selection process
could have carved animal behavior. This evolutionary approach focuses on optimal
strategies in terms of capitalizing on genetic inheritance through generations, notion
conveniently calledfitness.

In this respect, optimal foraging theory seeks to investigate the behavior of an
animal searching for a valuable resource such as food or a host to parasitize. In most
cases, these resources are spread in the environment as distantpatchesof various
qualities. Moreover, the resourceintake ratesuffers from patch depletion. As a con-
sequence, it is likely judicious to leave a patch not yet exhausted in order to find
a richer one, in spite of an uncertain travel time. Hence the need to determine the
optimal leaving rule.

In this context, Charnov’s marginal value theorem [3] introduces the existence of
an optimal average intake rateR∗ that, if achieved, gives the greatest fitness gain a
forager can expect in its environment.

Actually, this famous theoretical model is applied to a lone forager which is the
only consumer of resources it gathers; it predicts that each patch should be left when



2 Fŕed́eric Hamelin, Pierre Bernhard, A.J. Shaiju andÉric Wajnberg

the intake rate on that patch drops belowR∗, independently on either its quality or
on the time invested to reach it.

Naturally, the question arises to know whether this result holds for foragers com-
peting for a common patchily distributed resource, i.e. if this is an evolutionary sta-
ble strategy [6]. The authors of [7] assume that somehown foragers have reached
a patch simultaneously, and they investigate their optimal (or rather equilibrium)
patch-leaving rule. Here, we allow for ana-priori unlimited number of foragers
reaching a patch at random arrival times. We shall refer to these situations as, re-
spectively, synchronous and asynchronous foraging.

In section 2, we develop a mathematical model of the problem at hand and recall
Charnov’s classical marginal value theorem [3]. In section 3, we investigate the so
called “pseudo-interference” case where the only competition between foragers is
trough sharing a common resource. In section 4, we investigate the case with actual
interference [8]. In order to solve the last problem, we need to extent the classical
“war of attrition” game [6] to a case with a random end time. This is done in appendix
7.

2 Model

2.1 Fitness accumulation

A single forager on an initially unexploited patch

We consider the case of a single forager acquiring some fitness from a patch of
resource. We let

• q ∈ R+ be the quality of the patch, i.e. the potential fitness it initially offers.
• p ∈ R+ be the current state of the patch, i.e. the amount of fitness remaining on

the patch.
• ρ = p

q ∈ Σ1 = [0, 1] be the potential fitness remaining on the patch relative to
its quality.

Let f(q, τ) be the fitness gathered in a timeτ on a patch of qualityq. Our basic
assumption is that the intake ratėf = ∂f

∂τ (q, τ) is a known functionr(ρ) contin-
uous, strictly increasing and concave; in appendix 6 we derive such a law from an
assumption of homogeneous and isotropic probing on a patch. It yields

ḟ = r(ρ) , f(0) = 0 ,

resulting in
qρ̇ = −r(ρ) , ρ(0) = 1 . (1)

We find it convenient to introduce the solutionπ(t) of the differential equation

π̇ = −r(π) , π(0) = 1 ,

and it comes:
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Theorem 1.Our model is given by

f(q, τ) = q

[
1− π

(
τ

q

)]
.

It yields:∀q,

• f(q, 0) = 0,
• τ 7→ f(q, τ) is strictly increasing and concave,
• limτ→∞ f(q, τ) = q.

A single forager on a previously exploited patch

Assume that the forager reaches a patch that has already be exploited to some extent
by a conspecific. The patch is characterized by its initial qualityq and its ratio of
available resourceρ0 at arrival time. The dynamics are still (1) initialized atρ(0) =
ρ0, and the fitness gathered is

f(q, ρ0, τ) = p0 − p(τ) = q[ρ0 − ρ(τ)] .

This is depicted on the following graph:
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Competing foragers

Assume thatn ∈ N identical foragers are on the same patch at timet. Let the se-
quence of forager arrivals beσ = {σ1, σ2, . . . , σn} and i ∈ {1, 2, . . . , n}. Let µ
be a parameter which quantifies interference intensity among foragers;µ = 0 cor-
responds to pseudo-interference. Letr be allowed to depend not only onρ anymore
but also onn andµ such that

∀ρ , n 7→ r(ρ, n, µ) is

{
strictly decreasing ifµ 6= 0
invariant ifµ = 0 .

It yields
∀i , ḟi = ḟ = r(ρ, n, µ) , fi(σi) = 0 .

And
ṗ = qρ̇ = −nḟ , ρ(0) = ρ0 .

Hence the fitness accumulated by forageri after a residence timeτi is

fi(τi, τ−i, σ) =
∫ σi+τi

σi

ḟi(t) dt ,

whereτ−i stands for the set{τj} , j 6= i, which surely impactsfi.

2.2 Criterion

The marginal value theorem

In order to optimally balance residence times on the differing patches of the envi-
ronment, a relevant criterion is the average fitness acquired relative to time invested:
assume the qualitiesq of the patches are a random variable with cumulative distribu-
tion functionQ(q). We allow the residence time to be a random variable, measurable
on the sigma algebra generated byq. We also assume that the travel timesθ are a
random variable of known distribution and letθ̄ = Eθ. It yields

R(τ(q)) =
Ef(q, τ(q))
θ̄ + Eτ(q)

. (2)

Theorem 2 (Charnov’s marginal value theorem).The maximizing admissibleτ is
given as a function ofq by the rule

• either
∂f

∂τ
(q, 0) ≤ R∗ andτ∗ = 0,

• or
∂f

∂τ
(q, τ∗) = R∗.

whereR∗ is obtained by placingτ∗ in (2).
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Proof: Call DR the (Ĝateaux) derivative ofR in (2). Euler’s inequality reads, for
anyδτ such thatτ∗ + δτ be admissible

DR.δτ =
1

θ̄ + Eτ∗

∫
R+

[
∂f

∂τ
(q, τ∗)−R∗

]
δτ(q) dQ(q) ≤ 0 .

The incrementδτ may have any sign ifτ∗ is strictly positive, but it must be positive
if τ∗ is zero. Hence the result. This is (a marginal improvement over) Charnov’s
marginal value theorem [3].

Equivalent criterion

Following [7], we choose an equivalent criterion which is the effective fitness com-
pared to the optimal average one for a given residence time:

Ji(τi, τ−i, σ) = fi(τi, τ−i, σ)− (θ̄ + τi)R∗ .

We may notice that by definitionR∗ is such that the maximum expectedJ is zero.
The previous assumptions yield

• ∀τ−i ,∀σ,
– Ji(0, τ−i, σ) = −θ̄R∗,
– τi 7→ Ji(τi, τ−i, σ) is concave
– limτi→∞ Ji(τi, τ−i, σ) = −∞.

• ∀τi ,∀σ ,∀j 6= i , τj 7→ Ji(τi, τ−i, σ) is non increasing.

3 Pseudo-interfering foragers

3.1 The evolutionary stable strategy

Competition strictly limited to pseudo-interference only takes in account the fact
that the resource depletes faster due to simultaneous foraging activities. As a con-
sequence, the departure of a forager only slows down the depletion. Hence there is
no hope to seeρ, or equivalently the intake rate, increase. Moreover, as foragers are
assumed to be identical, they surely share the sameR∗ and must leave at the same
time, independently of theirs arrival dates. Hence we claim the following result: let
ti = σi + τi then

Theorem 3.A Nash equilibrium of the game in non-anticipative strategies is given
by the following Charnov-like rule: leave att∗ given by

• eitherρ(σi) ≤ ρ∗ andt∗ = 0 (i.e. τ∗i = 0),
• or ρ(t∗) = ρ∗ := r−1(R∗).

As the Nash equilibrium is both strict and symmetric, this is indeed an evolution-
ary stable strategy.
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3.2 An analytical expression ofR∗

Let us assume that all foragers apply the above patch-leaving rule, i.e. leave when
ḟ = R∗ or equivalently whenρ = ρ∗. As a consequence, when a patch is left, it is at
a densityρ∗ which makes it unusable for any forager. Hence all admissible patches
encountered are still unexploited, withρ0 = 1.

Our purpose now is to give pleasant expressions of bothEf(t∗) andEτ∗ to be
able to computeR∗.

For a fixed ordered sequence ofσj ’s, j ∈ {1, 2, . . . , n}, let us introduce a “for-
ager second” (as one speaks of “man month”)s = S(t, σ) defined by

ṡ = j if σj ≤ t < σj+1 , s(0) = 0 .

Equivalently

for t ∈ (σj , σj+1) , S(t, σ) = j(t− σj) +
j−1∑
k=1

k(σk+1 − σk) . (3)

The functiont 7→ S(t, σ) is strictly increasing. It therefore has an inverse function
denotedt = S−1

σ (s), easy to write explicitly in terms of thesj = S(σj , σ):

for s ∈ (sj , sj+1) , S−1
σ (s) =

1
j
(s− sj) +

j−1∑
k=1

1
k

(sk+1 − sk) .

According to subsection 2.1, the dynamics of the patch are now

ṗ = qρ̇ = −jr(ρ) , for t ∈ (σj , σj+1) .

As a consequence, we get

Lemma 1. The patch trajectory satisfies

ρ(t) = π

(
1
q
S(t, σ)

)
.

We shall also lett∗ be such thatρ(t∗) = ρ∗, i.e. to be explicit, if not clearer,t∗ =
S−1

σ ◦ (qπ−1) ◦ r−1(R∗).
Let us regroup possible combinations ofσ’s by the maximum number of foragers

reached before they all leave the patch, sayn̂. When they leave, they have retrieved
an amount

∑
i fi = q(1 − ρ∗) of the resource. By symmetry, the expectation of

fitness acquired is for each of them

Eσf =
q

n̂
(1− ρ∗) .

Moreover, this is exactly the amount of resource each would have acquired if they
all had arrived simultaneously, since in that case they all acquire the same amount of
resource.
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Let us callcentral trajectoryof order n̂ that particular trajectory where all̂n
foragers arrived at time 0. We denote with an index� the corresponding quantities.
Hence, for all̂n, Eσ(f) = f�.

Now, for a given ordered sequenceσ of length n̂, the reference forager may
have occupied any rank, from 1 tôn. Let ξ be this rank. Callτ∗ξ its residence time
depending onξ. Notice that since they all leave simultaneously,

∀n̂, ∀ξ ∈ {1, . . . , n̂} , τ∗ξ = σn̂ − σξ + τ∗n̂ .

Again, for reasons of symmetry,

Eξτ
∗
ξ = σn̂ −

1
n̂

n̂∑
j=1

σj + τ∗n̂ . (4)

Now, τ∗n is defined byπ( 1
q S(σn̂ + τ∗n̂, σ)) = ρ∗, i.e., according to equation (3):

n̂[(τ∗n̂ + σn̂)− σn̂] +
n̂−1∑
j=1

j(σj+1 − σj) = qπ−1(ρ∗).

Notice that
n̂−1∑
j=1

j(σj+1 − σj) = n̂σn̂ −
n̂∑

j=1

σj .

Hence we get

τ∗n̂ =
q

n̂
π−1(ρ∗)− σn̂ +

1
n̂

n̂∑
j=1

σj .

On the central trajectory of order̂n, it holds thats = n̂t = n̂τ , so that

τ∗� =
q

n̂
π−1(ρ∗) ,

so that finally

τ∗n̂ = τ∗� − σn̂ +
n̂∑

j=1

σj .

Place this in (4), it comesEξτ
∗
ξ = τ∗�. But this last quantity is independent onσ, so

that, for any fixedq andn̂,

Eστ∗ = τ∗� =
q

n̂
π−1(ρ∗) .

The random variablesq andn̂ are surely correlated, as the foragers stay a longer
time on better patches, and are thus likely to end up more numerous. The ratioq

n̂
is the amount of resource per forager active on that patch. It may be hoped that its
mean in the environment can be evaluated. It is a measure of, but not exactly equal
to, the amount of resource available per forager.

Taking the expected value overall patch qualities and sequences of arrival, we
obtain the following result:
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Theorem 4.Let
q∗ = E

( q

n̂

)
,

the optimal average intake rate is given by the solution of the equation

R∗ =
1− ρ∗

θ̄
q∗ + π−1(ρ∗)

= r(ρ∗)

Therefore, it is exactly as applying Charnov’s marginal value theorem for both de-
terministic patch qualityq∗ and travel timēθ. In this case, it is traditional to compute
R∗ and the optimalτ∗ graphically, as done in figure 2.
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Fig. 2.The marginal value theorem

4 Mutually-interfering foragers

From now on, we assume that, beyond sharing the same resource, competition on a
patch decreases the foraging efficiency of all participants. This effect might even in-
crease with the scarcity of the resource. As a consequence, the departure of a forager
surely causes an abrupt increase of the intake rateḟ [8]. It implies that the latter does
not depend onρ only anymore, but also onn, the current number of foragers present
on the patch. A passive Charnov-like strategy, where the foragers only monitor their
own intake rate to decide whether to stay or leave, should no more be optimal.

Indeed, previous papers [7] reveal that synchronous foragers should trigger a war
of attrition [6], i.e. leave at random (but optimally distributed) times, except the lucky
one which remains alone on the patch, expected to stay to exhaust the patch up to its
profitability thresholdρ∗.

The question arises to know whether this result holds for asynchronous foragers
or to what extent. The doubt mainly arises from the fact that unexpected newcomers
can disrupt the game.
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4.1 Generating function

A-priori, we cannot exhibit any Nash equilibrium in pure strategies; hence the need
to deal with mixed strategies, sayPi, i ∈ {1, 2, . . . , n} for n foragers. We shall
subscript− i to mean all players except playeri.

So our criterion becomes the following generating function:

Gi(Pi, P−i, σ) = EPi,P−i
τi,τ−i

Ji(τi, τ−i, σ) . (5)

As a consequence,
EGi(P ∗

i , P ∗
−i, σ) = 0 .

4.2 Dynamic programming

Let us define a stage as a stochastic period during which the number of foragers
n remains constant on the patch; notice that in such a stage the intake rate is only
affected byρ. Let it be superscripted byk ∈ N; k = 0 indicates the stage at which
the reference forager started the game. As their exists a profitability thresholdρ∗, the
patch can not be indefinitely exploited; the total number of stagesK ∈ N and the
total number of playersN ∈ N are thus finite, buta-priori unknown

We define the state at the beginning of stagek as

χk =
(

ρk

nk

)
∈ Σ1 × N .

For each stage, each player decides of a persistence timexk
i ∈ R+; i.e. if the

stage is not yet finished at that time it quits the game and so its own horizon is
Ki = k. We find it convenient to let the exceptional case where allxi are equal end
the current stage: it means that all players are invited to play again in order to make
the patch surely exhausted once visited.

Let us introduce the stochastic variable:

αk =

1 if an arrival occured during stagek
− 1 if a departure occured during stagek
0 otherwise

.

It depends on the strategies of the players, but if the arrival times are a Markov
process, which we shall assume, as well as the strategies, it remains a Markov process
itself.

Let δk be the duration of stagek and

κk
i =

{
0 if xk

i = δk &maxxk
−i > xk

i

1 otherwise
,

i.e. κk
i = 1 if player i remains in the patch beyond the current stage. It yields the

following dynamics:
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ρk+1 = ρk −∆ρ(ρk, nk, δk) =: Λρ(ρk, nk, δk)
nk+1 = nk + αk ,

with ∆ρ(ρ, n, δ) a known function, easy, if boring, to write explicitly from paragraph
2.1.

Each criterion can be expressed as

Gi = E
{ Ki∑

k=0

L(χk, δk)
}

,

with
L(χk, δk) = L(ρk, nk, δk) =

q

nk
∆ρ(ρk, nk, δk)−R∗δk .

To solve the corresponding dynamic game problem via dynamic programming, we
introduce the functionV k

i (χ) which is the optimal expected total future reward for
entering stagek in the stateχ. We get the following functional equation of dynamic
programming:

V k
i (χk) = E∗

[
L(χk, δk) + κk

i V k+1
i (χk+1)

]
∀k ≤ Ki , (6)

whereE∗ means that we look for a set of strategies which yield a Nash equilibrium at
each stage. As the game is surely stationary,Vi does not depend on the stage number
k and (6) becomes the following implicit equation

Vi(ρ, n) = E∗
[
L(ρ, n, δ) + κVi(Λρ(ρ, n, δ), n + α)

]
∀ρ > ρ∗ .

As a consequence, it suffices to solve the game limited to one stage to obtain
the Nash-optimal (and so evolutionary stable) strategy in closed loop. Furthermore,
this is surely a war of attrition with stochastic stopping time as defined in appendix
7. Indeed the one-stage game can be stated as follows. LetVi(Λρ(ρ, n, δ), n) =:
Vi(δ, n) and thus, the game has a utility function

Ui(xi, x−i, δ) = L(n, δ) +


0 if xi = δ &maxx−i > xi

Vi(δ, n) if xi = δ &maxx−i = xi

Vi(δ, n + 1) if δ < min{xi, x−i}
Vi(δ, n− 1) otherwise

.

Let x̌ be such thatΛρ(ρ, n, x̌) := ρ∗; it is the time after which a forager, even
alone, has no incentive to stay on the patch, i.e.Vi(x̌, ·) = 0.

Let thenx̂ = arg maxx L(n, x). (Both x̂ andx̌ depends onρ andn).
As a consequence,∀n ,∀x > x̂ ,L′(n, x) < 0. Moreover, if there is no departure,

theL function of the next stage is still decreasing. Thus itsx̂ is zero and according
to appendix 7, its value is zero. Hence ifδ ∈ [x̂, x̌] ,Vi(δ, n) = Vi(δ, n + 1) = 0.

We shown in appendix 7 that the value of the game is, as in the classical war of
attrition, equal toL(x̂, n). As a consequence,

Vi(x, n− 1) = max
y

L(Λρ(ρ, n, x), n− 1, y) =: V(x, n) .

We therefore obtain the following result,
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Theorem 5.The Nash equilibrium of the game (5) is

P ∗(x, n) =


0 ∀x < x̂

1− e−
1

n−1

R x
x̂

h(y,n) dy ∀x ∈ [x̂, x̌]
1 ∀x ≥ x̌

,

with

h(x, n) = −L
′(x, n)

V(x, n)
.

5 Conclusion

Our objective was to determine the evolutionary stable strategy that foragers com-
peting for a common patchily distributed resource should adopt. Compared to [7],
the innovation lies in the fact that random arrival times are allowed.

First, we proved that if competition is strictly limited to pseudo-interference the
game yields simple Nash-optimal strategies. In other words, a passive Charnov-like
strategy is still optimal. Moreover, the optimal average intake rate can be simply
computed via the classical graph associated to the marginal value theorem, with
carefully chosen parameters. Furthermore, these results are independent on the dis-
tribution law of arrival times: the dynamical aspect of the game has essentially been
bypassed.

Then we added mutual-interference in the model; it implies that passive strate-
gies can no longer be optimal. We shown that the war of attrition with a random hori-
zon has a solution surprisingly similar to that of the classical problem. In particular,
if some conditions prevail, as they do in our problem, the solution is independent
on the probability law of the horizon. As a consequence, the solution of the asyn-
chronous foraging problem investigated here, expressed as a closed loop strategy on
the number of foragers, is identical of the synchronous problem of [7].

One can notice that, in a war of attrition, the value of the game is the reward which
would have been earned without entering the game. Nevertheless, a Nash equilibrium
requires to play; the question that arises then is:

If I am not concerned by my opponents’ gains, why should I play if my expected
gain is not greater than my guaranteed value ?

In the particular case of evolutionary game theory, the answer is obvious: to pre-
vent the proliferation of any mutant that would decide alternatively to stay longer on
the patch.
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6 Modelling patch depletion

In our model, the forager is not supposed to explore the patch in a systematic way but
is assumed to randomly probe the patch. As a consequence, it finds itself more and
more often probing an area already exploited. That is the reason why its efficiency
decreases with patch depletion, prompting it to leave in order to find a richer patch
elsewhere.

Let us introduce a surface (or volume) resource densityD.
Two time constants enter into the model:

• theexploration timeTe is the time it takes for the forager to explore a unit area
that could contain a quantityD of resource (if it were not yet exploited).

• thehandling timeTh is the extra time it takes to actually retrieve a unit of resource
if necessary.

Following most of the literature, we propose here a model where the resource
comes as a continuum; indeed, a similar model where the resource is decomposed in
discrete units yields similar formulas [1].

Our hypothesis is that a ratioρ of the patch area is productive so that an areadæ
produces a quantity

df = ρDdæ

of resource and the time necessary to gather it is

dt = Tedæ + ρDThdæ .

Hence we get

ḟ =
ρD

Te + ρDTh
:= r(ρ).
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One can relate this equation to Holling’s functional response [5] by substitutingTe

by theattack rate, a parameter giving the amount of resource attacked per unit time,
a = D

Te .

7 A war of attrition with stochastic stopping time

Let us consider the following non-zero sum game:

• n players.
• Playeri choosesxi ∈ R+.
• ς is a positive stochastic variable (the end time) independent of the players’ de-

cisions.
• The criterion of playeri is as follows, wherex−i stands for{xj} , j 6= i:

Ui(xi, x−i, ς) =


Li(xi) if xi ≤ min{x−i, ς}& maxx−i > xi

Di(xi) if xi ≤ min{x−i, ς}& maxx−i = xi

Ei(ς) if ς < min{xi, x−i}
Wi(minx−i) otherwise

.

The hypotheses are:∀i,

• ∃ ! x̂ = arg maxx Li(x).
• Li is strictly decreasing forx > x̂.
• Wi(x) > Di(x) ≥ Ei(x) ≥ Li(x)∀x ∈ [x̂, x̌).
• either∃ {x̌ ≥ x̂ | ∀x ≥ x̌ , Li(x) = Wi(x)},
• otherwise leťx = ∞.

We seek a Nash equilibrium, withPi(x) the cumulative distribution function of
playeri. We claim the following

Theorem 6.A Nash equilibrium set of strategies must satisfy the following proper-
ties:

• the Nash-optimal probability density function is continuous over[x̂, x̌) and zero
elsewhere but may exhibit a Dirac weight atx̌.

• Let

hi(x) = −
{ P ′

ς(x)
1− Pς(x)

Ei(x)− Li(x)
Wi(x)− Li(x)

+
L′i(x)

Wi(x)− Li(x)
}

,

•

H∗
i (x) = 1− e−

R x
x̂

hi(y) dy ∀x ∈ [x̂, x̌] ,

• and

Hi(x) :=
∏n

k=1[1−H∗
k(x)]

1
n−1

1−Hi
.
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• The unique Nash-optimal strategy is∀i,

P ∗
i (x) =

0 ∀x < x̂
1−Hi(x) ∀x ∈ [x̂, x̌)
1 ∀x ≥ x̌

.

Proof
The hypotheses made clearly show that everyone share a commonspectrum, i.e.

mixed strategy support,[x̂, x̌]. Let nowPi, Hi andPς be the cumulative distribution
functions of respectivelyxi, minx−i andς. The generating function is then

Gi(x,Hi, Pς) =
∫

y∈[x̂ ,x̌]

∫
z∈[x̂ ,∞)

Ui(x, y, z)dPς(z)dHi(y) ,

Gi(x, Hi, Pς) =
∫

y∈[x̂ ,x)

[ ∫
z∈[x̂ ,y)

Ei(z)dPς(z) +
∫

z∈[y ,∞)

Wi(y)dPς(z)
]
dHi(y) +∫

y∈[x ,x̌]

[ ∫
z∈[x̂ ,x)

Ei(z)dPς(z) +
∫

z∈[x ,∞)

Li(x)dPς(z)
]
dHi(y) .

As the optimal strategy is equalizing on the opponents’ spectrum, in any open setΩ
in [x̂, x̌), one must have

∂

∂x
Gi(x,H∗

i , Pς) = 0 ∀x ∈ Ω .

DifferentiatingGi(x, Hi, Pς) yields

0 = [Ei(x)− Li(x)][1−H∗
i (x)]P ′

ς(x) +
[1− Pς(x)]

{
L′i(x)[1−H∗

i (x)]− [Wi(x)− Li(x)]H∗
i
′(x)

}
.

Hence
H∗

i (x) = 1− e−
R x

x̂
hi(y) dy ∀x ∈ [x̂, x̌] ,

with

hi(x) = −
{ P ′

ς(x)
1− Pς(x)

Ei(x)− Li(x)
Wi(x)− Li(x)

+
L′i(x)

Wi(x)− Li(x)
}

.

Hence the Nash optimal strategies are given by

∀i , 1−H∗
i (x) =

∏
j 6=i

[1− P ∗
j (x)] ,

where theHi’s are known.
It implies ∏

i

[1−H∗
i (x)] =

∏
i

[1− P ∗
i (x)]n−1 .

Therefore,
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P ∗
i (x) = 1−

∏n
k=1[1−H∗

k(x)]
1

n−1

1−Hi
=: 1−Hi(x) ∀x ∈ [x̂, x̌) .

Hence the unique Nash equilibrium such that

∀i , P ∗
i (x) =

0 ∀x < x̂
1−Hi(x) ∀x ∈ [x̂, x̌)
1 ∀x ≥ x̌

.

An atom of probability takes place oňx. Indeed, a Nash equilibrium requires
Gi(x, H∗

i , Pς) = G∗
i ∀x ∈ [x̂, x̌), whereG∗

i is the value of the game. Up to now,
we implicitly assumed thatHi was continuous in[x̂, x̌). Indeed, let̃x ∈ [x̂, x̌] and
suppose this is a point of discontinuity of amplitudeε. As the convention wants,
Pi is cadlag. Ifx̃ < x̌ , limx↓x̃ Gi(x) − Gi(x̃) = ε(1 − Pς(x̌)(Wi(x̌) − Li(x̌))
(if the draw is taken in account, in the case where all other foragers have a Dirac
at the saměx, Li(x̌) is replaced by a convex combination ofLi(x̌) and Di(x̌)),
therefore a Dirac is impossible for anỹx < x̌. Moreover, if a jump occurs inHi at
x̌, limx↑x̃ Gi(x) − Gi(x̃) = ε(1 − Pς(x̌)(Li(x̌) −Di(x̌)) = 0 by the definition of
x̌. Hence a jump is possible oňx. To conclude, it is obvious that, from the previous
hypotheses onLi, ∀x 6∈ [x̂, x̌) , Gi(x,H∗

i , Pς) ≤ G∗
i , asG∗

i = Li(x̂).
Hence, if the game is symmetric,

P ∗(x) =


0 ∀x < x̂

1− e−
1

n−1

R x
x̂

h(y) dy ∀x ∈ [x̂, x̌)
1 ∀x ≥ x̌

.

One can notice that, if∀x ∈ [x̂, x̌] , Pζ(x) = 0, the above solution of the war of
attrition coincides with the classical solution [4, 2].


