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Abstract

We consider a team problem, with two decision makers for simplic-
ity, where the uncertainties are dealt with in a minimax fashion rather
than in a stochastic framework. We do not assume that the players
exchange information at any time. Thus new ideas are necessary to
investigate that situation. In contrast with the classical literature we
do not use necessary conditions, but investigate to what extent ideas
comming from the (nonlinear) minimax certainty equivalence theory
allow one to conclude here. We are led to the introduction of a “par-
tial team” problem, where one of the decision makers has perfect state
information. We then investigate the full team problem, but the main
result concerning it is shown to be still rather weak. We nevertheless
apply it to the linear quadratic case, where it yields an original result.

1 Introduction

The origin of this research was in non linear robust control, as explained
in [4]. There we show that the natural nonlinear equivalent to the (linear)
H∞-optimal control approach is not the so-called “non linear H∞” control
problem, but a minimax team problem. By this we mean a team problem
where the uncertainties are dealt with in a minimax fashion, looking for a
guaranteed outcome, rather than in a stochastic fashion, looking for a mean
outcome.

As far as we know, explicit results published for stochastic dynamic team
problems all involve either a form of imbeddedness of the informations avail-
able to the players, as in [10, 7], or other very special features (see [1] for
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instance). In the case of minimax team problems, often investigated under
the umbrella of Nash equilibria, the results we are aware of almost always
assume a dicrete time model with a one step delay information sharing pat-
tern, see e.g. [8, 14], except for some asymptotic results for weak coupling,
see [15].

Here we attempt to deal with non imbedded information, without any
information sharing. While the result obtained is rather weak, as stressed by
the section dealing with an abstract analysis of that result, yet it allows us
to give an original result for the continuous time linear quadratic problem.
It would clearly be a simple matter to derive the equivalent result for the
discrete time equivalent.

As a matter of fact, our basic derivation applies to a nonlinear setting,
since it uses the basically non linear minimax certainty equivalence principle.
But practically there is little hope to get tractable results other than to the
LQ problem, or to some simple low dimensional nonlinear problems as was
done with the basic principle.

2 The system considered

2.1 Dynamics and cost-function

Consider a team of two decision makers, whom we call players for short,
each controlling different actions and having access to different informations.
There is a common pay-off for both players, which has to be minimized by
them. (In [4] the case is considered, when their dynamics are separated with
respect to all variables.) To be more precise let x(t) be the state variable
of the system and u1, u2, w denote correspondingly the control variables for
each of the players and the disturbance, in terms of which the dynamic
equation of system’s evolution over time in the nonlinear general setup can
be presented as:

ẋ = f(t, x, u1, u2, w) , x(t0) = x0 , (1)

where t ∈ [t0,+∞), x(t) ∈ Rn, ui ∈ Rmi , i = 1, 2, w ∈ Rl. The disturbance
variable w is dealt with by considering the “guaranteed performance level”,
leading to a formulation in terms of a minimax or dynamic game problem.

The controls of the players and the disturbance obey the following re-
strictions: (

u1

u2

)
∈ U := U1 × U2, w ∈W,
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where the U1, U2, W are compact convex sets in appropriate spaces. The
sets Ui and W of admissible open-loop controls ui(·) and w(·) will contain
all measurable functions from [t0,∞) into Ui and W respectively.

Under the necessary regularity assumptions (specified below) we shall
denote for a given initial time t0 ∈ R by x(.) = S(t0, x0, u1(.), u2(.), w(.))
the unique (Cauchy) solution of the system (1). (The first argument in S
will often be omitted.)

We shall consider the following performance index:

J = M(x(T )) +
∫ T

t0

L(t, x, u1, u2, w) dt+N(x0) , (2)

where L,M and N are given differentiable functions from the appropriate
spaces into R. Adequate regularity and growth assumptions are assumed to
hold on f and L to insure existence and unicity of the solution of (1) and
existence of (2).

Regularity assumptions We shall assume that the functions f, L are of
class C1 and a growth condition holds on f , that guarantees the existence
of a unique solution S to (1) over [t0, T ] for any (U,W ) ∈ (U ,W).

The precise formulations of the problems depend upon information struc-
tures and will be given below in the following sections.

2.2 The classical game problem formulation and its solution

Let us introduce the standard problem in perfect information, that is with
admissible strategies in state feedback, i.e. of the form:

ui = ϕi(t, x), i = 1, 2,

and recall the classical Hamilton-Jacobi-Isaacs solution [11, 3]. Given the
initial time and state (t0, x0) determine, if it exists, the Isaacs’ upper value
function:

V (t0, x0) = min
u1

min
u2

max
w

J̃ , (3)

where J̃ = J −N(x0).

Proposition 1. If there exists a C1 function V : [t0, T ]×Rn → R, solution
of the partial differential equation

−∂V
∂t

= min
u1∈U1

min
u2∈U2

max
w∈W

H(t, x,
∂V

∂x
, u1, u2, w) (4)
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with boundary condition:

∀x, V (T, x) = M(x),

where

H(t, x, µ, u1, u2, w) = L+ 〈µ, f〉 ,

is the Hamiltonian of the system (the angled brackets 〈·, ·〉 denote the scalar
product in Rn), then the upper value of the game (3) is V (t0, x0). Moreover,
if the Hamiltonian has a saddle point in (u,w) for all (x, µ), and if there
exist admissible strategies

u(t) = ϕ∗(t, x(t)) =
(
ϕ∗1(t, x(t))
ϕ∗2(t, x(t))

)
, w(t) = ψ∗(t, x(t)) (5)

which are a saddle point of H(t, x, ∂V/∂x, u1, u2, w), then they are optimal.

Hereafter, ϕ∗, ψ∗, together with V , will be referred to as the Isaacs solution.

Standing assumption In the sequel, we shall allways assume that the
Isaacs solution exists and is unique.

3 The state feedback partial team problem

3.1 Statement of the problem

In the problem investigated in this section the players have different infor-
mations about the evolution of the system over time: we shall suppose that
the first player (indicated by subindex 1) can measure only :

y1 = h1(t, x, w) , (6)

while the second one (indicated by subindex 2) has access to exact and
instantaneous state measurement.

For any function a(·) : t → a(t), we shall use the notation aτ for its
restriction to [t0, τ ]. Notice, that with a mild abuse of notations we may
write causality of S as Sτ (x0, u1, u2, w) = Sτ (x0, uτ1 , u

τ
2 , w

τ ).
The admissible strategies are thus of the form:

u1(t) = ϕ1(t, yt1) , u2(t) = ϕ2(t, x(t)). (7)

For arbitrary initial conditions (t0, x0) call disturbances the pairs ω :=
(x0, w) ∈ Ω := R

n × W, and define X0 := R
n. We shall consider sever-

al information structures beyond (7), where x0 ∈ X0 is not known to the
players. This is why we have added the “initial cost” N(x0) in (2).
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The state feedback partial team problem is the following: Under the
information structure (7) find optimal controls for the minimizing players,
guaranteeing

min
ϕ1

min
ϕ2

max
ω

J(t0, x0, ϕ1, ϕ2, w)

J being given by (2).

3.2 Solution via the minimax certainty equivalence principle

We shall consider the system driven by u2(t) = ϕ∗2(t, x). If this strategy is
fixed, then the problem for player 1 is a classical partial information minimax
control problem, as in [2] or [6]. Observe also that the corresponding full
state information minimax control problem for player 1 has ϕ∗1 and V as its
unique solution.

Let the trajectories of this system be denoted by x(·) = S1(x0, u1, w) =
S1(u1, ω), and denote by

Ωτ
1(uτ1 , y

τ
1 ) = {ω ∈ Ω |hτ1(·, S1(u1, ω), w(·)) = yτ1}

the set of ω’s which are compatible with the past observations of the first
player. It is clear that ∀t,Ωt

1 ∈ Ω.
We introduce, following [2] or [6], the auxiliary problem : for every τ ∈

[t0, T ] and for any fixed uτ1 and yτ1 , we define a maximisation problem in ω
as follows. Let

ẋ = f(t, x, uτ1(t), ϕ∗2(t, x), w) , x(t0) = x0 .

For t ∈ [t0, τ ], the state x is now a function of ω, (and more specifically of
its restriction ωτ to [t0, τ ]). Let

G(τ, uτ1 , ω) = V (τ, x(τ)) +
∫ τ

t0

L(t, x(t), u1(t), ϕ∗2(t, x(t)), w(t))dt+N(x0),

The auxiliary problem is to characterize

Ω̂t
1 = arg max

ω∈Ωt1(uτ1 ,y
τ
1 )
G(t, u1, ω) ,

and

X̂1(t) = {x̂1(t) | x̂1(·) = S1(ut1, ω̂) , and ω̂ ∈ Ω̂t
1}.

Following [2, 6], we assume :
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Crucial Assumption. For all pairs (ω, u1, u2) and for all t ∈ [t0, T ], sup-
pose that X̂1 is a singleton [6].

Let therefore X̂1 = {x̂1(t)}. (This does not necessarily imply that Ω̂t
1 is

a singleton.)

Theorem 1. Under the Crucial Assumption above, the pair of optimal con-
trols ϕ∗1(t, x̂1(t)), ϕ∗2(t, x(t)) (ϕ∗i (t, x(t)) being defined by (5)) solves the par-
tial team problem. Moreover

max
ω∈Ω

J(t0, ϕ∗1(t, x̂1(t)), ϕ∗2(t, x(t)), ω) = max
x0∈X0

[V (t0, x0) +N(x0)]. (8)

Proof . Apply the certainty equivalence principle of [2] to the problem ob-
tained replacing everywhere u2 by ϕ∗2(t, x) in the original problem (1)(2)(6).
This yields (8). Now, notice that the value (8) is equal to the Isaacs value,
corresponding to the full information case, and (on the basis of uniqueness
of x̂1(t)) can be presented as:

max
ω∈Ω

J(t0, ϕ∗1(t, x̂1), ϕ∗2(t, x), ω) = V (t0, x̂0
1) +N(x̂0

1). (9)

Hereafter we shall call the strategy û1(t) = ϕ∗1(t, x̂1(t)) the partial team
strategy of the first player.

It is clear that a similar result can be proved for the second player, sup-
posing that the first player has complete knowledge of the system’s evolution
in time, whereas the second one has access only to an output map, other
than (6):

y2 = h2(t, x, w) (10)

The partial team strategy of the second player, solving his or her partial
team problem, will be:

û2(t) = ϕ∗2(t, x̂2(t)) , (11)

x̂2 being generated by a similar auxiliary problem, corresponding to mea-
surement equation (10), well posed for player 2. The value of the game in
this case is also equal to Isaacs’ value and can be presented as:

max
ω∈Ω

J(t0, ϕ∗1(t, x), ϕ∗2(t, x̂2), ω) = V (t0, x̂0
2) +N(x̂0

2). (12)

Denote the worst disturbance in this case by Ω̂2 = (x̂0
2, ŵ2) and by Ω̂t

2 the
set of worst disturbances compatible with the observations of the second
player.
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Notice that x̂1(t) and x̂2(t) are the estimates of the same state variable
x(t) from the viewpoint of two players-minimizers 1 and 2, depending upon
their informations, given by (6) and (10) respectively. As well Ω̂1 and Ω̂2

are the worst disturbances in the corresponding contexts.
One can conclude on the base of (8), (9), (12), that

x̂0
1 = x̂0

2 = arg max
x

[V (t0, x) +N(x)].

4 The full team problem

4.1 A direct analysis

Consider now the case when both players have different imperfect measure-
ments of the state variable (6), (10), i.e. the admissible strategies are of the
form:

u1(t) = ϕ1(t, yt1), u2(t) = ϕ2(t, yt2). (13)

Write, for short, ϕ̂1 for ϕ∗1(t, x̂1) and ϕ̂2 for ϕ∗2(t, x̂2).

The full team problem is the following: Under the information structure
(6),(10),(13), find optimal controls for players-minimizers, guaranteeing

min
ϕ1

min
ϕ2

max
ω

J(t0, x0, ϕ1, ϕ2, w)

J being defined by (2).
We need:

Crucial Assumption. The Crucial Assumption of the partial team prob-
lem for player 1 and the corresponding one for player 2 hold, and in addition,
the functional ω 7→ J(ϕ̂1, ϕ̂2, ω) has a unique local and global maximum
(e.g., it is quasiconcave).

Technical Assumptions.

• The value function in (4) and the optimal strategies ϕ∗ are continu-
ously differentiable with respect to x,

• the optimal controls ui = ϕ∗i (t, x(t)) are interior to the sets Ui along
an optimal trajectory,
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• under the the partial-team strategies, the “worst case” estimates x̂1,
x̂2 satisfy filter-like equations as in [9] :

˙̂xi = f̂i(t, x̂i, yi) (14)

with f̂i continuously differentiable in x̂i.

Remark 1. Such filter like equations were derived in [9] for the case where
the disturbance variable is split into a dynamics disturbance, say w, and ad-
ditive measurement disturbance(s), say yi = hi(t, x) + vi, and the integrand
in the performance index is a sum L = L0(t, x, u, w) + K(t, x, u, v1, v2). A
similar approach can be used to derive filter equations in the more general
setting of this paper, but they would lack the appealing character of Didin-
sky’s filter of [9].

Theorem 2. Under the above two assumptions the pair of control laws ϕ̂1 =
ϕ∗1(t, x̂1), ϕ̂2 = ϕ∗2(t, x̂2) solves the full team problem. Moreover

max
ω∈Ω

J(t0, ϕ̂1, ϕ̂2, ω) = max
x0∈X0

[V (t0, x0) +N(x0)] .

Proof Recall first that the “filter equations” (14) for i = 1, 2 have the
same initial state

x̂0 = arg max
x

[V (t0, x) +N(x)] .

Consider the following system of differential equations:
ẋ = f(t, x, ϕ∗1(t, x̂1), ϕ∗2(t, x̂2), w) , x(t0) = x0 ,
˙̂x1 = f̂1(t, x̂1, y1) , x̂1(t0) = x̂0 ,
˙̂x2 = f̂2(t, x̂2, y2) , x̂2(t0) = x̂0 .

(15)

the following performance index:

J(t0, ω) = M(T, x(T )) +
∫ T

t0

L(t, x, ϕ̂1, ϕ̂2, w)dt+N(x0) (16)

and the goal

max
ω

J(t0, ω). (17)

The system (15), (16), (17) presents a classical optimal control prob-
lem with respect to the control variable w and the initial state x0. Under
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the Technical Assumption it can be investigated via Pontryagin’s maximum
principle [12].

The following notations are accepted below:

∂ϕ∗i
∂x

=
∂ϕ∗i
∂x

(t, x) ,
∂ϕ̂i
∂x̂i

=
∂ϕ∗i
∂x

(t, x̂i) .

Let us write the Hamiltonian and necessary conditions:

H(t, x, x̂1, x̂2, λ, λ̂1, λ̂2, w) = L+ λtf + λ̂t1f̂1 + λ̂t2f̂2 ,

where λ, λ̂1, λ̂2 are the corresponding adjoint variables for x, x̂1, x̂2.
We write the adjoint equations for the maximization problem (17):

−λ̇t = ∂L
∂x + λt ∂f∂x + λ̂t1

∂f̂1

∂y1

∂h1
∂x + λ̂t2

∂f̂2

∂y2

∂h2
∂x ,

− ˙̂
λ
t

1 = ( ∂L∂u1
+ λt ∂f∂u1

)∂ϕ̂1

∂x̂1
+ λ̂t1

∂f̂1

∂x̂1
,

− ˙̂
λ
t

2 = ( ∂L∂u2
+ λt ∂f∂u2

)∂ϕ̂2

∂x̂2
+ λ̂t2

∂f̂2

∂x̂2
,

(18)

and the following boundary conditions:
λ(t0) +

∂N

∂x
(x0) = 0 ,

λ(T )− ∂M

∂x
(T, x(T )) = 0 ,

λ̂i(T ) = 0.

(19)

Pontryagin’s principle [12] claims, that the optimal control ŵ, solving the
problem (15), (16) (17) yields:

max
w

H(x, x̂1, x̂2, λ, λ̂1, λ̂2, w) = H(x, x̂1, x̂2, λ, λ̂1, λ̂2, ŵ). (20)

Denote by x∗(·) the optimal trajectory, i.e. the trajectory generated
from x0 by the strategies ϕ∗i and ψ∗. Then we claim:

Proposition 2. The following solves Pontryagin’s necessary conditions (18)
to (20):

x(t) = x̂1(t) = x̂2(t) = x∗(t) , (21)

λ(t) =
∂V

∂x
(t, x∗(t)) , (22)

λ̂1(t) = λ̂2(t) = 0 , (23)
ŵ(t) = ψ∗(t, x∗(t)) . (24)
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Proof of the proposition Observe that, if indeed the λ̂i’s are zero, then the
first equations in (18) and (19) are the standard adjoint equations associated
with the full information Isaacs equation, and because we have assumed V
to be C1 in x, its gradient solves them along an optimal trajectory. Also,
because we have assumed that the optimal strategies ϕ∗i take their values in
the interior of the control sets Ui, with the proposed solution,

∂L

∂u1
+ λt

∂f

∂u1
= 0 ,

∂L

∂u2
+ λt

∂f

∂u2
= 0 ,

so that the differential equations for λ̂1 and λ̂2 are homogeneous. And their
boundary condition being 0, λ̂i ≡ 0 is indeed a solution. The rest follows
easily: the proposed w indeed maximizes the Hamiltonian.

As a consequence of the proposition, the disturbance generated by ψ∗

solves the optimisation problem (15),(16),(17). Therefore the worst possible
performance index under the proposed strategies for the team players is
again Isaac’s value, and no causal controller can do better.

4.2 An abstract analysis

An abstract view of the last result is as follows. Let J : U ×W → R be a
performance index from two Banach spaces U (here U1×U2) andW into the
real line, with Fréchet derivatives ∂J/∂u and ∂J/∂w, the first one jointly
continuous in (u,w). Let Φ : W → U be a set of admissible strategies for
player 1, (here, causal strategies, or state feedbacks), and Φ̃ a subset of Φ
(here partial information decentralized strategies of the form (13)).

We make the following hypotheses on Φ:

• Φ is a vector space,

• Φ contains the constant maps, i.e. ∀ū ∈ U , the map w 7→ ū, ∀w ∈ W
is in Φ.

Assume there exists ϕ∗ ∈ Φ solution of the problem

min
ϕ∈Φ

sup
w∈W

J(ϕ(w), w) ,

and a unique w∗ solution of the related maximization problem:

J(ϕ∗(w∗), w∗) = max
w∈W

J(ϕ∗(w), w) .
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Lemma 1. We have the following fact:

∂J

∂u
(ϕ∗(w∗), w∗) = 0 .

Proof Let G(ϕ,w) = J(ϕ(w), w), and Ḡ(ϕ) = supw∈W G(ϕ,w). Place
on Φ the topology of the uniform convergence. It is clear that G has a partial
Fréchet derivative in ϕ, given by

∀ψ ∈ Φ ,
∂G

∂ϕ
(ϕ,w) · ψ =

∂J

∂u
(ϕ(w), w) · ψ(w) .

This partial derivative is continuous in (ϕ,w) (still for the topology of the
uniform convergence on Φ). Hence, by Danskin’s theorem [5], everytime the
max in w is reached at a unique point ŵ, there exists

dḠ

dϕ
(ϕ) =

∂G

∂ϕ
(ϕ, ŵ) .

Since ϕ∗ minimizes Ḡ over Φ, and we assumed the maximizing w∗ to exist
and be unique, it comes

0 =
dḠ

dϕ
(ϕ∗) =

∂G

∂ϕ
(ϕ∗, w∗)

Hence, ∀ψ ∈ Φ,

∂J

∂u
(ϕ∗(w∗), w∗) · ψ(w∗) = 0 .

But we have also assumed that constant maps were in Φ. Hence

∀u ∈ U , ∂J

∂u
(ϕ∗(w∗), w∗) · u = 0 ,

whence the claim of the lemma.
We add now a technical assumption: ϕ∗ is differentiable.
Differentiating J(ϕ∗(w), w) at w∗, we deduce easily that in addition to

the above, (∂J/∂w)(ϕ∗(w∗), w∗) = 0.
Let now ϕ̂ ∈ Φ̃ (in our case our set of two partial team strategies togeth-

er) be differentiable, and such that

• ϕ̂(w∗) = ϕ∗(w∗),

• w 7→ J(ϕ̂(w), w) has a unique local and global maximum. (Say, is
quasi-concave).
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Then we have the proposition:

Proposition 3. ϕ̂ solves the problem

min
ϕ∈Φ̃

sup
w∈W

J(ϕ(w), w) .

Proof Clearly, J(ϕ̂(w), w) is stationary at w∗, which suffices to show that
its max in w is J(ϕ̂(w∗), w∗) = J(ϕ∗(w∗), w∗), which is the smallest possible
supw J(ϕ(w), w) for ϕ ranging over Φ, and a fortiori for ϕ ranging over the
subset Φ̃.

This abstract version of our last result only stresses that it is indeed
weak. One could assume that the payoff J with the open loop controls ûi
has only one local and global maximum in ω, and then these open loop
controls would constitute an optimal decentralized strategy. Hence, our
result needs to be complemented by some kind of reciprocal, showing that
if our “partial team” strategies do not succeed, none will, in some sense.
Investigation of this matter is in progress.

5 The linear quadratic case

5.1 The system

Let the system with its observed outputs be

ẋ = Ax+B1u1 +B2u2 +Dw ,

y1 = C1x+ E1w ,

y2 = C2x+ E2w .

We shall assume that the pair (A,D) is stabilizable, that D
E1

E2

 (Dt Et1 E
t
2) =

M 0 0
0 N1 0
0 0 N2


with N1 and N2 positive definite.

Let the performance index be of the form

J = ‖x(T )‖2X +
∫ T

0
(‖x‖2Q + ‖u1‖2R1

+ ‖u2‖2R2
− γ2‖w‖2) dt− γ2‖x0‖2Y .

Assume finally that Q ≥ 0 and that the pair (Q1/2, A) is completely recon-
structible.

Using, for instance, the theory of [2], it is a simple matter to apply the
above theory to that minimax team problem.
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5.2 The Isaacs solution

The above system admits a state feedback minimax control of the form

ϕ∗(t, x) =
(
−F1(t)x
−F2(t)x

)
with Fi = R−1

i Bt
iP (t), i = 1, 2, if, firstly, the Riccati equation

Ṗ + PA+AtP − F t1R1F1 − F t2R2F2 + γ−2PMP +Q = 0 , P (T ) = X
(25)

has no conjugate point, defining the symmetric matrix function P (·) over
[0, T ].

Then, the worst disturbance is given byw(t) = ψ∗(t, x(t)) with ψ∗(t, x) =
γ−2DtP (t)x. The Value function for the game J̃ (i.e. without the initial
term) is V (x0) = ‖x0‖2P (0), so that the minimax of the criterion exists if,
secondly, P (0) − γ2Y < 0. It is known that this last condition can also be
written in terms of Z := Y −1 as ρ(ZP (0)) < γ2.

In accordance with the above theory, the standing assumption will be
that these conditions are fulfilled.

5.3 The partial team problem

Let us now examine our partial team problem. We set u2(t) = ϕ∗2(t, x(t)),
so that the dynamics of the problem at hand are now

ẋ = A1x+B1u1 +Dw ,

with A1 := A−B2F2.
Also, the relevant criterion is

J1 = ‖x(T )‖2X +
∫ T

0
(‖x‖2Q1

+ ‖u1‖R1 − γ2‖w‖2) dt+ ‖x0‖2Y ,

with Q1 := Q+ F t2R2F2.
To apply the theory of [2] to this problem, we should first define a matrix

P1(t) solution of a game Riccati equation written with the sole control u1,
and A and Q replaced by A1 and Q1. We notice however that under the
standing assumption that P exists, this equation has a solution, viz. P (·)
itself. Therefore, the two partial team problems and the full state feedback
control problem share the same P matrix. (Denoted Z in [2]).
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Let us further write the dual Riccati equation of that problem :

Σ̇1 = A1Σ1 + Σ1A
t
1 − Σ1C

t
1N
−1
1 C1Σ1 + γ−2Σ1Q1Σ1 +M , Σ1(0) = Z .

(26)

The crucial assumption for this partial team problem is here that

1. The Riccati equation (26) has no conjugate point over [0, T ],

2. ∀t ∈ [0, T ] , ρ(Σ1(t)P (t)) < γ2.

Then, the “worst” state x̂1(t) is given as the solution of the filter equation

˙̂x1 = AP x̂1 +K1(y1 − C1x̂1) , x̂1(0) = 0 , (27)

with AP := A−B1F1 −B2F2 + γ−2MP and K1 = (I − γ−2Σ1P )−1Ct1N
−1
1 .

The partial team minimax strategy is

u1(t) = −F1(t)x̂1(t) . (28)

5.4 The full team problem

Let us now turn to the full team problem. the maximization problem to
investigate has its state in R3n and is as follows : ẋ

˙̂x1
˙̂x2

 = A

 x
x̂1

x̂2

+Dw ,

 x(0)
x̂1(0)
x̂2(0)

 =

x0

0
0

 ,

with

A =

 A −B1F1 −B2F2

K1C1 AP −K1C1 0
K2C2 0 AP −K2C2

 , D =

 D
K1E1

K2E2

 ,

and the performance index to be maximized by w is

G = ‖x(T )‖2+
∫ T

0
(‖x‖2Q + ‖x̂1‖2F t1R1F1

+ ‖x̂2‖2F t2R2F2
− γ2‖w‖2)dt− γ2‖x0‖2Y .

This maximization problem has a (unique) solution if, firstly, the Riccati
equation for the 3n× 3n block matrix Π = (Πij), i, j = 0, 1, 2 :

Π̇ + ΠA+AtΠ + γ−2ΠDDtΠ +Q = 0 , Π(T ) = diag(X, 0, 0) , (29)

with Q = diag(Q,F t1R1F1, F
t
2R2F2), has no conjugate point over [0, T ], and,

secondly Π00 − γ2Y < 0, or, equivalently, ρ(ZΠ00(0)) < γ2.
Let us summarize:

14



Theorem 3. If

1. The Riccati equation (25) has no conjugate point over [0, T ],

2. The Riccati equations (26) and the similar one reversing the indices 1
and 2 have no conjugate points over [0, T ],

3. ∀t ∈ [0, T ] ρ(Σi(t)P (t)) < γ2, i = 1, 2,

4. The Riccati equation (29) has no conjugate point over [0, T ],

5. ρ(ZΠ00(0)) < γ2,

then the strategies (28) where x̂1(·) is given by (27), and similarly mutatis
mutandis for u2, are team mimnimax optimal.

(The condition on ρ(ZP (0)) has been omitted, because it is implied by
conditions (3) at time zero.)

Writing explicitly the six blocks of Riccati equation (29) is no too nice
to do. It is nevertheless nothing more than an exercise in elementary matrix
calculus. The noteworthy point about it is that it is not difficult to check
on those equations that

Π(t)

II
I

 =

P (t)
0
0

 .

As a consequence, one can check, as should be expected, that if w is set
to the worst disturbance, all three vectors x, x̂1 and x̂2 agree. (Also, absence
of a conjugate point to (29) implies absence of a conjugate point to (25).)
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