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Abstract

This paper introduces, in precise mathematical terms, two properties (named, certainty

equivalence and generalized certainty equivalence) that nonlinear minimax controller problems
might possess. The certainty equivalence is a generalization of the one introduced earlier in
[2] and [3], which applies to problems where the “worst-case disturbance” may not be unique
(but the worst-case state trajectory is). The generalized certainty equivalence, on the other
hand, extends this to accommodate nonunique worst-case state trajectories, and leads to the
construction of controllers that guarantee a bounded upper value for the underlying game.
The paper also shows that for a large class of games (and under certain conditions) certainty-
equivalent (as well as generalized certainty-equivalent) controllers admit (infinite-dimensional)
estimator (Kalman-filter) structures, where the estimator gain depends on the state of the
estimator. These results are then applied to the nonlinear minimax filtering problem, which is
treated here as a special case of the general control problem.

1 Introduction

During the last few years, several authors have obtained results on various nonlinear extensions

of the linear H∞ theory [3, 4, 5]. These results employed established game-theoretic methods used
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for linear systems, where the H∞ optimal control problem is treated as a minimax game with a

soft-constrained kernel, and the controller and disturbance acting as minimizing and maximizing

players, respectively.

It was shown in [2] (and later in [3]) that if there exists a full-state information saddle-point

controller, and if a set of truncated optimization problems admit unique solutions, then the mea-

surement feedback game admits a saddle-point controller, which satisfies (and can be computed

through) a certainty-equivalence principle.

In [4] and [5], a somewhat different direction was followed. The authors considered games

where the system dynamics are affine in control and disturbance, and the costs are quadratic,

which implies existence of a saddle-point whenever the upper value is bounded. Furthermore, they

take the controller to be a full-state information controller, with the state variable replaced by a

state estimator. A byproduct of their investigation is a set of necessary and sufficient conditions

for the proposed controller to be locally asymptotically stable.

The current paper contributes to this literature by extending the certainty-equivalence principle,

originally developed in [2] and [3], to a more general class of minimax control problems where the

unicity of the worst-case disturbance is replaced by that of the corresponding current “worst-

case state”. To deal with problems where also the worst-case trajectory might be nonunique,

the generalized certainty-equivalence property is introduced, in which existence of a “directional”

function leads to the construction of controllers that guarantee a bounded upper value for the

underlying game. These generalizations come at the expense of having to introduce some additional

assumptions on the regularity of the “cost-to-come” function, which however is probably not a very

restrictive condition given the other regularity hypotheses one has to make for the analysis to go

through.

The paper furthermore shows that for a class of games – a class that includes games with

quadratic kernels and affine dynamics – under certain conditions the certainty-equivalent, as well

as the generalized certainty-equivalent, controllers admit an estimator (Kalman filter) structure

where the gain depends on the state of the estimator. Although this certainty-equivalent controller

is infinite dimensional, it corroborates the estimator-controller structure used in [4].

The paper is organized as follows. The problem formulation is given in Section 2. In Section 3,

certainty-equivalence property is defined, and a sufficient condition is given for a certainty-equivalent
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controller to be minimax. In Section 4, a generalized certainty-equivalence property is defined and

sufficient conditions are given for a generalized certainty-equivalent controller to exist. In Section 5,

the structure for the estimator (observer) of the certainty-equivalent, as well as the generalized

certainty-equivalent, controller is given. Section 6 specializes results of the previous sections to the

special case of nonlinear minimax filtering, and Section 7 provides some concluding remarks.

2 Statement of the problem

Consider a minimax control problem with n-dimensional state dynamics described by the follow-

ing nonlinear differential equation, defined over a time interval [0, T ]:

ẋ = f(t, x, u,w), x(0) = x0. (2.1)

Here u ∈ U ⊂ IRm is a control vector and w ∈ W ⊂ IRl may be thought of as a disturbance. The

controller, choosing u, has access to only a noise corrupted output y in IRp, given by

y = h(t, x) + v (2.2)

where v ∈ IRp is part of the general disturbance, with v(·) belonging to some specified set V of

admissible functions, say square integrable (L2), or simply measurable. Since the state of the

system is not known, we shall also let x0 be part of the disturbance, and for convenience write

(x0, w(·)) =: ω ∈ Ω = IRn × L2

(

[0, T ], IRl
)

(Again, L2 is an arbitrary choice here, and could very well have been replaced by the class of

measurable functions.)

To complete the description, we must specify what the admissible control strategies (denoted

µ ∈ M) are. We shall let M be the set of all causal maps from time functions in IRp to time

functions in IRm such that the differential equation (2.1) with µt(y[0,t]) substituted for u has a

solution for every ω in Ω and every admissible v(·). By causality, the value of a strategy µ at time

t, µt, can be computed as a function of the control history up to that time, in view of which we

shall adopt a notation such as µt(y[0,t], u[0,t)). It will be clear from the context that in such cases,

it is assumed that u[0,t] = µ[0,t](y[0,t]).
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Next we introduce the performance index for the problem. Suppose that a cost function J is

given as in (2.3) below:

J(x0, u(·), v(·), w(·)) = qT (x(T )) +

∫ T

0
(q(t, x, u,w) − r(t, v)) dt− q0(x0). (2.3)

Assume that the functions q, qT , q0, and r, and the earlier defined f and h are assumed to be of

class C1 jointly in all their arguments; we take, without any loss of generality, minv r(t, v) = 0,

for all t ∈ [0, T ]. When defined on the controller-disturbance space M × Ω × V, we will refer to

(2.3) again as a cost function, and denote it by J(µ, ω, v) by a slight abuse of notation. Then,

the objective is to find a minimax strategy for the controller, that is a control policy µ∗ ∈ M that

minimizes the supremum of J over all possible disturbances:

sup
ω∈Ω
v∈V

J (µ∗, ω, v) = min
µ∈M

sup
ω∈Ω
v∈V

J (µ, ω, v) . (2.4)

3 A Certainty Equivalence Principle

We will start this section by considering games for which a property, which may be called certainty

equivalence, holds. Before we define what we mean exactly by certainty equivalence, let us introduce

the cost-to-go (or upper-value) function, V (·, ·) : IR × IRn −→ R, associated with the full-state

information game.

Assumption 3.1. The game defined in section 2, but with full state measurement, has an upper

value V for every initial time and state, which is C1 in these variables. It is achieved by a state

feedback controller u(t) = µF
t (x(t)). 2

Under Assumption 3.1, V satisfies Isaacs’ equation [1]:

−
∂V

∂t
= inf

u
sup
w

{

∂V

∂x
f(t, x, u,w) + q(t, x, u,w)

}

; V (T, x) = qT (x), (3.1)

and further, the RHS of (3.1) becomes equivalent to

sup
w

{

∂V

∂x
f(t, x, µF

t (x), w) + q(t, x, µF
t (x), w)

}

.

(Note that we do not need to impose the Isaacs’ condition, i.e. that the inf-sup above be a saddle

point. This is why V here is an upper value, and not necessarily a value function.)
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Let us also define the truncated kernels,

Ls(u[0,s], y[0,s], ω[0,s]) =

V (s, x(s)) +
∫ s
0 {q (t, x, u,w) − r(t, y − h(t, x))} dt− qo (xo) ,

(3.2)

and introduce the notation

Ls
µ(y[0,s], ω[0,s]) := Ls(µ[0,s](y[0,s]), y[0,s], ω[0,s])

Note that in (3.2), we have substituted the expression y − h(t, x) for v in r. That way, we readily

restrict the perturbations to those that are consistent with the past control and measurement

histories.

We next make the definition of a “certainty-equivalent” controller precise.

Definition 3.1. Let µ̂ ∈ M be a controller generated by the relationship

µ̂t(y[0,t], u[0,t)) = µF
t (x̂(t)), t ∈ [0, T ], (3.3)

where x̂(t) is the state of the system corresponding to a worst-case disturbance ω[0,t] which is

obtained by maximizing Lt
µ̂(y[0,t], ω[0,t]), i.e.

ω̂[0,t] := argmax
ω∈Ω

Lt
µ̂(y[0,t], ω[0,t]) (3.4)

If the maximum in (3.4) is achieved (as stipulated) for each frozen t ∈ [0, T ], then the controller µ̂

is called a certainty-equivalent controller (or policy). 2

Remark 3.1: Note that the procedure underlying Definition 3.1 involves a recursive construction

in forward time. It will lead to “certainty-equivalent” controllers which are generally not finite

dimensional, because the worst-case state may not be obtained as the solution to an ordinary

differential equation. 2

Definition 3.2. If there exists a certainty-equivalent controller µ̂ which is also minimax, then we

say that certainty equivalence holds for the underlying game. 2

Remark 3.2: In the case when the full-state information problem has a saddle point and ω̂[0,t] is

unique for every time instant t and measurement output y[0,T ], it has been shown in [2] and [3] that

certainty-equivalence property (as defined here) holds. 2

It is useful at this point to recall a result from [2], [3] :
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Theorem 3.0. If for every (u[0,T ], y[0,T ]) there exists a t such that the truncated kernel

Lt(u[0,T ], y[0,T ], ω) has an infinite supremum in ω, then there is no controller µ ∈ M that keeps the

criterion supω,v J(µ, ω, v) finite. 2

In the view of this theorem, we shall henceforth consider only the cases where there exists a µ ∈ M

such that this supremum is finite.

Before we present a set of less stringent (than before) sufficient conditions for the certainty-

equivalence property to hold, we first introduce the “cost-to-come” function: Given an admissible

controller policy µ[0,T ] and an output measurement history y[0,T ], generating a well-defined u[0,T ] =

µ(y[0,T ]), and given a point ξ ∈ IRn, we denote by Ωs
µ(y[0,T ], ξ) the set of restrictions ω[0,s] of ω such

that together with that particular u[0,T ], it generates a trajectory with terminal value x(s) = ξ.

Although it will be convenient to write it as we did here, it should be clear that Ωs
µ depends only

on the restrictions to [0, s] of both µ and y, or simply of u. Then, the “cost-to-come” function is

defined as:
Wµ(s, ξ; y[0,T ]) :=

sup
ω[o,s]∈Ωs

µ(y[0,T ],ξ)

{
∫ s

0
(q (t, x, u,w) − r(t, y − h(t, x))) dt− qo (xo)

} (3.5)

where u(t) is the control action dictated by strategy µ at time t, given y[0,T ]. As with Ωs
µ, the

cost-to-come function Wµ(s, ξ, y[0,T ]) actually depends only on the restriction y[0,s] of y.

Assumption 3.2. Given a certainty-equivalent controller µ̂, Wµ̂ is bounded and is C1 (jointly

continuously differentiable in t and x). 2

Under Assumption 3.2, Wµ̂ satisfies the following partial differential equation, where u stands

for µ̂t(y[0,T ]), and ∂Wµ̂/∂t and ∂Wµ̂/∂x stand for partial derivatives of Wµ̂ with respect to its first

and second arguments respectively:

∂Wµ̂

∂t
= sup

w

{

−
∂Wµ̂

∂x
f(t, x, u,w) + q(t, x, u,w)

}

−r(t, y − h(t, x))

Wµ̂(0, x) = −qo(x)

(3.6)

Assumption 3.3. The set of states x(t) that are consistent with certainty-equivalent strategies is

all of IRn.1 2

1This is plausible because all initial states are allowed in Ω. In fact, it suffices for our purposes that it be an open

set X. Then the maxx∈IRn operators in the sequel would be replaced by maxx∈X . But we see no point in pursuing

this level of generality.
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Under Assumption 3.3, the certainty-equivalence property implies that the state generated by

a “certainty-equivalent” controller satisfies

x̂(t) ∈ arg max
x∈IRn

{

V (t, x) +Wµ̂(t, x; y[0,t])
}

=: X̂µ̂(t, y[0,t]). (3.7)

We finally introduce the following crucial assumption:

Assumption 3.4. The sets X̂µ̂(t, y[0,t]), as defined by (3.7), are singletons for every t ∈ [0, T ] and

y[0,t] ∈ L2([0, t], IR
p). 2

The main theorem of this section, which provides a set of sufficient conditions for the certainty-

equivalence principle to hold, is stated next:

Theorem 3.1. Let a certainty-equivalent controller µ̂ exist, leading to satisfaction of Assumptions

3.2-3.4. Further, let Assumption 3.1 be satisfied. Then, certainty equivalence holds.

Proof: Given an output measurement y[0,T ] ∈ L2[0, T ], define

G(t) := max
x

{

V (t, x) +Wµ̂(t, x; y[0,T ])
}

. (3.8)

Danskin’s theorem for differentiation [6] implies the existence of a time derivative:

Ġ(t) :=
dG

dt
=

∂V

∂t
(t, x̂) +

∂Wµ̂

∂t
(t, x̂; y[0,T ]), (3.9)

and hence, the first-order condition for maximization in (3.8) reads

∂V

∂x
(t, x̂) +

∂Wµ̂

∂x
(t, x̂; y[0,T ]) = 0. (3.10)

Substituting this into (3.6), and using (3.3) to replace µ̂ by µF (x̂(t)), and placing the resulting

expression for ∂Wµ̂ in (3.9) above, leads to

Ġ(t) =
∂V

∂t
(t, x̂) + sup

w

{

∂V

∂x
(t, x̂)f(t, x̂, µF (x̂), w)

+q(t, x̂, µF (x̂), w)
}

− r(t, y − h(t, x̂))

= −r(t, y(t)− h(t, x̂)) ≤ 0

(3.11)

Therefore

G(T ) ≤ G(0) = max
x

{V (0, x) − qo(x)} (3.12)
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where the right-hand side of the inequality is bounded by our earlier assumption on X̂µ̂(0). But

notice that since V (T, x) = qT (x), for all y[0,T ],

G(T ) := sup
ω∈Ω

J(µ̂(y[0,T ]), ω, y − h).

Also, the quantity on the right-hand side of (3.12) is the value of the corresponding full-state

information game, and hence, the certainty-equivalent controller is minimax. 2

Remark 3.3: It might be useful to point out where the unicity of x̂ is crucial in the proof above.

If x̂ were not unique, then the expression for the directional time derivative of G would still be in

the same form, but with an operator max
x̂∈X̂

in front of it, which applies only to those x̂’s which

do not appear as arguments of µF . Then, it might happen that the x̂ in X̂ for which this maximum

is achieved would not coincide with the one used as argument of µF . Consequently, we cannot use

Isaacs’ equation (3.1) to complete the proof above. 2

Remark 3.4: It should be pointed out that if µF (x) is the unique minimum in (3.1), then under

Assumption 3.4, the certainty-equivalent controller is unique. 2

4 Suboptimal Controllers

Ideas underlying Theorem 3.1 can be extended to yield less restrictive conditions for the existence of

a minimax controller. One can think of the cost-to-go function, V (t, x), as a “direction” function,

i.e., as an “estimated” worst future value of the game that helps to orient the controller in the

direction that best counteracts future worst-case trends. With that in mind, we can generalize

the idea of cost-to-go, or that of the “directional” function, to a “bounding” function U(t, x) that

satisfies, for some nonnegative function p : [0, T ] × IRn −→ IR, C1 in its second argument, the

partial differential equation:

−
∂U

∂t
= min

u
sup
w

{

∂U

∂x
f(t, x, u,w) + q(t, x, u,w)

}

+ p(t, x), (4.1)

with a boundary condition U(T, x) ≥ qT (x). Note that this is in fact the Isaacs’ equation for a new

full-state information game, where the incremental cost has been increased form q to q + p, and

terminal cost from qT (x) to U(T, x).

This interpretation immediately leads to the bound U(t, x) ≥ V (t, x), for all t and x. Let the

full-state minimax controller in (4.1) (assuming that it exists) be denoted again by µF
t (x), which

now clearly depends on the choice of p.
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Along with this new cost-to-go function, let us redefine the truncated kernels (3.2) as

Ls(u[0,s], y[0,s], ω[0,s]) =

U(s, x(s)) +
∫ s
0 {q (t, x, u,w) − r(t, y − h(t, x))} dt− qo (xo) ,

(4.2)

and, in accordance with it, introduce the notation

Ls
µ(y[0,s], ω[0,s]) := Ls(µ[0,s](y[0,s]), y[0,s], ω[0,s])

Let us further introduce a definition and some assumptions paralleling those introduced in the

previous section:

Definition 4.1. Let µ̂ ∈ M be a controller defined as in Definition 3.1, with only Lt replaced

by its expression given by (4.2). Then, it is called a generalized certainty-equivalent controller (or

policy). If furthermore it guarantees a bounded upper value for the underlying game, we say that

generalized certainty equivalence holds. 2

Assumption 4.1. Given a generalized certainty-equivalent controller µ̂, Wµ̂ is bounded and is C1

(jointly continuously differentiable in t and x). 2

Under Assumption 4.1, Wµ̂ satisfies the partial differential equation

∂Wµ̂

∂t
= sup

w

{

−
∂Wµ̂

∂x
f(t, x, u,w) + q(t, x, u,w)

}

−r(t, y − h(t, x))

Wµ̂(0, x) = −qo(x)

(4.3)

Assumption 4.2. The set of states x(t) that are consistent with generalized certainty-equivalent

strategies is all of IRn. 2

Under Assumption 4.2, the generalized certainty-equivalence property implies that the state

generated by a “generalized certainty-equivalent” controller satisfies

x̂(t) ∈ arg max
x∈IRn

{

U(t, x) +Wµ̂(t, x; y[0,t])
}

=: X̂µ̂(t, y[0,t]). (4.4)

This is similar to the corresponding result obtained in Section 3, but here x̂ does not have to be

unique.

We now present the following theorem, which is the counterpart of Theorem 3.1.

Theorem 4.1. Let a generalized certainty-equivalent controller µ̂ exist, leading to satisfaction

of Assumptions 4.1-4.2. Then, generalized certainty equivalence holds if there exists a mapping

x̂ : [0, T ]× L2[0, T ] −→ IRn, such that
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1. x̂(t, y[0,t]) ∈ X̂µ̂(t, y[0,t]),

2. for all x ∈ X̂µ̂(t, y[0,t]),

∂U

∂t
(t, x) + sup

w

{

∂U

∂x
(t, x)f(t, x, µF

t (x̂), w) + q(t, x, µF
t (x̂), w)

}

≤ 0. (4.5)

Moreover, the controller µF
t (x̂) guarantees the bounded upper value

max
x

{U(0, x) − qo(x)} . (4.6)

Proof: The proof is similar to that of Theorem 3.1, except that V is now replaced by U . (See also

Remark 3.3.) Also, note that the upper bound on the value of the game, max
x

{U(0, x) − qo(x)}, is

finite by hypothesis 1 of the theorem. 2

Remark 4.1: A sufficient condition for the generalized certainty-equivalent controller to be a

minimax controller is for the upper bound (4.6) to equal the upper value of the original game. 2

5 Minimax and suboptimal observers

In the previous two sections, certainty-equivalence or generalized certainty-equivalence properties

have enabled us to express minimax or suboptimal controllers as functions of the worst-case state

x̂(t). We will now turn our attention to computing the worst-case trajectory in a recursive way.

We shall need the following assumptions, where we work with U (introduced in section 4)

instead of V which is the true full-state information cost-to-go function, since the former captures

situations (as described in section 4) where the latter would not be applicable.

Assumption 5.1. x̂ is continuously differentiable in t, for all y[0,T ] ∈ L2[0, T ]. 2

Assumption 5.2. U(t, x) and Wµ̂(t, x; y[0,T ]) are twice jointly continuously differentiable in t and

x, for all y[0,T ] ∈ L2[0, T ]. 2

Assumption 5.3. Given any t and y[0,T ], the following inequality holds:

[U +Wµ̂]xx (t, x̂(t)) < 0. (5.7)

2

Assumption 5.4. The arguments µF (x) and νF (x) of the minimax in (4.1) (resp. (3.1)) and the

argument ŵ of the maximum in (4.3) (resp. (3.6)) are unique. 2
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The first-order necessary condition for x̂(t) to be optimal is

[U +Wµ̂]x (t, x̂(t)) = 0, ∀t ∈ [0, T ]. (5.8)

Thanks to Assumptions 5.1 and 5.2, we may apply the implicit function theorem to differentiate x̂:

˙̂x = − [U +Wµ̂]
−1
xx

[U +Wµ̂]
′
xt
(t, x̂) . (5.9)

To find [U +Wµ̂]xt (t, x̂), we will differentiate (4.1) and (4.3) with respect to x. Using Danskin’s

theorem, thanks to Assumption 5.4, differentiation leads to

−
∂2U

∂x∂t
= f ′∂

2U

∂x2
+

∂U

∂x

∂f

∂x
+

∂q

∂x
+

∂p

∂x
, (5.10)

∂2Wµ̂

∂x∂t
= −f ′∂

2Wµ̂

∂x2
−

∂Wµ̂

∂x

∂f

∂x
+

∂q

∂x
−

∂r

∂v

∂h

∂x
. (5.11)

In the first equation above, all functions are evaluated at (t, x, µF
t (x), ν

F
t (x)), while in the second,

the arguments are (t, x, µF
t (x̂(t)), ŵ). Now notice that at x̂, (Wµ̂)x = −Ux, so that ŵ coincides with

νF . As a result we may subtract the former from the latter, and evaluate at x̂(t), to get

[U +Wµ̂]
′
xt
(t, x̂) = − [U +Wµ̂]xx (t, x̂) f(t, x̂, µ

F
t (x̂), ν

F
t (x̂)))

+
(

∂h
∂x

)′ (
∂r
∂v

)′
−

(

∂p
∂x

)′
,

(5.12)

which together with (5.9) leads to the (observer) equation:

˙̂x = f(t, x̂, µF
t (x̂), ν

F
t (x̂))

− [U +Wµ̂]
−1
xx

(t, x̂)

[

(

∂h
∂x

)′ (
∂r
∂v
(t, y − h(t, x̂))

)′
−

(

∂p
∂x

)′
]

.
(5.13)

Theorem 5.1. If generalized certainty equivalence and Assumptions 5.1-5.4 hold, then the worst-

case state x̂(t) used in the generalized certainty-equivalent controller of Theorem 4.1 is generated

by equation (5.13) above. 2

Remark 5.1: Quite naturally, there is a similar theorem for the certainty-equivalent controller of

Theorem 3.1, which is now generated by equation (5.13) with U replaced by V and p identically

zero. 2

Remark 5.2: If Assumption 5.1 does not hold, but the worst-case trajectory is piecewise con-

tinuously differentiable, then a natural counterpart of Theorem 5.1 holds with (5.13) valid on

subintervals of [0, T ] where x̂ is continuously differentiable. 2
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Remark 5.3: It should be noted that controller (5.13) has the estimator (Kalman-filter) form,

which is already known to be optimal for linear H∞ problems [7]. Unlike the linear case, here the

controller is infinite dimensional, because [U +Wµ̂]xx (t, x̂) cannot, to the best of our knowledge,

be obtained as the solution of a finite dimensional differential equation; nor can it be precomputed

off line as in the linear-quadratic case.

Still, an immediate significance of this result is that, under appropriate regularity hypotheses,

the minimax controller lies in the class of controllers of the form


































ut = µt(y[0,T ]) = µF
t (x̂t),

˙̂x = f(t, x̂, µF
t (x̂), ν

F
t (x̂))

−M(t, x̂)

[

(

∂h
∂x

)′ (
∂r
∂v
(t, y − h(t, x̂))

)′
−m(t, x̂)

]

,

(5.14)

where M and m are appropriate dimensional functions. Then, alternative search methods could be

employed to find “good” finite dimensional controllers from this restricted class of controllers (see

for example [4]). 2

6 Minimax Filtering

Consider now a minimax filtering problem with n-dimensional state dynamics described by the

following nonlinear differential equation, defined over a time interval [0, T ]:

ẋ = f(t, x, w), x(0) = x0, (6.1)

Here, just as in the control problem formulation, w ∈ W ⊂ IRl and x0 ∈ IRn may be thought of as

disturbances, and for convenience, we may write

(x0, w(·)) =: ω ∈ Ω = IRn ×L2

(

[0, T ], IRl
)

.

There is a noise corrupted output y in IRp, given by

y = h(t, x) + v. (6.2)

As in Section 2, here v ∈ IRp is part of the general disturbance, with v(·) belonging to some specified

set V of admissible functions, say square integrable (L2), or simply measurable.
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A minimax filtering policy will be chosen from the set of all admissible filtering strategies,

denoted D, which is the set of all causal maps from time functions (y[0,T ]) in IRp to time functions

in IRn, according to cost (error) function J , given in (6.3) below:

J(x0, x̄(·), v(·), w(·)) =

∫ T

0
[q(t, x− x̄, w) − r(t, v)] dt− q0(x0). (6.3)

Here, x̄ ∈ X̄ ⊂ IRn is a filtering vector, which is determined by an admissible filtering policy δ ∈ D.

A strategy δ∗ ∈ D will be called a minimax strategy for the filter, if it satisfies

sup
ω∈Ω
v∈V

J (δ∗, ω, v) = min
δ∈D

sup
ω∈Ω
v∈V

J (δ, ω, v) . (6.4)

In addition to all the earlier hypotheses that q, q0, r, f and h are in class C1 jointly in all

their arguments, and that minv r(t, v) = 0, for all t ∈ [0, T ], it is assumed here that q(t, ·, 0) and

−q(t, 0, ·) are positive definite for all t ∈ [0, T ]. Here, by saying q(·) is positive definite, we mean

q(x) ≥ 0 with equality occurring only when x = 0. Hence, q(t, ·, w) could be a norm for all t and

w, designating for example a pointwise estimation error.

It is easy to see that the minimax filtering problem can be considered as a special case of the

minimax control problem of Section 2. Under the set up of the filtering problem, the cost-to-go

function, V , can be easily verified to be identically zero and δFt (x) = x is a FSI minimax filtering

policy. This then takes us to the following definition of a “certainty-equivalence” filter.

Definition 6.1. Let δ̂ ∈ D be a filter generated by the relationship

δ̂t(y[0,t], x̄[0,t)) = x̂(t), t ∈ [0, T ], (6.5)

where x̂(t) is a worst-case state of the system, i.e.,

x̂(t) ∈ argmax
x

W
δ̂
(t, x; y[0,T ]), (6.6)

where W
δ̂
is the cost-to-come function associated with policy µ̂. If the maximum above is achieved

(as stipulated) for each frozen t ∈ [0, T ], then the filter µ̂ is called a certainty-equivalent filter (or

policy). 2

Definition 6.2. If there exists a certainty-equivalent filter δ̂ which is also minimax, then we say

that certainty equivalence holds for the underlying game. 2
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Let us recall that, if Assumption 3.2 holds, W
δ̂
satisfies the following partial differential equation:

∂W
δ̂

∂t
= sup

w

{

−
∂W

δ̂

∂x
f(t, x, w) + q(t, x− x̄, w)

}

−r(t, y − h(t, x))

Wµ̂(0, x) = −qo(x)

(6.7)

where x̄ stands for δ̂t(y[0,T ]).

The results of Sections 3 and 5 are then directly applicable here for the filtering problem, and

this leads us to the following theorem:

Theorem 6.1. Let a certainty-equivalent filter δ̂ exist, leading to satisfaction of Assumptions 3.2

and 3.4. Then, certainty equivalence holds for the filtering problem. Moreover, if Assumptions

5.1-5.4 hold with U ≡ 0, then the worst-case state x̂(t) which characterizes the certainty-equivalent

filter is generated by

˙̂x = f(t, x̂, 0)

−
[

W
δ̂

]−1
xx

(t, x̂)

[

(

∂h
∂x

)′ (
∂r
∂v
(t, y − h(t, x̂))

)′
+ ∂q

∂x
(t, 0, 0)

]

(6.8)

with x̂(0) = maxx(−qo(x)). 2

Remark 6.1: It should be noted that the filter given above in (6.8) has the familiar form of an

extended Kalman filter [8]. 2

Remark 6.2: For the LQ problem (more precisely, theH∞-filtering problem), the filter given above

in (6.8) becomes identical to that given in [9]. However, in the nonlinear case, (6.8) represents an

infinite dimensional filter, because
[

W
δ̂

]

xx
cannot, to the best of our knowledge, be obtained as the

solution of a finite dimensional differential equation. 2

7 Conclusion

This paper has introduced, in precise mathematical terms, two properties – certainty equivalence

and generalized certainty equivalence – that differential games encountered in nonlinear H∞-control

and H∞-filtering may possess. The former allows the designer to choose a minimax policy to be the

optimal full-state information policy with the state vector replaced by an appropriate worst-case

state x̂. The latter generalizes the certainty-equivalence property by allowing a suboptimal full-

state information controller to be a function of a more conservative (but more readily computable)
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cost-to-go function U(t, x), and hence provides a more general set of sufficient conditions for the

existence of a suboptimal controller that guarantees bounded upper value of the game.

The paper has also shown that under appropriate regularity assumptions, the (generalized)

certainty-equivalent controller or filter has the familiar estimator (Kalman-filter) structure. Unlike

the linear case, the nonlinear policy that comes out of this structure is infinite-dimensional. This

possible drawback may be overcome by use of alternate methods of search among finite-dimensional

policies possessing the same estimator structure, but most possibly at the expense of loss of per-

formance.

This paper has only scratched the surface as many more questions remain to be answered. First,

it is still not clear how “optimal” a (generalized) certainty-equivalent policy is in the context of the

original nonlinear problem. Second, it is not known whether, given any policy, it is possible to find

a generalized certainty-equivalent controller that will yield no worse performance.

Finally, not much is known on the structure of the minimax policies if the “worst state” is not

unique, in either controller or the filtering problem.
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