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Abstract

The so-called “interval model” for security prices, together with a robust control ap-
proach, allows one to construct a consistent theory of option pricing, including dis-
crete time trading and arbitrary transaction costs. In this context, a new representation
theorem for the viscosity solution of the relevant Isaacs (differential) quasivariational
inequality leads to simple formulas and fast numerical algorithms to compute a hedg-
ing portfolio. We argue that in spite of a less satisfactory market model, the overall
theory is not much less realistic than the classical Black and Scholes theory, but rather,
it only shifts from the portfolio model to the market model the place where the model
is violated when sudden large price changes occur on the market.
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1 Introduction

1.1 The robust control approach to option pricing

In [6, 8], and [10]1, we introduced a robust control approach to option pricing, and
more specifically to the design of a hedging portfolio and managment strategy, using
the so called “interval model” for the market.

The main claims of that new approach are on the one hand the possibility of con-
structing a consistent theory of hedging portfolios with either continuous or discrete
time trading paradigms, the former being the limit of the later for vanishing time steps,
with one and the same market model, and on the other hand to accomodate transaction
costs in a natural way, with a non trivial hedging portfolio.

We postpone until the last section the discussion of the drawbacks of the “interval
model” as compared to the classical Samuelson geometric diffusion. But we dispell at
once one criticism, that it does not make use of probabilistic knowledge on the price
trajectories. Indeed, we have shown [6] that the theory of Black and Scholes actually
does not need it either, the volatility appearing only as a measure of the (non)regularity
of the admissible trajectories.

Here, after summarizing the previous results, we show a new representation of the
solution of the problem at hand —and thus of the pricing function— in terms of the
solution of a pair of simple coupled first order linear PDEs in two variables. This
yields a fast algorithm to compute both the equilibrium price and the hedging strategy,
thus alleviating the computational complexity that could heretofore be considered a
drawback of that approach.

1.2 Related contributions

Among previous attempts at using this type of model, let us quote the following.
McEneaney [22] attempts to replace the stochastic framework with a robust control

approach. He derives the so called “stop loss” strategy for bounded variation trajec-
tories. He also attempts to recover the Black and Scholes theory, but this is done at
the price of artificially modifying the portfolio model with no other justification than
recovering the Ito calculus and Black and Scholes’PDE.

In [6], we recover both the stop-loss strategy and the complete Black and Scholes
theory without any probability in the model, without having to artificially modify the
portfolio model, simply by choosing carefully the set of admissible underlying stock
price trajectories, and using a weak version of a lemma of Föllmer [19].

Aubin and co-workers [25, 3] have also adopted the robust control approach (they
call it “tychastic” approach), with a market model which is a more general version of
our model. Saint-Pierre [28] has done efficient implementations of that theory with
exactly the interval model that we use below. A similar approach was used by Olsder

1a much revised version of that conference paper is currently submitted for publicaton
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[24]. And very similar ideas have been developped by Dupire [18] in the context of
what he calls “dominance” theory.

The phrase “interval model” we took from Roorda, Engwerda and Schumacher
[26, 27] where the authors adopt a viewpoint close to that of robust control.

1.3 Paper outline

In the next section, we present the interval model, both in the continuous trading for-
malism and in its discretized form, and the portfolio model we adopt, which includes
transaction costs and closing costs at will, the final closing being made either in kind
or in cash.

Section 3 is devoted to the continuous trading problem. We recall the main results
we have obtained so far stressing the case of simple call and put. Next we show a new
representation theorem of the solution of the pricing problem. The complete proof of
this theorem, and its main use, relies on results of the next section. We also investigate
the optimal trading strategies, which have a simple form.

In section 4, we investigate the discrete trading theory. We provide a new very fast
algorithm to compute the equilibrium price. And as we have a convergence theorem
of the discrete trading equilibrium price toward the continuous trading one as the time
step vanishes [10], this is also a discretization algorithm for the continuous problem.

Finally, having displayed what can be achieved with this new model, we discuss
in the final section its relative strengths and weaknesses compared with the classical
Black and Scholes theory.

2 Interval model

2.0 Riskless interest rate

We asume a fixed, known, riskless interest rateρ characteristic of that economy. In a
classical fashion, all monetary values will be assumed to be expressed in end-time value
computed at that fixed riskless rate, so that, without loss of generality, the riskless rate
can be taken as (seemingly) zero. (It reappears in the theory of American options, but
we have not covered it here for lack of space.)

2.1 Market

We share with Roorda et al. [26, 27] the view that a market model is a setΩ of possible
price trajectories. Our model is defined by two real numbersτ− < 0 andτ+ > 0,
andΩ is the set of all absolutely continuous functionsu(·) such that for any two time
instantst1 andt2,

eτ−(t2−t1) ≤ u(t2)
u(t1)

≤ eτ+(t2−t1) . (1)

The notationτε will be used to handle bothτ+ and τ− at a time. Hence, in that
notation, it is understood thatε ∈ {−,+}, sometimes identified to{−1,+1}.
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In the continuous trading theory, we shall use the equivalent characterization

u̇ = τu , τ ∈ [τ−, τ+] . (2)

In that formulation,τ(·) is a measurable function, which plays the role of the “control”
of the market. We shall letΨ denote the set of measurable functions from[0, T ] into
[τ−, τ+]. It is equivalent to specify au(·)∈Ω or a(u(0), τ(·))∈R+ × Ψ. This is an
a priori unknown time function. The concept of non anticipative strategies embodies
that fact.

In the discrete trading theory, we shall callh our time step withT = Kh, K an
integer.2 The hypothesis (1) translates into3

u(t + h) ∈ [eτ−hu(t), eτ+hu(t)] .

For convenience, we let

u(t + h) = (1 + τ(t))u(t) , τ(t) ∈ [τ−h , τ+
h ] (3)

with
τε
h = eτεh − 1 , ε = ± . (4)

Alternatively, we shall write, for any integerk, u(kh) = uk, so that (3) also reads

uk+1 = (1 + τk)uk , τk ∈ [τ−h , τ+
h ] . (5)

and we letΨ denote the set of such sequences{τk}.
The case whereh goes to zero will be of interest also. But, contrary to the classical

limit process in the Cox Ross Rubinstein theory, we keep the underlying continuous
time model, hence hereτ+ andτ−, fixed. Thenτε

h behaves ashτ ε.

2.2 Portfolio

A (hedging) portfolio will be composed of an amountv (in end-time value) of under-
lying stock, and an amounty of risklessbonds, for a total worth ofw = v + y. In the
normalized (or end-value) representation, the bonds are seemingly with zero interest.

2.2.1 buying and selling

We letξ(t) be the buying rate (a sale ifξ(t) < 0), which is the trader’s control. There-
fore we have, in continuous time

v̇ = τv + ξ . (6)

However, there is no reason to restrict the buying/selling rate, so that there is no bound
onξ. To avoid mathematical ill posedness, we explicitly admit “infinite” buying/selling

2ThisK should not be mistaken with the strike, the confusion does not seem possible.
3andnot u(t + h) ∈ {eτ−hu(t), eτ+hu(t)} as in the Cox Ross Rubinstein theory.
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rate in the form of instantaneous block buy or sale of a finite amount of stock, at time
instants chosen by the trader together with the amount. Thus the control of the trader
also involves the choice of finitely many time instantstk and trading amountsξk, and
the model must be augmented with

v(t+k ) = v(tk) + ξk , (7)

meaning thatv(·) has a jump discontinuity of sizeξk at timetk. Equivalently, we may
keep formula (6) but allow for impulsesξkδ(t− tk) in ξ(·).

We shall therefore letξ(·) ∈ Ξ, the set of real time functions (or rather distributions)
defined over[0, T ] which are the sum of a measurable functionξc(·) and a finite number
of weighted translated Dirac impulsesξkδ(t− tk).

2.2.2 Transaction costs

We assume that there are transaction costs. In this paper, we assume that they are
proportional to the transaction amount. But we allow for different proportionality co-
efficients for a buy or a sale of underlying stock. Hence letC+ be the cost coefficient
for a buy, and−C− for a sale, so that the cost of a transaction of amountξ is Cεξ with
ε = sign(ξ). We have chosenC− negative, so that, as it should, that formula always
gives a positive cost.

We shall use the convention that when we writeCε(expression), and except if
otherwise specified, the symbolε in Cε stands for the sign of theexpression.

Our portfolio will allways be assumedself financed, i.e. the sale of one of the
comodities, underlying stock or riskless bonds, must exactly pay for the buy of the
other oneand the transaction costs. It is a simple matter to see that the worthw of the
portfolio then obeys

ẇ = τv − Cεξ , (8)

and at jump instants,
w(t+k ) = w(t−k )− Cεkξk (9)

This is equivalent to

w(t) = w(0) +
∫ t

0

(τ(s)v(s)− Cεξ(s)) ds−
∑

k|tk<t

Cεkξk . (10)

2.2.3 Discrete trading

The discrete trading case can be seen as a sequence of jumps at prescribed time instants
tk = kh, k ∈ N, and leads to (writinguk, vk, wk for u(kh), v(kh), w(kh))

vk+1 = (1 + τk)(vk + ξk) , (11)

wk+1 = wk + τk(vk + ξk)− Cεkξk . (12)
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We shall use the explicit form

wn = w0 +
n−1∑
k=0

(τk(vk + ξk)− Cεkξk) . (13)

A dynamic portfoliowill be a pair of time functions(v(·), w(·)), whether time is
continuous or discrete, also denoted({vk}, {wk})k∈N in the later case.

2.3 Hedging

2.3.1 Strategies

Let us assume for simplicity that we always consider thatv(0) = 0. Then, formally,
admissible hedging strategies will be functionsϕ : Ω → Ξ which enjoy the property
of being nonanticipative :

∀(u1(·), u2(·)) ∈ Ω× Ω, [u1|(0,t) = u2|(0,t)] ⇒ [ϕ(u1(·))|[0,t] = ϕ(u2(·))|[0,t]]

(It is understood here that the restriction ofδ(t− tk) to a closed interval not containing
tk is 0, and its restriction to a closed interval containingtk is an impulse.)

In practice, we shall find optimal hedging strategies made of a jump at initial time,
followed by a state feedback lawξ(t) = φ(t, u(t), v(t)).

In discrete time, the situation is much simpler. We only need a nonanticipative
strategyϕ : Ω → RT giving ξk = ϕk(u0, u1, . . . , uk). Again, we shall find it in the
form of a state feedbackξk = φk(uk, vk).

Yet, these are only nonanticipative laws, the equivalent of stochastic adapted strate-
gies. We have shown in [10] how to handlestrictly non anticipative strategies, the
equivalent of the stochastic predictable strategies.

We shall callΦ the set of admissible trading strategies.

2.3.2 Closing costs

The idea of a hedging portfolio is that at exercize time, the writer is going to close
off its position after abiding by its contract, buying or selling some of the underlying
stock according to the necessity. We assume that it sustains proportional costs on this
final transaction. We allow for the case where these costs would be different from the
running transaction costs because compensation effects might lower them, and also
to allow for the case without closing costs just by making their rate 0. Let therefore
c+ ≤ C+ and − c− ≤ −C− be these rates.

It is a simple matter to see that, in order to cover both cases where the buyer does or
does not exercize its option, the portfolio worth at final time should beN(u, v) given
for a call and a closure in kind by

N(u, v) = max{cε(−v) , u−K + cε(u− v)} , (14)

where the notation convention forcε(expression) holds. (And we expect that on a
typical optimum hedging portfolio for a call,0 ≤ v(T ) ≤ u(T ).)
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In the case of a put, we need to replace the above expression by

N(u, v) = max{cε(−v) , K − u + cε(−u− v)} , (15)

with − u(T ) ≤ v(T ) ≤ 0.
The case of a closure in cash is similar, but leads to less appealing mathematical

formulas in later developments. The details can be found in [9].

2.3.3 Hedging portfolio

An initial portfolio (v(0), w(0)) and an admissible trading strategyϕ together with a
price historyu(·) generate a dynamic portfolio. We set :

Definition 2.1 An initial portfolio (v(0) = 0, w(0) = w0) and a trading strategyϕ
constitute ahedgeat u0 if for anyu(·) ∈ Ω such thatu(0) = u0, (equivalently, for any
admissibleτ(·)), the dynamic portfolio thus generated satisfies

w(T ) ≥ N(u(T ), v(T )) . (16)

Now, we may use (10) at timeT to rewrite this

∀τ(·) ∈ Ψ , N(u(T ), v(T )) +
∫ T

0

(
−τ(t)v(t) + Cεξ(t)

)
dt−

∑
k

Cεkξk − w0 ≤ 0 .

This in turn is clearly equivalent to

w0 ≥ sup
τ(·)∈Ψ

[
N(u(T ), v(T )) +

∫ T

0

(
−τ(t)v(t) + Cεξ(t)

)
dt−

∑
k

Cεkξk

]
.

We further set

Definition 2.2 Theequilibrium priceof the option atu0 is the worth of the cheapest
hedging portfolio atu0.

The equlibrium price atu0 is therefore

inf
ϕ∈Φ

sup
τ(·)∈Ψ

[
N(u(T ), v(T )) +

∫ T

0

(
−τ(t)v(t) + Cεξ(t)

)
dt−

∑
k

Cεkξk

]
, (17)

where it is understood thatv(0) = 0, and thatξ(·) = ϕ(u0, τ(·)).
In the case of discrete trading, we get similarly as the equilibrium price atu0

min
ϕ∈Φ

sup
{τk}∈Ψ

[
N(uK , vK) +

K−1∑
k=0

(
−τk(vk + ξk)− Cεkξk

)]
. (18)
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3 Continuous trading

3.1 The differential game

We are therefore led to the investigation of the impulse control differential game whose
dynamics are given by (2,6,7), and the criterion by (17). In a classical fashion we
introduce its Isaacs Value function

W (t, u, v) =

inf
ϕ∈Φ

sup
τ(·)∈Ψ

N(u(T ), v(T ))+
∫ T

t

(
−τ(s)v(s)+Cεξ(s)

)
ds +

∑
k|tk≥t

Cεkξk

 (19)

where the dynamics are integrated fromu(t) = u, v(t) = v. Hence the equilibrium
price isW (0, u(0), 0).

There are new features in that game, in that, on the one hand, impulse controls
are allowed, hence a Isaacs quasi-variational inequality (or QVI, see Bensoussan and
Lions (1982)) should be at work, but on the other hand, impulse costs have a zero
infimum. As a consequence, that QVI is degenerate, and no general result is available.
In Bernhard et al. (2002), we introduce the so-called “Joshua transformation” that let
us show the following fact:

Theorem 3.1 The functionW defined by (19) is a continuous viscosity solution of the
following “differential quasi-variational inequality”:

0 = min

{
∂W

∂t
+ max

τ∈[τ−,τ+]
τ

[
∂W

∂u
u +

(
∂W

∂v
− 1
)

v

]
,

∂W

∂v
+ C+ , −

(
∂W

∂v
+ C−

)}
,

W (T, u, v) = N(u, v) .

(20)

This PDE in turn lends itself to an analysis, either along the lines of the Isaacs-Breakwell
theory through the construction of a field of characteristics (see [10]), or using the the-
ory of viscosity solutions and the representation theorem as outlined hereafter. The
solution we seek is further charcaterized by its behaviour at infinity. Yet its uniqueness
does not derive from the classical results on viscosity solutions. We must therefore
rely on the fact that the viscosity solution we exhibit has the necessary regularity for
the Isaacs Breakwell theory to apply, charctarizing it as the value of the game.

3.2 Simple call or put

3.2.1 Equilibrium price

We give here a new theory of that equation (20). We introduce two functionsv̌(t, u),
a representation of the singular manifold, andw̌(t, u), the restriction ofW to that
manifold, handled jointly as

V(t, u) =
(

v̌(t, u)
w̌(t, u)

)
.
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That pair of functions is entirely defined by a linear partial differential equation that
involves the following two matrices (q− andq+ are defined hereafter (22)):

S =
(

1 0
1 0

)
, and T =

1
q+ − q−

(
τ+q+ − τ−q− τ+ − τ−

− (τ+ − τ−)q+q− τ−q+ − τ+q−

)
,

and which seems to play a very important role in the overall theory. Namely:

Vt + T (Vuu− SV) = 0 . (21)

The definitions ofq+ and q−, as well as the terminal conditions atT for (21),
depend on the type of option considered. For a simple call or put, and a closure in kind,
we have

q−(t) = max{(1 + c−) exp[τ−(T − t)]− 1 , C−} ,
q+(t) = min{(1 + c+) exp[τ+(T − t)]− 1 , C+} .

(22)

Notice thatqε = Cε for t ≥ tε, with

T − tε =
1
τε

ln
1 + Cε

1 + cε
, (23)

The terminal conditions are given, for a call, by

Vt(T, u) =


( 0 0 ) if u <

K

1 + c+
,

(1 + c+)u−K

c+ − c−
( 1 − c− ) if

K

1 + c+
≤ u <

K

1 + c−
,

(u u−K ) if u ≥ K

1 + c−
.

(24)

and symmetric formulas for a put. (All combinations Call/Put, closure in kind/in cash
are detailed in [9])

We claim the following fact (first conjectured in [7])

Theorem 3.2 The functionW defined by (19) is given by

W (t, u, v) = w̌(t, u) + qε(v̌(t, u)− v) , ε = sign(v̌ − v) , (25)

whereqε is given by formula (22) (for a simple call or put), and(v̌ w̌) = Vt is given by
(21) and the terminal conditions (24) for a call (and symmetrical formulas for a put).

The proof is done by checking that the function (25) is indeed the viscosity solution
of (20). The complete proof is rather lengthy as it involves checking the viscosity
condition on many manifolds where∇W may be discontinuous. The main ingredients
of the proof are given in appendix.

It can also be shown that the solution of (21) is non trivial only in the region where
the option may end either in the money or out of the money, i.e. the region

Ke−τ+(T−t) ≤ u ≤ Ke−τ−(T−t) . (26)

Outside of this region, it keeps the form of the terminal condition.
Let us add that numerical integration supports that claim with great accuracy.
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Corollary 3.2.1 The equilibrium price of a call išw(0, u0) + q+(0)v̌(0, u0), with v̌
andw̌ initialized as in (24). (And symmetrically for a put.)

The general appearance of the equilibrium price as a function ofu(0) is very similar
to that of the cassical Black and Scholes theory (a theorem of the next section will make
that clearer), but of course slightly larger because of the transaction costs. Some curves
are published in [6]

3.2.2 Optimal trading strategy

The optimal trading strategy isξ = 0 (do no trading) as long asw ≥ W (t, u, v). When
w = W (t, u, v), it is defined in terms ofε = sign(v̌(t, u) − v) and isξ = 0 if t ≥ tε,
a positive jump towardšv if ε = +1 andt < t+, a negative jump towardšv if ε = −1
andt < t−. On the manifoldv = v̌, we have shown that there is a control, depending
on τ , that keepsw(t) on or “above” the graph ofW .

The dependence of the controlξ(t) on the instantaneous rateτ(t) is undesirable.
It is not implementable as such and is not an admissible causal strategy. (Accepting
such strategies would create arbitrage opportunities.) However, the convergence theo-
rem of [10], recalled in the next section provides a practical solution: use the discrete
time theory with whatever time step is feasible. It gives an exact (within our model)
admissible hedging strategy for a portfolio value close to the optimum one.

4 Discrete trading

4.1 The multistage game

In the case of discrete trading, we have to investigate the game whose dynamics are
given by equations (5),(11) and the criterion by (18). This is a completely classical
dynamic game. LetWh(kh, u, v) = Wh

k (u, v) be its Isaacs Value function. We imme-
diatly obtain its Isaacs equation and the theorem

Theorem 4.1 The Value functionWh is given by the recursion

∀k < K,∀(u, v) , Wh
k (u, v) =

min
ξ

max
τ∈[τ−h ,τ+

h ]
[Wh

k+1((1+τ)u, (1+τ)(v+ξ))− τ(v + ξ) + Cεξ],

∀(u, v) , Wh
K(u, v) = N(u, v) .

(27)

Finally, the main theorem of [10], and a central result in that theory, is the following
convergence theorem. LetWh(t, u, v) be the function obtained by linear interpolation
in time betweenWh

k (u, v) andWh
k+1(u, v) with t ∈ [kh, (k + 1)h].

Theorem 4.2 The functionsWh converge uniformly on every compact towards the
functionW (of the continuous trading theory) when the steph goes to zero (in a dyadic
fashion :h = T/(2n), n →∞).
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Optimal hedging strategy An important consequence of this theorem is that, even
if we are almost in a “continuous trading” situation, the optimal portfolio and trading
strategy can be approached by a discrete trading strategy. However, the optimal discrete
trading strategy doesnot make use ofτk to computeξk. Thus alleviating the problem
of the dependence of the optimal strategy onτ in the continuous time theory.

As a matter of fact, one computes a sequence ofv̌h
k (u) (see next paragraph), and

let ε = sign(v̌h
k (uk) − vk). The optimal discrete time hedging strategy is just to do

nothing if tk ≥ tε, (see (23)) —but for most realistic value of the parameters, this is
immaterial becauseT − tε < h—, and for all other discrete time instants, jump to
v = v̌h

k (uk), which therefore plays the role of an optimum portfolio composition.

4.2 A fast algorithm

We propose here a new fast algorithm to compute the solution of (27), which, in view
of the above theorem (4.2), also yields a fast algorithm to approximate a solution of
the continuous trading problem. It can be viewed as a particular difference scheme for
(21).

Define the following recursion,

qε
K = cε ,

qε
k+ 1

2
= (1 + τε

h)qε
k+1 + τε

h ,

qε
k+1 = ε min{εqε

k+ 1
2

, εCε} ,
(28)

and let, for every integer̀:

Qε
` = ( qε

` 1 ) and Vh
` (u) =

(
v̌h

` (u)
w̌h

` (u)

)
. (29)

Takev̌h
K(u) = v̌(T, u), w̌h

K(u) = w̌(T, u) as given by (24) for a call (symmetrically
for a put) and

Vh
k (u) =

1
q+
k+ 1

2
− q−

k+ 1
2

(
1 − 1

− q−
k+ 1

2
q+
k+ 1

2

)(
Q+

k+1Vh
k+1((1+τ+)u)

Q−
k+1Vh

k+1((1+τ−)u)

)
. (30)

We leave to the reader the tedious, but straightforward, task to check that this is indeed
a consistent finite difference scheme for (21).

We claim :

Theorem 4.3 The solution of (27) is given by (28),(29),(30), and (24) for a call, as

Wh
k (u, v) = w̌h

k (u) + qε
k(v̌h

k (u)− v) = Qε
kVh

k (u)− qε
kv, ε = sign(v̌h

k (u)− v).

The proof is given in appendix, together with that of the equivalent “continuous” theo-
rem 3.2.

Corollary 4.3.1 The equilibrium price of a call isQ+
0 Vh

0 (u0) withVh
K initialized as in

(24), (A symmetric form holds for a put.)
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The important fact, of course, is that we now have two sequences of functions of
one variable to compute,{v̌h

k (·)} and{w̌h
k (·)}, instead of one sequence of functions of

two variables{Wh
k (·, ·)}. A major saving in computer time and memory. We have typi-

cally discretizedu andv with 300 to 3000 points each. Therefore the saving is in a ratio
of 1:100 to 1:1000. This algorithm has been programmed4. The results were indeed
identical to those obtained with the straightforward discretization of Isaacs’equation,
but much faster and with the above reduction in memory space.

5 Discussion

5.1 Interval vs Samuelson’s model

We wish to discuss here the strengths and weaknesses of this new theory as compared
to the classical Black and Scholes theory [11] and related work.

Clearly, a major weakness of our model is that it rules out from the start very fast
price variations in the market. If we try to takeτ− andτ+ so large that the model
be (essentially) always satisfied, then we will end up with too large a price. This is a
classical fact that because our market model is incomplete we have to resort to super-
replication, potentially ending up with an unrealistically large price. A way around that
drawback is to choose a market model[τ−, τ+] not too large, but then it will be violated
from time to time. If this does not happen too often, the loss may be compensated by
the gains accrued each timeτ falls in the admissible interval. One needs to reintroduce
probabilities to investigate that tradeoff, which we are in the process of doing.

Now, the Black and Scholes theory has its own shortcomings. On the one hand, it
fundamentally assumes that trading is continuous and with no delay. It is impossible,
within Samuelson’s model, to achieve hedging if the trading is not done continuously,
except with the trivial —and too expensive— portfoliov = u. On the other hand,
within Samuelson’s model, “there is no non trivial hedging portfolio for option pricing
with transaction costs” ([30]). The first problem arises from the fact that Samuelson’s
model may display arbitrarily large variations in any finite time, the second from the
closely related fact that it has almost surely trajectories of unbounded total variation.

Let us concentrate on the continuous versus discrete trading issue. Real trading has
to be discrete, forcing a discrepancy between real trading and the Black and Scholes
theory. This is of little consequence as long as the underlying’s price does not change
too quickly. But when it does, then that discrepancy becomes potentially fatal.

Hence both theories fail under the same circumstances : when there are unusually
fast variations of the price of the underlying stock on the market. In our theory the
market model is violated, in Black and Scholes’, it is the portfolio model which fails.

It is impossible to reconcile a model that allows for arbitrarily large stock price
variations within one time step with discrete time hedging. Hence a mathematical
theory has to give up one of the two features. Black and Scholes gives up the ability
to do discrete trading. We wanted to develop a theory of discrete trading, the discrete
time market model being consistent with (i.e. the time sampling of) a continuous time
underlying market model, kept fixed as the time step is decreased. Thus we had to give

4by Laurent Fischer and Loı̈c Maitrehut, students at ESSI whose contribution we acknowledge
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up a model that would allow for arbitrarily large price variations in one step of time.
Yet we wanted a model less idealized than that of Cox, Ross and Rubinstein, —and not
dependant on the time step—, at the price of giving up market completeness. Thus we
were forced to invent the interval model.

The fact that it gives rise to a rather nice mathematical theory, and as a result to
very fast algorithms, was an unforeseen property.

The coincidence with the Cox Ross Rubinstein theory in the absence of transaction
costs guarantees a reasonable premium curve. However, the ability of the new theory
to handle transaction costs, even in the limit as the time step vanishes, is a distinct
advantage. Let us now turn to that point.

5.2 Transaction costs

We get the ability to add transaction costs as an added benefit, because having no
probability law on our space of trajectories that the trader could exploit, we may keep
price trajectories with bounded total variation without creating arbitrage opportunities.
(This may not be a very desirable possibility in itself : despite their artificial character,
unbounded total variation price trajectories have some appeal as metaphors of real price
histories.)

Indeed, authors have been able to deal with vanishing transaction costs, thanks
to the concept of diffusion limits as in, e.g., [1]. This allowed them to treat small
transaction costs in continuous as well as discrete trading. But other than vanishingly
small transaction costs have been known to be incompatible with a non trivial hedging
portfolio since the paper [30]. This result had been conjectured for some time. Later
papers such as [15, 16] gave simpler and more general proofs, but that do not get around
the basic fact proclaimed in the title of [30].

In [4], a paradigm different from Merton’s replicating portfolio is used to define the
equilibrium premium of a contingent claim. This also leads to super-replication, but a
more serious drawback then is that the premium computed depends on the composition
of the writer’s overall portfolio. This last approach is very similar to the related topic
of portfolio optimization and consumption (rather than hedging), for which more is
known about the role of transaction costs. See, e.g. [17, 29, 20].

In our model, transaction costs fit naturally. As a matter of fact, they are in some
sense a necessary ingredient, as the problem trivializes without them, leading to the
naive “stop loss” hedging strategy, the equilibrium price being then the parity price.
This, in some sense, may point to a weakness of our theory: only the presence of
tansaction costs keeps it away from overly simplistic solutions.

5.3 Conclusion

A carefull analysis shows that it is rather natural to resort to such “interval models”, and
this explains why several authors developed that idea independently. To this remark,
we add that for the strict problem of hedging a contingent claim, the robust control
approach, also used by several of these authors, whether explicitly or implicitly, allows
us to proceed without endowing the set of admissible stock price trajectories with a
probability law. This is so since what is sought is a hedge foreverypossible trajectory.
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(And this remark carries over to the Black and Scholes theory if one carefully picks the
set of admissible trajectories, as shown in [6].)

The resulting theory has a nice mathematical structure, that can be exploited to
get semi-explicit formulas via a very fast algorithm for equilibrum prices in the pres-
ence of transaction costs, whether in discrete trading or continuous trading. The later
is the limit of the former with vanishing step size, this, we stress, keepingthe same
continuous time model for the underlying price trajectories. Thus the discrete trading
strategy, which is very simple to implement, is a good approximation of the theoretical
continuous strategy.

The equilibrium prices computed qualitatively and quantitatively resemble the Black
and Scholes prices, although the presence of transaction costs makes them larger.
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[19] H. FÖLLMER (1981): “Calcul d’Ito sans probabilités”, in J. Aźema and M. Yor
ed.: Śeminaire de probabilit́es XV, Sringer Lecture Notes in Mathematics 850,
Springer, Berlin, pp 143–151

[20] N.C. FRAMSTAD, B. OKSENDAL, A. SULEM (2001): “Optimal Consumption
and Portfolio in a Jump Diffusion Market with Proportional Transaction Costs”,
Journal of Mathematical Economics35, pp. 233–257.

[21] I. GILBOA AND D. SCHMEIDLER (1989): “Maxmin Expected U tility with Non
Unique Prior”,Jal of Mathematical Economics, 18, pp 141–153.

[22] W.M. MCENEANEY (1997): “A Robust Control Framework for Option Pricing”,
Maths of Operations Research, 22, pp 22–221.

[23] A. M ELIKYAN AND P. BERNHARD (2003): “Geometry of Optimal Paths around
a Focal Singular Surface in Differential Games”,Applied Mathematics and Opti-
mization, to appear, 2005.

[24] G-J. OLSDER (2000): “Control-theoretic Thoughts on Option Pricing”,Interna-
tional Game Theory Review, 2, pp 209–228.
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A Appendix : proof of theorems 3.2 and 4.3

A.1 Theorem 4.3

We make the proof in the case of a call. The argument for a put is completely similar.
It is useful to notice an alternate, “two-stage” form of the recursion (27) :

Wh
k+ 1

2
(u, v) = max

τ∈[τ−h ,τ+
h ]

[Wh
k+1((1 + τ)u, (1 + τ)v)− τv] , (31)

Wh
k (u, v) = min

ξ
[Wh

k+ 1
2
(u, v + ξ)− Cεξ] . (32)

This form shows that the convexity ofN is preserved, and theWh
k are convex.5

Note that the formula of the theorem is correct at final time,k = K. Assume
it is correct at timek + 1. Consider the step (31). BecauseWh

k+1 is convex, the
maximum is reached either atτ−h or atτ+

h . For eachu, the function to be maximized
in τ is piecewise affine inv, its graph as a function ofv can be represented as two
wedges with one branch sloping downwards (see picture), one for eachτε. These can
be written as

W+
k+ 1

2
:= w̌+

k+ 1
2

+ qε(v̌+
k+ 1

2
− v) ,

W−
k+ 1

2
:= w̌−

k+ 1
2

+ qε(v̌−
k+ 1

2
− v) ,

wherev̌+
k+ 1

2
, v̌−

k+ 1
2
, w̌+

k+ 1
2
, andw̌−

k+ 1
2

are easily written in terms of̌vh
k+1 and w̌h

k+1

evaluated at(1 + τ+)u and(1 + τ−)u.
As a result,̌vk is obtained as the abscissa of the intersection of the two wedges in

this graph. (In the figure,̌vε stands fořvε
k+ 1

2
= v̌k+1((1+τε)u)/(1+τε), ε = ±.)

Now, we claim the following fact:

5Hence, from the convergence theorem, so isW (t, ·, ·).
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Figure 1: Four possible configurations

Proposition A.1 We have for all(k, u)

1
1 + τ−h

v̌h
k+1((1 + τ−h )u) ≤ v̌h

k (u) ≤ 1
1 + τ+

h

v̌h
k+1((1 + τ+

h )u) .

Proof Assume that the left inequality does not hold. Then adecreaseof the price of
the underlying stock (by a factor1+τ−) would result in the cheapest hedging portfolio
having alarger content (in number of shares) in this stock than the previous one. A
contradiction for a call (and for any option with an increasing payment fuction).

Only the first possibility in the figure is consistent with the proposition, and it re-
sults in the max being again a simple wedge. Its minimum is achieved at the inter-
section of the right branch of the graph withτ− and the left branch of the graph with
τ+. Which gives the formulas (30). (One needs to notice that theqε

k as given by (28)
coincide withqε(kh) as defined by (22).)

Their remains to carry out (32). It is an inf convolution with a wedge function acting
on thev variable only. It leaves unchanged branches with a slope between− C+ and
−C− (and the min is then reached atξ = 0), and replaces steeper slopes by these two
limit ones. Hence themin or max operations in (22).
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A.2 Theorem 3.2

We have to show that formula (25), whereε = sign(v̌ − v), qε is given by (22), and
V(t, u) is the solution of the PDE (21) is the (regular) viscosity solution of (20). Let

H(t, u, v,DW, τ) := Wt + τ [Wuu + (Wv − 1)v] ,
H̄(t, u, v,DW ) := maxτ∈[τ−,τ+] H(t, u, v,DW, τ) .

(33)

Then (20) reads

min{H̄(t, u, v,DW ) ,Wv + C+ ,−Wv − C−} = 0 . (34)

DefineQε = (qε 1) and1l =
(

1
1

)
.

A.2.1 Preliminary propositons

The proof of the theorem is by checking that formula (25) indeed provides a (suffi-
ciently regular) viscosity solution of (34). However, the complete proof is a bit lengthy,
as several manifolds of possible gradient discontinuity must be checked. We give here
the important arguments and summarize the less important details.

We stress a first simple fact, as a consequence of the definition (22):

Proposition A.2 For ε = 1 andε = −1,

• if t ≤ tε, qε = Cε,

• if t > tε, qε ∈ [cε, Cε] and

q̇ε = −τε(qε + 1) (35)

We also claim the following important fact:

Proposition A.3 Forall (t, u, v) ∈ [0, T ]× R+ × R,

QεVt ≤ 0 , or equivalently sign[Qε(Vuu− 1lv̌)] = ε (36)

Proof The equivalence of the two forms of the claim comes from the fundamental
PDE (21) and the the fact that

QεT = τεQε . (37)

Simple geometry shows that the proposition A.1 implies

w̌+
k+ 1

2
+ q−

k+ 1
2
(v̌+

k+ 1
2
− v̌−

k+ 1
2
) ≤ w̌−

k+ 1
2
≤ w̌+

k+ 1
2

+ q+
k+ 1

2
(v̌+

k+ 1
2
− v̌−

k+ 1
2
) . (38)

In the limit ash → 0, Wh → W , but alsoVh → V that satisfies the PDE (21).
And since the defining recursion (30) is a consistent discretization scheme for (21), the
differentials converge, and, as a tedious but simple calculation shows, (38) converges
to (36).

For a given(t, u, v), let ε = sign(v̌(t, u) − v). As a consequence of (36), and
keeping in mind thatqε + 1 > 0,

sign[(w̌u + qεv̌u)u− (qε + 1)v] = ε , (39)

so that the max in̄H is reached atτ = τε.
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A.2.2 Differentiable case

We investigate first regions of(t, u, v) space where our formula (25) gives a differen-
tiable function.

Assume first thatt > tε. Using Proposition (A.2), (37) and (39), it readily comes
that with the definition (25) ofW , H̄ = 0, while the other two terms in (34) are positive
because of (A.2).

If t < tε, (21), (37), and (39) show that̄H(t, u, v̌,DW ) = 0 and therefore
H̄(t, u, v,DW ) ≥ 0. And according to (A.2), one of the other two terms in (34) is
zero and the other one positive.

A.2.3 The singular manifoldv = v̌

On the manifoldv = v̌(t, u), formula (25) forW is non differentiable. It has a non
void sub-differential, obtained by replacingqε by q = λq+ +(1−λ)q− in the formulas
for the patial derivatives in either of the regionsε = −1 or ε = 1. This is so because
these partials are affine inqε.

Now, for eachε, the maximum inτ in H̄, reached atτε, is 0. Therefore, forτ−ε,
H ≤ 0. Hence, as an affine function ofq (for fixedτ ) which ranges from0 to a negative
number,H is non positive for all possibleq’s. Hence so is its max inτ , H̄. The other
two terms in (34) are trivially non positive for allλ. Therefore the minimum of the
three terms is non positive, and this is the viscosity condition.

A.2.4 Boundaries of the nontrivial region

It takes some analysis of the fundamental PDE to show that along the manifoldsu =
K exp(−τε(T − t)), the gradients ofV may be (in fact are) discontinuous, with dis-
continuitiesδVt andδVu satisfyingδVt = −τεδVu andQ−εδVu = 0. (See Bernhard
et al. 2002). Assume we are hedging a call, with thus0 ≤ v ≤ u. On the left boundary
u = K exp(−τ+(T − t)), we haveε = −1, and the discontinuities of the gradi-
ent of our functionW are given by(δWt, δWu, δWv) = (Q−δVt, Q

−δVu, 0) = 0.
Therefore the fuction (25) is smooth. A similar argument applies along the boundary
u = K exp(−τ−(T − t)). And symmetric arguments hold for a put.

A.2.5 Boudaries of the jump regions

Finally, one has to check the two manifoldst = tε, whereVt is discontinuous, because
qε
t is. It can be seen that the super-differential ofW is non empty there, and is made

of all the vectors(QεVt + δ,Wu,−Cε) with δ ∈ [−τε(1 + Cε)(v̌ − v), 0], and notice
that − τε(1 + Cε)(v̌ − v) < 0 (Which shows that it is the superdifferential wihch is
non empty.) As a consequence, the viscosity condition reads

∀δ ∈ [−τε(1 + Cε)(v̌ − v), 0] , QεVt + δ + τε[QεVuu− (Cε + 1)v] ≥ 0 .

However, we have already seen that this quantity is zero forδ at the lower end of the
interval. And thus the inequality does hold, ending the proof.
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