Pierre Bernhard,
Jacob Engwerda,
Berend Roorda, Hans Schumacher,
Vassili Kolokoltsov,
Patrick Saint-Pierre, Jean-Pierre Aubin.

The Interval Market Model
in Mathematical Finance:
Game Theoretic Methods

July 18, 2012

Springer
Mathematical finance was probably initiated by Louis Bachelier in 1900, [19]. In his thesis and succeeding contributions, he constructed a stochastic model of stock price processes, essentially inventing the random walk or brownian motion. But this was five years before Einstein investigated the brownian motion, long before Kolmogorov refounded probabilities on sound mathematical grounds, and some basic probabilistic tools were missing. His contribution was labeled un-rigorous, and was consequently not recognized to its true pioneering value.

In contrast, few works in mathematical finance enjoyed the fame, and had the impact, of Black and Scholes’s seminal paper [46]. In a bold move, it took the subjective concept of risk aversion out of the rationale for pricing financial derivatives, grounding such pricing on purely objective considerations.

Objective, though, does not mean that no arbitrariness remains. In line with Bachelier, Black and Scholes theory is based upon an arbitrary choice of mathematical, stochastic model for the underlying stock price, that we shall call “Samuelson’s model”, although some authors trace it back to earlier works.

Samuelson’s model is called a “geometric diffusion”, or “lognormal distribution”. In that model, the price process $S(t)$ is assumed to obey the following Itô stochastic equation:

$$\frac{dS}{S} = \mu dt + \sigma dB,$$

where $\mu$ and $\sigma$ are known, deterministic parameters or time functions, called “drift” and “volatility” respectively, and $B(\cdot)$ a standard Brownian motion (or Wiener process).

Following these prestigious forerunners, most of the literature in mathematical finance relies on Samuelson’s model, although notable exceptions have existed ever since, e.g. [117, 56, 57, 76, 134, 86, 66, 109, 123, 125].

The aim of this volume is to report several accomplishments using another class of models, that we call, after [133], “interval models”. In these models, if $n$ stocks are considered, it is assumed that a compact convex set of $\mathbb{R}^n$ is known, which always contains the vector of relative stock price velocities (in a continuous time setting) or the one step relative changes in prices (discrete time setting). In the scalar
case, corresponding to the classical Black & Scholes problem, and in discrete time, this means that we know two constants $d < 1$ and $u > 1$ —notations used here in reference to [57]— such that, for a given $\delta t > 0$, and for all possible price trajectories

$$S(t + \delta t) \in [dS(t), uS(t)],$$

a line segment. In contrast, Cox, Ross, and Rubinstein [57] assume that

$$S(t + \delta t) \in \{dS(t), uS(t)\},$$

the end points of a line segment. Of course a huge difference in terms of realism, and also of mathematics, even if in some cases, we shall recover some of their results. More generally, in higher dimensional problems, whether discrete or continuous time, this results in a tube of possible trajectories, or “trajectory tube model”.

These “interval models” were introduced independently, and almost simultaneously, by the authors of this volume. We only quote here some early papers as a historical record. A common feature is that, remote from the main stream finance literature, they suffered long delays between their original form and their eventual publication, usually not in finance journals. Beyond Roorda, Engwerda and Schumacher [133] already quoted, whose preprint dates back to 2000, let us mention a 1998 paper by Vassili Kolokoltsov [95] and a paper of 2003 only appeared in 2007 [85], a thesis supervised by Jean-Pierre Aubin defended in 2000 [129] —but a published version [17] waited until 2005— and a conference paper by Pierre Bernhard also in 2000 [37], an earlier form of which [35] only appeared in print in 2003.

If probabilities are the lingua franca of classical mathematical finance, it could be said that, although probabilities are not ruled out of course, the most pervasive tool of the theories developed in this volume is dynamic game theory, in some form. Most developments to be reported here belong to the realm of robust control, i.e. minimax approaches to decision in the presence of uncertainties. These take several forms: the discrete Isaacs’ equation, Isaacs and Breakwell’s geometric analysis of extremal fields, Aubin’s viability approach, Crandall and Lions’ viscosity solutions as extended to differential games by Evans and Souganidis, Bardi and others, Frankowska’s non smooth analysis approach to viscosity solutions, and geometric properties of risk neutral probability laws and positively complete sets.

As a consequence, we shall not attempt to give here a general introduction to dynamic game theory, as different parts of the book use different approaches. We shall attempt to make each part self contained. Nor did we try to unify the notation, although some of these works deal with closely related topics. As a matter of fact, the developments we report here have evolved, relatively independently, over more than a decade. As a result, they have developed independent consistent notation systems. Merging them at this late stage was close to impossible. We shall provide a short “dictionary” between the notations of the parts 2 to 5.

Part I is just an introductory one, aiming to recall, for the sake of reference, two of the most classical results of dynamic portfolio management: Merton’s optimal portfolio and Black and Scholes’ pricing theory, each with a flavor more typical of
this volume than classical textbooks. The Cox, Ross and Rubinstein model will be
presented in detail in part 2, together with the interval model.

Parts II and III mostly deal with the classical problem of hedging one option with
one underlying asset. Part II tackles the problem of incompleteness of the interval
model, introducing the fair price interval, and an original problem of maximizing
the best case profit with a bound on worst case loss. Part III only deals with the
seller’s price — the upper bound of the fair price interval —, but adding transaction
costs, continuous and discrete trading schemes, and the convergence of the latter to
the former, for both Vanilla and Digital options. Both parts deal in some respect with
the robustness of the interval model to errors in the estimation of the price volatility.
Both use a detailed mathematical analysis of the problems at hand: portfolio opti-
mization under a robust risk constraint in part II, the classical option pricing in part
III, to provide a “fast algorithm” solving with two recursions on functions of one
variable a problem whose natural dynamic programming algorithm would deal with
one function of two variables.

It is known that in the approach of Cox, Ross and Rubinstein, the risk neutral
probability associated to the option pricing problem spontaneously appears in a
rather implicit fashion. Part IV elucidates the deep links between the minimax ap-
proach and the risk neutral probability, and exploits this relationship to solve the
problem of pricing so called rainbow options and credit derivatives such as C.D.S.

Part V uses the tools of viability theory, and more specifically the guaranteed
capture basin algorithm, to solve the pricing problem for complex options. The re-
markable fact is that, as opposed to the fast algorithm of part 3, which is specifically
tailored to the problem of pricing a classical option, the algorithm used here is gen-
eral enough that, with some variations, it solves this large set of problems.

There obviously is no claim of unconditional superiority of one model over the
other one, or of our theories over the classical ones. Yet, we claim that these theories
do bring new insight into the problems investigated. On the one hand, they are less
isolated now than they used to be in the early 2000’s, as a large body of literature
has appeared since then applying robust control methods to various fields including
finance, a strong hint that each may have a niche where it is better suited than more
entrenched approaches. On the other hand, and more importantly, we share the belief
that uniform thinking is not amicable to good science. In some sense, two different
— sensible — approaches of the same problem are more than twice better than one,
as they may enlighten each other, be it by their similarities or by their contradictions.
## Notation dictionary

<table>
<thead>
<tr>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Exercise time</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>K</td>
<td>K</td>
<td>Exercise price</td>
</tr>
<tr>
<td>F</td>
<td>M</td>
<td>f</td>
<td>U</td>
<td>Terminal payment</td>
</tr>
<tr>
<td>0</td>
<td>C^+, c^-</td>
<td>β</td>
<td>δ</td>
<td>Transaction costs rates</td>
</tr>
<tr>
<td></td>
<td>S_0 = R S_0(T)</td>
<td>j ∈ {1,...,J}</td>
<td>S_0</td>
<td>Riskless bonds price</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Asset (upper) index</td>
</tr>
</tbody>
</table>

### Continuous time

#### Constants

- $\mu_0$  
- $\tau^- + \mu_0$  
- $\tau^+ + \mu_0$

#### Time functions

<table>
<thead>
<tr>
<th>$t \in [0,T]$</th>
<th>$t \in [0,T]$</th>
<th>$t \in [0,T]$</th>
<th>Current time</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>S</td>
<td>S</td>
<td>Risky asset price</td>
</tr>
<tr>
<td>R = S_0/S_0(T)</td>
<td>$S = R u$</td>
<td>$S = R v$</td>
<td>Portfolio exposure</td>
</tr>
<tr>
<td>$v = \varphi^*(t,u)$</td>
<td>$E = E^*(t,W)$</td>
<td>$Y = \rho_0$</td>
<td>Optimal hedging strategy</td>
</tr>
<tr>
<td>$X$</td>
<td>$p$</td>
<td># of risky shares in —</td>
<td></td>
</tr>
<tr>
<td>$R w$</td>
<td>$W$</td>
<td>Portfolio worth</td>
<td></td>
</tr>
<tr>
<td>$R W$</td>
<td>$W^*$</td>
<td>Optimal portfolio worth</td>
<td></td>
</tr>
</tbody>
</table>

### (Control) Impulses (Triggered)

- $t_k$  
- $\xi_k$  

#### Impulse times

- $n$  
- $\psi(x) - x$

### Discrete time

#### Constants

- $h$  
- $n$  
- $\rho = 1 + r \tau$

#### Time functions

| $t_i = jh$ | $t_k = kh$ | $m$ | $i_n = np$ | Current time |
| $S_j$  | $S_k = R_k u_k$ | $S^n$ | $i_n = np$ | Risky asset price |
| $\psi$ | $1 + \tau_0$ | $\xi^j$ | $1 + r^n$ | One step S ratio |
| $Y_j$ | $X_k$ | $\gamma_0$ | Risky shares in portfolio |
| $\psi_j = g_j(S_j)$ | $v_k = \varphi_k(u_k)$ | $\phi_n$ | Hedging strategy |
| $R_k w_k$ | $X_n$ | $W^n$ | Portfolio worth |
Contents

Part I Revisiting two classical results in dynamic portfolio management

1 Merton’s Optimal Dynamic Portfolio Revisited .......................... 5
  1.1 Merton’s Optimal Portfolio Problem ................................. 5
  1.1.1 Problem and Notation ........................................... 5
  1.1.2 Solution ....................................................... 8
  1.1.3 Logarithmic Utility Functions .................................. 10
  1.2 A Discrete Time Model ............................................. 11
  1.2.1 Problem and Notation ........................................... 12
  1.2.2 Solution ....................................................... 13
  1.2.3 Market Models ............................................... 17

2 Option pricing: classical results ......................................... 19
  2.1 Introduction ...................................................... 19
  2.2 Problem Formulation ............................................... 21
  2.3 The Stop Loss Strategy ............................................ 22
  2.4 The Black and Scholes Theory .................................... 23
    2.4.1 Black and Scholes’ Equation ............................... 23
    2.4.2 Proof of the Lemma ....................................... 24
  2.5 Digital Options ................................................... 27

Part II Hedging in Interval Models

3 Introduction .............................................................. 33
  3.1 Why Hedging ...................................................... 33
  3.2 A Simplistic Hedging Scheme: the Stop-Loss Strategy .......... 35
  3.3 Risk-free Hedging in the Binomial Tree Model .................. 36
  3.4 Relationship with the Continuous-time Black-Scholes-Merton Model ....................................................... 40
  3.5 Risk Assessment Models .......................................... 43
    3.5.1 Current Models ............................................. 43
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.2</td>
<td>The Interval Model</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>Fair Price Intervals</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>The Fair Price Interval of an Option: the General Discrete-time Case</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>Fair Price Intervals in Interval Models</td>
<td>49</td>
</tr>
<tr>
<td>4.2.1</td>
<td>The Fair Price Interval</td>
<td>50</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Characterization of the Fair Price Interval in Terms of Strategies</td>
<td>51</td>
</tr>
<tr>
<td>4.2.3</td>
<td>An Example</td>
<td>53</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Characterization of the Fair Price Interval in Terms of Martingale Measures</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Computation of the Fair Price Interval for Path Independent Strategies</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Worst-case Analysis</td>
<td>59</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Introduction</td>
<td>60</td>
</tr>
<tr>
<td>4.4.2</td>
<td>A Non-extremal Path with Worst-case Cost</td>
<td>61</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Worst-cases in Interval Models Versus Tree Models</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>Optimal Hedging Under Robust Cost Constraints</td>
<td>67</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>67</td>
</tr>
<tr>
<td>5.2</td>
<td>The Effect of the Cost Constraint on Admissible Strategies</td>
<td>68</td>
</tr>
<tr>
<td>5.3</td>
<td>Calculating Maximal Profit Under a Cost Constraint</td>
<td>69</td>
</tr>
<tr>
<td>5.4</td>
<td>Extensions</td>
<td>74</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Loss/Profit Ratio</td>
<td>75</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Maximal Expected Profit Under a Cost Constraint</td>
<td>76</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>Appendix: Proofs</td>
<td>81</td>
</tr>
<tr>
<td>Part III</td>
<td>Robust Control Approach to option Pricing</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Continuous and Discrete Time Option Pricing and Interval Market Model</td>
<td>95</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>95</td>
</tr>
<tr>
<td>7.1.1</td>
<td>A New Theory of Option Pricing ?</td>
<td>96</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Related Contributions</td>
<td>97</td>
</tr>
<tr>
<td>7.2</td>
<td>Modeling</td>
<td>98</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Contingent Claims</td>
<td>98</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Market</td>
<td>99</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Portfolio</td>
<td>101</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Hedging</td>
<td>103</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Conclusion: a Minimax Dynamic Game</td>
<td>105</td>
</tr>
<tr>
<td>7.3</td>
<td>Extensions</td>
<td>107</td>
</tr>
<tr>
<td>7.3.1</td>
<td>American Options</td>
<td>107</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Delayed Information</td>
<td>108</td>
</tr>
</tbody>
</table>
8 Vanilla Options ............................................ 109
  8.1 Introduction and Main Results ....................... 109
     8.1.1 Vanilla Options .................................. 109
     8.1.2 Terminal Payment .................................. 110
     8.1.3 Main Results ................................... 112
     8.1.4 The Joshua Transformation and the DQVI .......... 116
  8.2 Geometric Approach .................................. 120
     8.2.1 Geometric Formulation .............................. 120
     8.2.2 Primary Field and Dispersal Manifold $D$ ........ 123
     8.2.3 Equivocal Manifold $E$ ............................. 130
     8.2.4 Focal Manifold $F$ .................................. 134
     8.2.5 Synthesis: the Representation Formula ........... 141
  8.3 Viscosity Solution .................................... 143
     8.3.1 Uniqueness ....................................... 143
     8.3.2 Verification of the Representation Formula ....... 153
  8.4 Discrete Trading and Fast Algorithm ................. 156
     8.4.1 Dynamic Programming and Algorithms ............ 156
     8.4.2 Convergence ...................................... 161

9 Digital Options .......................................... 165
  9.1 Introduction and Main Results ...................... 165
     9.1.1 Digital Options ................................... 165
     9.1.2 Main Results .................................... 166
  9.2 Geometric Approach .................................. 171
     9.2.1 Trivial Regions ................................... 171
     9.2.2 Region of Interest ................................ 173
     9.2.3 Synthesis ......................................... 182
  9.3 Viscosity Solution .................................... 184
     9.3.1 The Discontinuity ................................ 184
     9.3.2 Continuous Regions ................................. 187
  9.4 Discrete Trading and Algorithms .................... 190
     9.4.1 Algorithms ....................................... 190
     9.4.2 Convergence ...................................... 192

10 Validation ............................................. 195
  10.1 Numerical Results and Comparisons ................. 195
     10.1.1 Numerical Computations ......................... 195
     10.1.2 Numerical Comparison with Black and Scholes .... 197
     10.1.3 Explaining the volatility smile ? .................. 198
  10.2 Compared Strengths and Weaknesses ................. 200
     10.2.1 Strict Mathematical Properties ................. 200
     10.2.2 Robustness ...................................... 201
  10.3 Conclusion ........................................... 207

Part IV Game-theoretic analysis of rainbow options in incomplete markets
## Contents

11 Introduction ................................................................. 213  
11.1 Introduction to the Game Theoretic Pricing .................. 213  
11.2 Related Works ......................................................... 214  

12 Emergence of risk-neutral probabilities ................................. 217  
12.1 Geometric risk-neutral probabilities and their extreme points ... 217  
12.2 Game-theoretic origin of risk-neutral laws: preliminaries ......... 223  
12.3 Game-theoretic origin of risk-neutral laws: main result ........... 229  
12.4 Nonlinear extension ..................................................... 232  
12.5 Infinite-dimensional setting and finite-dimensional projections ... 236  
12.6 Extension to a random geometry ...................................... 238  
12.7 Mixed strategies with linear constraints ......................... 240  

13 Rainbow options in discrete-time, I ................................... 245  
13.1 Colored European options as a game against Nature ............ 245  
13.2 Non-expansion and homogeneity of solutions .................... 250  
13.3 Sub-modular payoffs: two colors .................................... 250  
13.4 Sub-modular payoffs: three and more colors ..................... 252  
13.5 Transaction costs ....................................................... 254  

14 Rainbow options in discrete-time, II .................................. 257  
14.1 Rainbow American options and real options .................... 258  
14.2 Path dependence and other modifications ....................... 259  
14.3 Upper and lower values for intrinsic risk ....................... 261  
14.4 Cash-back methodology for dealing with intrinsic risk .......... 262  
14.5 Degenerate or random geometry of non-simultaneous jumps ... 263  
14.6 Stochastic interest rates and stochastic volatility ............... 265  
14.7 Identification of pre-Markov chains ............................... 266  

15 Continuous-time limits .................................................... 269  
15.1 Nonlinear Black-Scholes equation ................................. 269  
15.2 An example with two colors ......................................... 271  
15.3 Transaction costs in continuous time ............................. 274  
15.4 Models with stochastic volatility ................................... 276  
15.5 Fractional dynamics .................................................... 277  

16 Credit derivatives ........................................................... 279  
16.1 Basic model with no simultaneous jumps ......................... 279  
16.2 Simultaneous jumps: completion by tranching ................. 282  
16.3 Mean-field limit, fluctuations and stochastic LLN ................ 283  

Part V Viability Approach to Complex Options Pricing and Portfolio Insurance
17 Computational Methods Based on the Guaranteed Capture Basin Algorithm ........................................ 289
  17.1 The Guaranteed Capture Basin Method for Evaluating Portfolios ........................................... 289
      17.1.1 Classical Option Evaluation ........................................ 289
      17.1.2 Limits of Classical Evaluation Methods ......................... 290
  17.2 The Dynamical System underlying Financial Instruments ......................................................... 291
      17.2.1 State and control variables ....................................... 291
      17.2.2 Viability Constraints and Target ................................. 291
      17.2.3 Uncertainty of the Environment ................................. 292
      17.2.4 The Differential and Discrete Games describing the Portfolio Evolution .......................... 294
      17.2.5 The Guaranteed Capture Basin Algorithm ..................... 296
      17.2.6 Approximation of the Valuation Function ...................... 296
      17.2.7 Implementing the Guaranteed Capture Basin Method for Evaluating a European Call ............ 297
  17.3 Extension of the Capture Basin Methods for evaluating complex instruments ............................ 299
      17.3.1 Taking into account transaction costs and constraints .......... 299
      17.3.2 Approximation of the Valuation Function in the presence of transaction costs ................ 301
      17.3.3 Bermuda and Capped-Style Options, two Examples of Constrained and Multi-Target problems .......... 303
  17.4 Evaluation of Complex Financial Instruments using Impulse Systems ........................................ 305
      17.4.1 Hybrid Dynamical Systems and Viability Concepts ............ 306
      17.4.2 The Guaranteed Hybrid Capture Basin Algorithm ............. 307
      17.4.3 Evaluation of Barrier Options ................................... 307
      17.4.4 Evaluation of Options Using NGARCH Uncertainty Correction and in the Presence of Transaction Costs .......... 310

18 Asset Liability Insurance Management (ALIM) for Risk Eradication ................................................. 315
  18.1 Introduction ................................................................. 315
  18.2 The VPPI in the Summer 2011 Crisis .................................... 321
      18.2.1 Inputs ........................................................... 321
      18.2.2 Outputs .......................................................... 323
      18.2.3 Flow Chart of the VPPI Software ............................... 326
  18.3 Uncertainties ............................................................. 327
      18.3.1 Stochastic Uncertainty .......................................... 328
      18.3.2 Tychastic Uncertainty .......................................... 329
      18.3.3 Historic Differential Inclusions .............................. 330
      18.3.4 Nature and Measures of Insurance ............................. 331
  18.4 Comparisons between the VPPI and the CPPI ................................................................. 332

References ................................................................. 333