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Abstract. We propose a simple game the solution of which contains a singular focal line,

i.e. a focal line reached by optimal trajectories in a non tangential fashion. We also provide

a discussion of how the optimal “discriminating” strategy can be approximated by a pure

feedback.
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1. Introduction

The investigation of singular surfaces in differential games has a rather long history. It

was all started by Isaacs (Ref. 1) who discovered “universal lines”, the equivalent of the

more classical singular arcs, and “equivocal lines”, with no equivalent in classical optimal

control theory, since on such a singularity, the “adjoint variables” have a discontinuity,

in essence violating Weierstrass’ condition. The first author discovered (Ref. 2,3) that

in the case where the vectorgrams of the players are strictly convex, the vanishing of a

switch function upon arrival at the singular surface must be replaced by a condition of

tangential approach of that surface by the optimal trajectories. This led to the discovery

of “switch envelopes”, as counterparts of “equivocal lines”. Later on, “focal lines” were

discovered by Merz (Ref. 4), where the singular surface is reached tangentially on both

sides. A somewhat unifying theory of singularities was proposed by the second author

(Ref. 5,6), according to which there should exist “singular focal lines” approached in a

nontangential manner on both sides. This, however, as was not recognised in the above

two references, requires that the vectorgram of one of the players have two separate “flat”

parts. A first (unpublished) example of such a singular focal line was arrived at by the

authors by perturbing the game of the obstacle tag chase. The present example, however,

although quite artificial, is much simpler, leading to closed form integration of much of the

solution.

2. Problem

The state is two-dimensional, and obeys the following dynamics:

(

ẋ
ẏ

)

=

(

0
−1

)

+

(

φ
|φ| − 1

)

+ 2exp(−y)
(

ψ
0

)

. (1)

φ ∈ [−1, 1] is the minimizer’s control,

ψ ∈ [−1, 1] is the maximizer’s control.

The playing space is y > 0, with terminal condition yf = 0. The payoff for an initial state

x, y is

V (x, y) = max
ψ

min
φ

[

tf + k |xf |
]

. (2)
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k is a positive constant.

The velocity (ẋ ẏ) has been expressed as the sum of three terms. The first is indepen-

dent of the controls. It insures that in the total ẏ ≤ −1 so that termination is assured in

a time no longer than y(t0). The other two depend on the controls of minimizer and max-

imizer respectively. The “vectorgrams” corresponding to these two velocity contributions

are shown in figs. 1a and 1b.

3. Solution for 1/2 < k < 1.

The hamiltonian of the problem

H = 1− 2Vy + (Vx + Vy signφ)φ+ 2Vxexp(−y)ψ

is minimaximized by

φ̄ =

{

− signVx if Vy < |Vx|,
0 if Vy ≥ |Vx|, (3a)

ψ̄ = signVx. (3b)

The adjoint equations and transversality conditions are

V̇x = 0, Vx(tf ) = k signxf , (4a)

V̇y = 2Vxexp(−y)ψ̄ = |2Vxexp(−y)| , Vy(tf ) = k +
1

2
. (4b)

According to (3b) and (4b), φf = 0, (rather than –signxf ). Backwards integration of the

“primaries” is straightforward and shows that we get Vy = |Vx| when y reaches the switch

value

ys = Log

(

1

1− 1

2k

)

.

The optimal paths and the contours of constant payoff are sketched in figure 2, along with

the optimal controls φ, ψ. The y-axis, for 0 ≤ y ≤ ys, is a dispersal line (D.L.) on which

the maximizer chooses ψ = ±1 while the minimizer chooses φ = 0. Here, |Vx| = k and

Vy = 1

2
+ kexp(−y) ≥ |Vx|.

The remainder of the y-axis is a singular focal line (S.F.L.), i.e. a locus of discontinuity

of Vx. The value surface exhibits a “valley” along that locus, with an edge at the bottom.
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The vanishing of the minimizer’s switch function along this valley implies that |Vx| = Vy,

so that both the incoming control φ = ±1 and the “focal” control

φ = −2exp(−y)ψ, (5)

devised to insure ẋ = 0, can make the hamiltonian minimum. The adjoint Vy still satisfies

the adjoint equation (4b), but is most easily calculated using the first integral H = 0,

which, together with the above condition yields

Vy = |Vx| =
1

2(1− exp(−y))

Along this S.F.L., the minimizer faces a “perpetuated dilemma”. The maximizer may

switch at will between ψ = ±1, and the minimizer must respond accordingly with his

focal control (5), which assumes instantaneous knowledge of his opponent’s control. We

shall see, in section 6 below, how and to what extent this can be approximated by a state

feedback control.

4. Proof of Optimality.

Let

H∗(y, Vx, Vy) = min
φ

max
ψ

H = 1 + 2 |Vx| exp(−y)− 2Vy +
1

2

(

Vy − |Vx| −
∣

∣Vy − |Vx|
∣

∣

)

.

A sufficient condition for optimality (in addition to the satisfaction everywhere of Isaacs’

Main Equation H∗ = 0) is the “viscosity condition” (Ref. 7): H∗(y,Wx,Wy) ≤ 0 at any

minimum of V −W where W is any smooth test function. (See figure 3). Since the only

points where V is not smooth are along the y-axis, we may adopt W = V along that

axis, and |Wx| ≤ |Vx|, so that V − W ≥ 0 in a neighborhood, making the axis a local

minimum. Since Vy = |Vx| on the S.F.L., and Vy ≥ |Vx| on the D.L., we immediately see

that H∗(y,Wx, Vy) ≤ H∗(y, Vx, Vy) = 0, and the viscosity condition is met.

5. Values of k Outside the Range (1/2, 1).

As k → 1/2 from above, ys → ∞, and the solution for k ≤ 1/2 is almost trivial.
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For k > 1, we have

ys = Log

(

1

1− 1

2k

)

< Log2,

and that part of the y-axis for which ys < y < ln 2 constitutes a D.L. on which again the

maximizer chooses ψ = ±1, to which the minimizer must now respond with φ = −ψ. (See
fig. 3). Here, |Vx| = k and Vy = 1 + (2 exp(−y)− 1)k ∈ [1, k]. Therefore, Vy ≤ |Vx|

Using the same family of test functions as previously, it is clear that the viscosity

condition is satisfied for any W such that Vy ≤ |Wx| ≤ |Vx|, since 2exp(−y)− 1 ≥ 0, and

for |Wx| ≤ Vy as well, H∗ being a monotonic increasing function of |Wx| throughout.

6. Feedback Approximation of the Focal Strategy.

We pointed out that the strategy (5) is not within the usual “rules” of a differential game,

and will most often not be implementable as such, since it involves instantaneous knowledge

of the opponent’s control. This situation during a perpetuated dilemma has already been

investigated in the case of a “regular” focal line, where the incoming optimal paths are

tangent. See (Ref. 9) for instance. It is useful to quickly recall how the argument goes.

Assume the responder, the minimizer here, responds to a switch by the leader after a

time ǫ. Since after switching to his optimal strategy the path will come back to the focal

line tangentially, this will take a time of the order of
√
ǫ. Therefore the total number of

such deviations from the focal line can only be of the order of 1/
√
ǫ. Since the time spent

playing non optimally, i.e. with H > 0, is O(ǫ) each time, the total time spent is of order

ǫ/
√
ǫ =

√
ǫ, and thus goes to zero with ǫ. Therefore the optimal cost can be approximated

arbitrarily well with this type of feedback (with a delay).

Now this does not hold in the current setting where the optimal trajectories come

back to the focal line in a non tangential manner, therefore in a time O(ǫ) only. Notice

also that even though the deviation of the state from the focal line remains small, say O(ǫ),

the deviation of the hamiltonian from zero is large, so that the trajectory thus generated

is really non optimal, leading to a payoff much larger than V (x0, y0).

Another way of looking at the situation is the following. Assume the maximizer tries to

drive the state off the focal line as often as he can, and that the minimizer responds by his

best approximation of his optimal strategy. The minimizer will end up chattering between
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φ = ±1, as will the maximizer, and since, by hypothesis the resulting average speed must

be with ẋ = 0, by simple inspection of the vectorgram, it will be also with ẏ = −1 (the part

of ẏ independent of the controls, not shown in fig. 1), instead of −2(1− exp(−y)) < −1.

This is clearly bad for the minimizer since elapsed time is part of the payoff.

However, we have pointed out that the game always terminates in a short time if the

state is in a neighborhood of the terminal manifold. Therefore the condition required by

Friedman (Ref. 10) to insure existence of a value is satisfied, and therefore the upper value

and lower value, in the sense of Fleming, or Friedman, must coincide. Furthermore, we

know from (Ref. 7,8) that this value is the unique viscosity solution of Isaac’s equation,

thus the one we have computed. It is therefore interesting to examine Fleming’s piecewise

open loop upper strategies.

Assume that from x = 0, Minimizer is to choose his control value for the time ǫ to

come. Assume he chooses φ ≥ 0. Then Maximizer can insure that ẋ > 0, thus x > 0. It

is readily seen that he maximizes the hamiltonian by choosing ψ = 1 (he tries to “climb”

the side of the valley as fast as possible). We thus have Vx = Vy > 0 and

H = 1− 2Vy(1− exp(−y)) + 2Vyφ.

Thus Minimizer achieves the min max H by choosing φ = 0. The situation is symmetrical

if we start with φ ≤ 0, still ending up with the conclusion φ = 0. After a duration ǫ of

play with these controls, both players know that x > 0. There grad V is continuous, the

hamiltonian has a saddle point, thus both choose their optimal controls according to our

optimal feedback strategies, leading to φ = −1, and ψ = 1.

We conclude that the approximating strategy for the minimizer should be, for some

small positive η

φ =

{

0 if y ≤ ys or y > ys and |x| < η,
− signx if y > ys and |x| ≥ η.

(6)

It is interesting to examine the possible resulting chatter. If a chatter occurs, it can

only be along the lines x = ±η. Let us look at the case x = η for instance. The limit cycle

will occur with ψ = −1 and φ chattering between 0 and +1. Since the resulting average

velocity is by hypothesis with ẋ = 0, figure 4 shows that it will actually be the “focal”

velocity.
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We can now conclude that a strategy such as (6), with a small delay to allow for

a limit cycle along the two switching lines, allows the minimizer to guarantee himself a

value arbitrarily close to the optimal one. As a matter of fact, we have seen that he can

obtain an average velocity equal to the focal velocity, along a line x = ±η. Now, grad V

is continuous in both regions x > 0 and x < 0, so that Vy is close to the focal Vy on those

lines, the difference being O(η). Since the time spent is the same as on the optimal play

along the S.F.L. (within O(η)), the optimal payoff will be approximated within O(η).

7. Conclusions.

The game we have investigated here provides a very simple (and the first published?)

example of an S.F.L., well suited to study various aspects of those singular lines. We

have focused here on the proof of optimality and the feedback approximation of the focal

“discriminating” control during the perpetuated dilemma. Other questions that one might

want to look at include the following perturbation schemes.

Strictly Convex Vectorgrams. In the fashion of (Ref. 12), one may look at the situation

where the vectorgams of the players are made slightly strictly convex, as depicted in figure

5 a, b. So perturbing the maximizer’s vectorgram does not change the solution of the

game. However, modifying the minimizer’s vectorgram will turn the S.F.L. into a regular

focal line, modifying the slope of the optimal trajectories in a small boundary layer along

the y-axis, very much in the same fashion as was shown for other types of junctions in

(Ref. 12).

Additive Small Noise. In the fashion of Fleming (Ref. 11), and followers, one may add

a small white noise of spectral density σ2I to the dynamics (1). By the general theory,

the resulting Value function V η will be close to V , but the bottom of the valley along

the y-axis will be smoothed.(Fig 6). On this axis, the optimal controls will be φ = 0

and, assuming we have further made the maximizer’s vectorgram slightly convex as above,

(“raising” it slightly to make it tangent to the ẋ-axis at the origin), ψ = 0. The resulting

Main Equation is then

1

2
σ2∇2V η + 1− 2V ηy = 0.
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The solution will yield V ηy
∼= Vy >

1

2
.

So, provided it corresponds to an existing noise, some dispersion cancels the advantage

the minimizer had in being able to force the state in the bottom of a valley.
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List of captions.

fig. 1a: Pursuer vectorgram

fig. 1b: Evader vectorgram

fig. 2 : Optimal field,1/2 < k < 1

fig. 3 : Optimal field,k > 1

fig. 4 : Vectorgram along the focal line

fig. 5a: Perturbed Pursuer vectorgram

fig. 5b: Perturbed Evader vectorgram

fig. 6 : Value function for the game with small noise added.
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