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On the Rationality of Some Decision Rules
in a Stochastic Environment

GUY COHEN axp PIERRE BERNHARD

Abstract—A classical decision rule consists of finding the decision
which minimizes the expected cost. Liberty and Hartwig [1] proposed
another decision rule which consists of minimizing a combination of the
expectation and the variance of the cost in order to reduce the probability
of bad realizations. We show that this decision rule does not meet a
“minimal rationality requirement” in general. We relate it to another one
and exhibit special cases when it does so.

I. INTRODUCTION

This paper 1s motivated by the following consideration which ap-
peared in a recent paper by Liberty and Hartwig [l]. Assuming a
probabilistic description of the uncertainties, a classical decision rule is
to choose the strategy which minimizes the expected cost. However
Liberty and Hartwig noticed that this way of looking at the first
statistical moment only does not a priori reduce the probability of getting
a bad performance on one realization. Hence, they proposed to minmimize
a combination of the expectation and the variance of the performance
index.

We show, by an elementary example, that this new decision rule does
not meet a “minimal rationality requirement™ that we first define. Then
we show that this decision rule can be considered as an approximation of

Manuscnpt received May 17, 1979,

G. Cohen is with the Centre d’Automatique--Informangue, Ecole Nationate Supeneure
des Mines de Paris, Fontainebleau, France.

P. Bernhard is with the Université de Paris IX-Dauphine, Paris, France. and the Centre
d'Automatique-Informatique. Ecole Nationale Supéricure des Mines de Pans.
Fontainebleau, France.

0018-9286/79, 1000-0793500.75

793

another decision rule which exhibits this property. This eventually leads
us to look at some special cases when the decision rule proposed by
Liberty and Hartwig meets the requirement.

II.  THE MiNiMAL RATIONALITY REQUIREMENT

We consider a probability space (2, &, P) where @ is interpreted as the
set of “‘states of nature.” Generally speaking, there are two kinds of
situations: P is either an “objective” or a “subjective” probability law.
The former case is when there is some general agreement or statistical
experience on P. In the latter, the decision maker has to express his
personal feeling through the choice of P in order to be able to use the
Bayesian approach which consists in the minimization of the expected
cost. Let (U, B ) be the measurable space of decisions and (%,C) be the
measurable space of obsercations. The obsercation process is described by
a measurable mapping y from QU X to ‘Y. The strategies are (possibly a
subset of) the set S of measurable mappings from % to U. Once a
strategy s is chosen, to each realization w a decision u is associated which
is the solution of the implicit equation

s{y(u,w))=u.

On the existence and uniqueness of this solution, that we shall hereafter
denote by u(w). see the causality conditions of Witsenhausen [2].

Let J be a measurable (R-valued) functional on U X which repre-
sents the performance index. Defining a “‘decision rule” consists of
defining an R-valued index g on the admissible strategies in S. Then the
best decision will be that which minimizes p(s).

The classical “expected cost™ decision rule is given by

p(s) = EJ,= ’S;J(u,(w).w)l’(dw), (1)
Liberty and Hartwig [1] suggested the decision rule

() = EJ,+avarJ, (2)

where a 1s a positive number and var denotes the vanance (we assume
the second-order moment exists).

A decision rule defines a preference order on admissible strategies,
namely.

iff u(sy) > p(sy) (3)

u
5| > 5,

(and the same for strict inequalities).
Definition: A decision rule p meets the “minimal rationality require-

ment” iff

(P, > )=1]=s, 5 5, (4)

In the case when P is only a subjective probability law but assuming
that there 1s a general agreement that Q is the set of all possible states of
nature. we can define a weaker minimal rationality requirement, inde-
pendent from P, namely.

(Vo I (w).6) > (1 (w).0) =5 5 5, )

I'he latter 1s useful when no P is introduced, e.g.. for the worst case
decision rule

Fu\a\( 5) = m‘g“j(l‘s(w)'w)' (6)

Clearly, any reasonable decision rule must meet either version of the
minimal rationahity requirement. We now show that this is not the case,
in general, for that introduced by Liberty and Hartwig [1] [see (2)]. We
first notice that (2) has to be modified in order to produce a preference
order independent from the unit in which J is measured. As a matter of
fact, if J is changed into AJ (A >0), then EJ is changed into AEJ while
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varJ is changed into A?varJ. We thus replace (2) by
() = EJ, +ad), (7

where o/ = (varJ)'/2,

Example: Consider €= {w,,c,), both w,'s with probability 0.5, U =
(u;,u;), and suppose that the admissible strategies are reduced to
constant mappings (open-loop controls) so that they can be identified to
the decisions u,,u,. The performance index J is given by the following
table:

u |
w | 0 21
wy | 20| 21

For a>1.1, u, will be preferred to u; although this is completely
illogical.

ITI. ANOTHER DECISION RULE

We consider the decision rule
n(s) = inf{a; Pr[J, <a] > 1 —¢) (8)

where ¢ 1s a given positive number. This can be interpreted as the
accepted risk that the cost exceeds p (s). A particular case of interest is
for €=0, when p(s) turns out to be

po(s) = ess sup J(u,(w), w). 9)

If Q is a discrete set of points w; and if for all i/, P(w;) is nonnull, or if the
mapping w—J(u,(w),w) is continuous over the topological space ! and if
P(0) is nonnull for all open subset € of @, then (9) coincides with (6).
Hence, the decision rule (8) appears as a “softened” version of the worst
case approach. )
Lemma: The decision rule (8) has the property (4) [and a fortiori (5)].
Proof: The left-hand side of (4) implies that Pr{/, <a]< PrJ, <a]
for all a, which, from (8), yields

Va: p(s,)) <a=>p(s;)<a

which implies the right-hand side of (4). (]
The connection between (7) and (8) stems from the Bienayme-
Chebyshev inequality (assuming, for the time being, that o/, > 0)

Pr{|J,- EJ,| >ad/,)<a ™2
Hence,

PrlJ, < pu(s)] > 1—a? (10)
where p (s) is defined by (7). Hence, p,(s) appears as an overestimated
value of pu(s) defined by (8) with e=a "2 We now make the following
assumption.

Assumption: There exists an R-valued function IT defined on R such
that, for all admissible strategy s such that oJ, >0,

VYa€R: Pr{J, <EJ, + aoJ,]= | ~T1(a). (11)

The nontrivial fact in this assumption is that IT is independent of the
strategy s, provided that o/, >0 (otherwise, (11) is met with II(a)=0).
Examples when such an assumption is met are: 1) @ has only two
possible outcomes (as in the example above) and 2) J, is a Gaussian
random variable if o/, > 0.

Proposition: Let

a=inf{a; [1(a) <€} (12)

where €< 1. Then a is finite. Moreover the decision rule p_ [sec (8)) and
u; (see (7) with a= a) coincide, i.e., g (s)= p;(s) for all admissible s.

Proof: First notice that for those s such that oJ =0, we have
m(s)=p,(s)=EJ, for all a and e< 1. Considering from now on that
o/, >0 we see from (10) and (11) that IT(a) <a =% thus a <€ /2 < + 0.
Moreover, since limIT(a)=1 when a— — 00, @ > — 00 when € < |. Setting
a=p (s)=EJ, + as/,, definition (8) can be rewritten as

#e(s)=inf { p,(s); T(a) <e} = p(s),

the latter equality stemming from (12) and the fact that p (s) is an
increasing function of a. O

Corollary: Under the above assumption, decision rule (7) has property
@) if VB<a, TI(B)>T(a).

Remarks: 1) With a=0, yu, coincides with p, [see (1)] and thus, still
has the property.

2) If IT is strictly decreasing, the property holds for any a.

3) In the example of the previous section, Il exists and is given by
Ma)=(1if a<—1; 0.5if —1<a<l; 0if 1 <a). Hence the sufficient
condition does not hold for a> 1.
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