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Introduction

Tactical analysis of naval situations is a crucial and difficult problem. Threat evaluation must be done with
more or less delayed and incomplete information: for instance, actual kinematics of each actor are only
estimated by his opponent. This aspect of missing or ill-defined information is a difficult task for a ship
officer, and much work has been devoted to the design of useful real time tools for decision aids, based on
Artificial Intelligence : Expert Systems can be applied, for example, to the analysis of the opponent intents
[Rai89).

As, at Thomson Sintra ASM, we are involved in modelling for submarine control and control system
evaluation [LBN90], we think that complementary tools can be founded upon Games Theory : more, a
time-space discrete representation allows a realistic modelling yielding the application of methods based
on discrete game theory. This discretization takes into account the fact that, for naval situations, there is
uncertainty in the available informations and that these informations are only obtained at discrete times.
For example, if a ship officer wants to know position and speed of his opponent, he has to manoeuver in
order to obtain these informations with his sonars, and, during this manoeuver, no available information
can be provided by some of the sonars. More, a ship officer always makes approximations about kinematics
informations of his opponent : indeed, he assumes values of maximum speed and of turn radius which
cannot be the actual values of the opponent ship. That is why discrete games seem to be a very interesting
tool because it is possible to play a set of games in “real time” with various assumptions (like kinematics,
position, speed, opponent intents, ... ), and, from this set, the ship officer can take his own decision.

In this paper, we first propose our mathematical modelling giving a method of resolution of discrete
pursuit games, then its implementations on a workstation (SUN), finally the possible improvments of this
approach.

1 Mathematical modelling

1.1 Preliminaries
1.1.1 Available lattices

Firstly, we want to find out the geometrical framework of the game. Indeed, we choose a geometrical
description of the space and of the available controls so that this space description is always available after
the motions given by the controls. In our description, a control can be modelled as both a translation and



a rotation, and the geometry of the space is chosen so that, after each control, i.e. for each translation and
for each rotation, for each player. space representation and controls are the same as previously. There is
a famous modelling of such a space with the help of cristallography : indeed, physicists have described all
the spaces allowing sorts of couple “translation-rotation” by the famous description of the “Bravais lattices”
(see for example [Kit71]). With the help of these works, we know that. in bidimensionnal spaces, there are
only five kinds of lattices, owning either twofold. or fourfold, or sixfold rotation axes (let us note that, in
three dimensionnal spaces. there are only 14 kinds of lattices, yielding 230 space groups).

For bringing such space description to games applications, we emphasize the fact that the choice of
controls is rather restrictive because rotations can only be a multiple of either v/3 or #/2. Yet, in our
discrete games and for our naval applications, this rather rough approximation of controls seems to suit well
with the uncertainty of the situation description.

In order to obtain a realistic description of a naval 2-D situation, we have chosen an hexagonal lattice
(so that motion of each player is described as translation on this lattice, and that there are six possibilities
for the final speed direction of each player) —as in [Isa65}—.

1.1.2 Solution of the game

We shall see two different ways of solving the problem : the first one, inspired by Pontryagin's paper [Pon68],
is based on the building of capture zones W, in which the evader is caught within n steps, and the second
one consists in solving Isaacs’ equation using the dynamic programming method. At first, we shall study
the game in which the players play alternatively, with the minimizer playing first, which can be solved with
pure strategies. Then we shall solve the game in which both players play simultaneously, which requires
mixed strategies.

1.2 Alternating game
1.2.1 Notations
e We call z; the relative coordinates at instant ¢, t € N.

e As usual, we call u; € U/ and v, € V the controls of the minimizer and of the maximizer at instant ¢.
We suppose that & and V are both finite sets. The dynamics of the game are described by :
Tepr = h(g(ze, ue), ve)
which gives a proper model for this game where the pursuer (P) plays first and the evader (E) plays
second, knowing P's control.

e When we don’t need to distinguish the minimizer’s controls from the maximizer’s ones, we will more
simply write the classical equation :

Tyl = f(:h Uy, ve)

with a given initial position zq.
o We call C the Capture set.
e The performance index J we want to optimize is the duration of the game .

e We also assume the following conditions on g and A :

z€C = Vug(z,u)==¢
y€EC = Yy h(y,v) =y

which will allow us to consider the finite duration games as infinite duration ones with a stationary
trajectory. Let’s notice that :
£ €C = YuVv f(z,u,v)=1=z

Our purpose is to find the value w(z) on the whole game space. We shall prove that a method based on
the building of capture zones W, in which the evader is caught within n steps is equivalent to the classical
dynamic programming method that is used to solve Isaacs’ equation, and quite faster.



1.2.2 Calculation of w: link between the Capture Zones and Dynamic Programming

In the theory of zones. we first define Wo(= C). which is the target, then we build the capture zones IV, by
induction :
Wastr = {z @ JuVv f(z,u,v) € W,}.

Remark 1 if r & Wy and if Su” g(z.u”) € Wy, then £ € V).
Proof : Vv f(z,u",v) = h(g(z,u"),v)=g(z,u") € Wo.
Remark 2 One can easily check : Yne N W, C Wpy,.

In the theory of dynamic programming, we initialize by giving a nil value to all the points of C, and

infinite values elsewhere :
we(z)=0 if reC
we(z) =0 if z¢C,

and we iterate the following process :
Wn41(Z) = minmax wy, o f(r,u,v) + c(zx).
u v
where
ce)=1 if rgcC
cz)=0 if recC.
Remark 3 Ifz € C, f(z,u.v)==z and ¢(z) =0 so Vn wp(z) = we(z) = 0.

Remark 4 Ifz € C and if there exists u* so that g(r,u”) € C — i.e. the Pursuer P plays and brings the
Fvader E into C before E has played—, then wy(z) = 1.

Proof : We have : Vv h(g(z.u"),v) = g(z,u") = f(r,u".v).
Since g(z,u") € C, we can also write :

0 < minmax wgo f(r,u.v) < max wpo f(z,u",v) = wpog(z,u") =0
u 3 v
vielding : wy(z) =1.

We want to prove the equivalence of the two approaches. formalized in the next Theorem 1. For this
purpose, we need a few preliminary results : lemma 1, 2 and 3.

Lemma 1 For a given z. (wa(z)),¢N S decreasing.

Proof : If z € C. remark 3 proves that wo(z) > wy(z).

If z & C. then wo(z) = x > wy(zr). SoVr we(z) > wy(x).

Now, assuming that Yy wn(y) > wn41(y), let’s take x in the game space. We have :

Wp4a2(x) = minmaxw, 0 f(r.u.v) +c(x) < min max w, o flz,u.v) +¢e(z) = Woygr ().

u v u

This proves the lemma.

Lemma 2 for a given n :

i) t€Wap =W, =2 uwppi(z)=n+1

) re€ ”"q = u',,...l(.t) = u‘n(.l.') =0
i) r¢ Won = wpp(z)=00.




Proof : by induction.
Let us call A, the assertion of the lemma. Ag is true. Now let us assume A, is true and let’s prove Ap 4.
Let 2 € Whpa— Whyy

r€Whs = Ju" Ve f(z,u",v) € Why,.

Let U* = {u" : Vv f(z,u*,v) € Woy) },and let u* € U” :
t€Wapr=Wopy = e g Wayy = 0" fz.u". ") € Wy,
thus f(z,u",v") € Why — Wi,
that implies Wn4r1 0 f(z,u",v°) =n+1 (due to assertion A,).

Furthemore, Yy € W, 4. wn41(y) < n+ 1 (because of remark 2, lemma 1 and assertion A,), so:
maxwn4y 0 f(2,u%,0) < n4+1 = wayio fz,u7,07).
This is true for all u* € U*, yielding :

min max wp4y © f(z,u,v) =n+ 1.
UEU® v

Nowleta g U" :
TEU" = 370 f(2,9,7) € Why,

then, using assertionA,, wn410f(2.49,.7) = 20.
so max wp 4, 0 f(z.4.v) = o0,
v
and finally rgg"n max wp410f(2, u,v) = oo.
u ¢ v

In conclusion, we have :
min max wp4;0f(z.u,v) = min { min max wn4; © f(x.u,v), min max wn4 of(z,u.v)} = min(n+1,00) = n+l,
u v ueU* v ugU* v

so using ¢(z) = | (since £ € Wy), wn4a(z) =n+ 2 which proves i1).
i) has already proven in remark 3 and it is easy to check i:i).

Lemma 3 ifz e W,. thenw,y(z) = wa(z).

Proof . by induction.
Let us call Bg the assertion of the lemma. Assertion By is true. Let’s assume B, is true and let’s prove

Bns.
If £ € Wy, Bn4y is true. Let's take £ € W4 and r ¢ 1Vy:

r € Wpprandz @ Wy = wnya(z) = muin MaX Wn 4 © flz,u,v)+1= Max Wn 41 of(z.u.,v)+1.
{Such a u® exists since we supposed that i is a finite set). Let :
U. = {u.: n}‘in Max Wn 41 0 flz.u,v) = Max Wn 41 o f(z,u.,v)}.
Let . € U.. Using : Yz € Wyoy wns2(£) € wasi(2) < n 41, we can deduce :
Max wn 41 o f(z,u..v)<n,
then Yof(z.uo,v) € Wop =Wy,
moreover Vv f(r.u.,v) € oy (otherwise because of the lemma, mf.x Wn41 0 f(z,u.,v) = 00),

that implies. since W, C V4, Yvf(z.u.,v) € 1V,,



and using assertion B,, we have :
Vv wp4y 0 f(T ue, ) = wpo f(z,u.,v).
This is true for all u, € &.. We can deduce :

Wp41(z) = minmaxw, o f(z,u,v)+1
u v
< min max w, o f(z,u. v I = min maxw of(z,u,v = w
< min maxw, I )+ min maxwnyy © f(z,u,0) +1 n+2(2),

yielding
Wn+1(2) < Wny2(2).

As we already had wn42(2) < wn41(2) (due to the decreasing of function w), we obtain :
z € Wnyy = wnya(z) = wnti(2).

This prove the lemma.

Now, in conclusion, we can assert the following theorem :

Theorem 1
Let’s take z 1n the game space.

o Ifxr @ Wy : it is not capturable and w,(z) = co.

o Ifz € |JWi, let n be the smallest integer such that r € Wy; then the first k vertfying wi(z) # oo 1s
nand, Vp € N. n = wn(z) = wn41(z) = ... = wnyp(z).

Proof : it is a direct consequence of lemma 3 and remark 1.

Then let’s call w(z) the limit : w(z) = limp—o wa(z).

w(z) = 2 if zgUWe
w(z) =n+1 if re Wy —W,
w(z) =0 if reW,.
w(z) verifies the {ollowing equation:
w(z) = minmax wo f(r.u,v) + c(z). (1)

. c(r)=0 ifzxeC
with { c(x) =1 elsewhere.

Equation (1) is exactly Isaacs™ stationary equation.

1.2.3 Optimal strategy

Now, we can easily see that we have obtained the solution of the game where the players play alternatively.
Since the minimizer plays first and the maximizer second. making a decision that depends on the control
which the minimizer has just chosen, the notion of strategy is slightly different from the classical concept in
differential games. We therefore call strategies ¢ and 3 functions of the type:

{ g : o(z¢)

e (2, ug).

One recognizes the definition of what is usually called upper strategy. A pair of strategies and an initial
point induce a unique trajectory. and we can write the dynamics of the game:

{J-'H-l = f(z1.6,9)

Li=o Lo



with no ambiguity. Now let’s call * and y° the strategies defined as follows (i and V are finite):

@" consists in playing ¢°(z;) = u; corresponding to minmaxw o f(z¢,u,v)
u v

¥" consists in playing ¥°(z,ur) = v{ corresponding to max w o f(z¢,ur,v).

Actually, these definitions are ambiguous since they don’t define a unique control at each step of the game,
but it has no consequence as far as we are concerned. and anyway, we could get round this problem by, for
instance, imposing a rule for the choice. We can now assert:

Theorem 2 With the previous nolations, if the game starts on a finite w(zy), then the duration is finite
for all pairs of strategies (¢°, ¥); the pair (¢°,¥") 1s optimal and w(zq) ts the value of the game.

Proof : let’s place ourselves in a game, at instant t, and position z;. Then, by definition: u; and vy
verify the following inequality:

V(u‘v)) wof(.r‘,u;,v) S wOf(.t,,u;,v,') S maxwof(:hutv)’
v
which, in terms of strategies, means:
Y(u,v), wo f(z4,¢",v) < wo f(z,0". ") < wo f(z,u,v"),

which allows us to write :

V(u,v)
wo f(z,0°,v) —w(z)+clz) < wo f(z,, 0", ¥") — w(x,) +c(z) =0 < wo fz,,u, ") = w(zy) + c(zy),

(2
which is exactly Isaac’s equation. The minmaz equation in terms of controls is a saddle-point equation in
terms of strategies, and ¢° and ¥° are the optimal strategies. Indeed, with obvious notations, with a game
starting in zq, we have, using equations (1) and (2) :

V(é,¥) 1 wo f(z0,8",¥) +c(z0) < w(zo) < wo f(z0,0,¥") + c(z0),
which can be written: . .
w(zf )+ c(z0) € w(zo) < w(zPY") + c(z).

In the same manner, we have .

wz?®") < o(2f*) + w(zg?)
and . . .

c(::f "")+ w(zg "") < w(zi‘ ¥y,
yielding . .

c(zo) +c(z{ *) + w(z§ ) < w(zo) < c(z0) +c(zP¥) + w(zPY).
And we can deduce by induction the following relation :
vt
c(zo) + c(z? Y+ ezl )+ w(::&"“’) < w(zo) < ¢(zo) +c(zf"" Y+ otz )+ w(zf;"{ ,

which proves the result.

Remark 5 There are two interesting results here:

e the algorithm of “iteration on values” converges in this case, in a very simple manner since it is
stationary, and allows us to solve Isaacs’ stalionary equation.

e this classical algorithm. where one iterates calculations on the whole game space, can be replaced by the
building of these capture :ones which we interpreted before: it is a faster algorithm, since one only has
to do erosion and dilatation like operations on zones that have a small size at the beginning (Wp = C)
and that don't grow fast.



As a matter of fact, the “n” of W, is the non linear counterpart of what Pontryagin called the “estimating
function” [Pon68) ; it means that the evader will be caught within at most n steps; the previous paragraph
proves that, in this case, “n” is also the classical value of the game.

Yet the problem is that we have only found a solution of the game in which the players play one after
the other, and our model of incomplete information leads us to solve the game in which both play at the
same time. This kind of game requires mixed strategies but we will see that here again. the “iteration on
values™ method converges and gives the solution of the game.

1.3 Simultaneous game
1.3.1 Calculation of v

Our method consists in initializing the whole game space with the previous min, max, algorithm that gave
us a value function w(z) and in building a new value function v(z) by iterating the process described in
theorem 3. Now U and V are considered as random variables of distributions Y and Z. The sets & and V
of admissible values for u and v are still supposed to be finite, and if we call p and ¢ the number of elements
they contain, Y and Z are elements of the p and ¢ dimensional simplices.

Theorem 3 If vo(z) = w(z) and va41(z) = miny maxz Ey z vyo0 f(z,U,V) + ¢(2),
then (”"(I))neN converges for all r.

Proof : In this case, the minmaz is the saddle point of the function Ey z v, o f(z,u.v)) ; it is smaller than
or equal to the min, max, :

YneN rr;ln mzax Eyzva o f(z,U,V) < minmax v, o f(z,u,v),
u v

so: Vr v(z) < vo(z),
and, by induction, we find Yz vn41(z) < va(z).
Using Yk € N vi(z) > 0, since we always calculate saddle points of positive matrices, we prove that the

method converges.

We obtain a function v(z) verifving the following equation:

viz) = m’;nmza.x Eyzvo f(z,UV) + ¢(z), (3)
with the limit condition: v(z) = vo(z) = 0 ifz € C.

1.3.2 Optimal Strategy

Now, let’s place ourselves in the context of a game. We shall use mixed strategies : the strategy ¢ for P is
a function z, — ¢(z;) = Y, distribution of the random variable u,, and the strategy v for E is a function
Iy — Y(z) = Z, distribution of the random variable v;. A pair (¢, ¥) of strategies therefore defines a
unique random process, and z; becomes a random variable that we shall write .X;, of which we know how it
is distributed, for given initial conditions.

We shall call Q(zo, ¢, ¥) the set of events w induced by an initial condition zy and the pair of strategies
(#,9¥). We shall write with no ambiguity:

Efy =" u(X0), (k < 1)

instead of .
ELu="e(X2Y)



the conditional mean in the process induced by (¢, ).
The duration of the game is a random variable D(w)wen(s,,0,v) and the performance index we want to
optimize is M, the mean of D:

M(z.0.9) = [ D(w)du(w) = ES5="D.
w€N(z0,0,¥)

Let’s call ¢° and ¥° the strategies defined as follows: we place ourselves at time ¢, with a position z,
(X = z,); then, by construction of v,

v(z) = rr},ian&‘(E'y_z vo f(z,U,V)+c(zi) = Eye ze vo f(z, U, V) + c(z4).

We shall define:

{ ¢.(I() = Y.

Y (z¢) = 2°.

Theorem 4 With the previous notations, if the game starts on a finite v(zo), then the probability for the
duration to be infinite is nil for all pair of strategies (¢*,¥); the pair (¢*,¥") is optimal for the performance
indez M(zo,d, %), and the value of the game is v(zq).

Proof : let ¢ and ¥ be two other strategies: we have the following relations :

EIX::.z' vo f(Xy.0™, ¥*)

g;;:.:::v o f(Xi.0,¥%)

ey vof(Xio%Y)

Ey.z:vo f(zi,U V) = v(z:) - c(z1) (using(3))
E¢(It),z. vo f(ztv L’y V)
Eye« gz vo f(z:,U, V).

The property of v becomes:

E'JY:;:'(U o f(‘Yh ¢'v d’) + C(X!))
SENST (vo f(Xe 8", 97) + (X)) = vl(zi) (4)
< ELuT (o f(X0 6, 9") + c(X0)).

This equation proves that ¢* and ¥° give the solution of the game. Indeed, let zo be an initial condition :
we can write, using (4):

EVINS20(6(X1) + e(Xo)) < v(z0) € EROT7(o(N1) + ¢(Xo)),

and, in the same manner, )
w(z1) € EYa (u(Xa) + e(X1)),

or, in terms of random variables, ]
v(X1) < ERL (0(X32) + (X)),

which yields ] ) ]
EROC™u(X)) € ERer (BN (v(X2) + (Y1)

The process is a Markov process, so we can write :
EV (u(X2) + c(X1)) = ELEFO0(0(Xa) + ¢(X1))

and i . o e
ELSZT (B (0(X2) 4 e(X1))) = ESNSET (BN 150770 (u( Xa) + o( X))

and because of the total probability theorem applied to the probability space (zg, 9. ¥"),

ELfomeo( EIX1 Ko=) Va) 4 ¢(X1))) = ELROT™(u(Xa) + (X)),



yielding :
u(zo) < ELSTT(u(Xa) + e(X1) + ¢(Xo)).

\We have the same inequality on the other side, and by induction,
vt

ESXo=70(y(Xop1) + (Xe) + oo + ¢l X1) + € X0)) € v(z0) € EXSTZ(0(Xes1) + e(X0) + .o+ (X1) + ¢( X)),

which proves that we optimized the mean of a performance index which is interpreted as the duration of the
game if it is finite, since in this case ¢(z,) becomes equal to zero for t greater than a certain ¢;.

We shall now prove that if we take an initial point zo and if v(z,) is finite, then the probability for the
game to have an infinite duration is zero, assuming that P plays ¢°. Indeed,

Vi V| EYYOT0 (0(Xpg1) + (X)) + o+ o(X1) + ¢(Xo)) € v(z0) < 0.

Let’s call Qu(z0, ., %) the set of infinite games starting from zo with the strategies ¢ and v. Using the fact
that Qe (z0, 9, ¥) is a subset of Q(zq, ¢, ¥), and that for a game of infinite duration,

c(zo) +c(z1) + ... + c(ze) + v(ze41) 2 8,

we can write:

20 > v(zo) 2 EYo T (0(Xewr) + (X0 + ... + o(X1) + ¢( o))
> fanizese )W Xea) + c(Xo) + .. + e(X1) + c(Xo))(w)dp(w)
Z t= [J(QN(IO, ¢.= ’l’)))

which is possible for all ¢ only if
I‘(Qoo(zo‘ ¢-1 'l’)) = 0|

which proves the assertion.

2 Implementation

As we already mentionned, we use a hexagonal (or triangular) lattice. Our programs are written in C lan-
guage, and we run themon “Sun” workstations. For the alternate game, the method of dynamic programming
(theorem 3 ) is easy to compute. The method of zones (theorem 4) requires more subtle programming; we
use C memory allocation “malloc” to put the previously calculated zone in memory, and we calculate the
following one using only these data. As we expected, the capture zone program is quite faster than the first
one: about 5 to 6 times faster.

For the simultaneous game, we use the previous maps (which are actually matrices) for initializing the
process. Then we iterate the resolution of the simplex problem on each point of the game space, using the
linear programming algorithm.

3 Improvments

Two important ways of improvments which seem promising for naval applications are extensions to higher
dimensionnal spaces and to other kinds of games.

3.1 higher dimensional spaces

The previously chosen lattices are 2-D lattices : the two players are movingon a plane, with either rectangular
or hexagonal lattices. This kind of game can be restritive for actual applications which, in the case of naval
games. can involve submarines. Yet, a submarine warfare application does not need a true 3-D space :
indeed. available controls of a submarine are restricted to variation of the depth and have nothing to do
with true 3-D controls as for airfights. By the same analogy with cristallography, we propose a graphite-like
lattice for discrete game modelling in order to deal with the motions of submarines. In this case, there is an



hexagonal subspace, like the previously described one, and the motions available between these subspaces
can be restricted to simple variations of depth. By this way, we can apply the mathematical descriptions we
propose in section 1. and algorithms giving charts can easily deduced from the 2-D ones.

If we want to deal with a true 3-D space —i.e. we consider that the space is isotropic— a model can
be constructed with a 3-D lattice. A first one, similar to the rectangular lattice of the 2-D space, is a cubic
lattice : indeed, in this case, each control can be splitted into a translation and a rotation which belong
to the space group of this lattice. This case is rather restrictive as final speed is actually parallel to one of
the cristal vector. An interesting but more complex lattice can be a diamond-like one. In this case, there
is much possibilities for the final speed; indeed, representation in such a space can become easy only for a
specialist of cristallography or space groups. ..

3.2 Surveillance games

Naval applications required good models of survey games : indeed, a ship can be viewed as a threat if she is
too near. Matching of our model to survey games can easily deduced from the previous tools. Nevertheless,
we have firstly to estimate if the minimizer, who wishes a survey situation, can win (it is easy to imagine a
situation where the maximizer can always evade or attack). In this case, a chart of the space, with which
optimal controls can be deduced. can be computed by the same way as previously.

4 Conclusions

These methods for the resolution of discrete pursuit games provide useful tools for naval applications :
indeed. they take into account ill-defined data and provide interesting informations about possible strategies.
It seems that a possible application for decision aids can be an interactive system displaying several charts to
the ship officer, each chart being based on given assumptions about the opponent. As our modelling allows
a “real-time” computation of these charts, the ship officer can introduce all kinds of values deduced from iil
defined informations and all kinds of opponent intent and, with the help of these charts, he can deduce his
own decision and his own strategy.

Finally, we want to emphasize the fact that, on one hand. the discretization of the space is not so much
of a problem as far as undersea pursuits are concerned, since ships are rather big, slow, and since specific
problems of underwater acoustics yield imprecision in detection and measurements, and on the other hand,
our methods, based on this discretization of the space, do not seem to be so appropriate for missiles launching
and airfights. that other models of Pursuit Evasion game match well. So naval warfare has to suggest us
new game models for which we have to define a pragmatic approach to find suitable solutions.

References

[Isas3] R. Isaacs. Differential Games. Wiley, 1965.

.

[Kit71] C. Kittel. Introduction to solid state physics. Wiley, 1971.

[LBN90] Y. Lagoude, B. Babault, and D. Neveu. Parametric variations and multi-level modelling for sub-
marine command and control system evaluation. In Undersea Defence Technology 1990, pages 169~
176, 1990.

(Pont8] Pontryagin. Linear differential games i and ii. Soviet Math. doklady, 8(3 & 4):769-771 & 910-912,
1968.

[Rai89] A. Raimondo. Analyse d’intentions tactiques. In Ninth International Workshop on Ezpert Systems
and their Applications : Specialized Conference on Artificial Intelligence and Defense, pages 183-
194, 1989.



