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Abstract
We investigate a differential game motivated by a problem in mathemati-
cal finance. This game displays two interesting features. On the one hand,
one of the players, Pursuer say, may, and will, use infinitely large controls,
i.e., impulses, producing “jumps” in the state variables. Standard optimal
trajectories are made of such a jump followed by a “coasting period” where
P exerts no control. This leads to barriers of a somewhat new type. But
because the cost of jumps is only proportional to their amplitude, some
singular optimal trajectories arise where P uses an intermediary control,
nonzero but finite. (In classical impulse control, there is a minimum posi-
tive cost to any use of the control, forbidding such a mixed situation.)

On the other hand, the complete solution of the game exhibits a type of
singularity, the existence of which had long been conjectured (noticeably
by Arik Melikyan in discussions with the first author) but, as far as we
know, never shown in actual examples: a two-dimensional focal manifold
traversed by noncollinear optimal fields depending on the control used by
Evader. It is on this manifold that intermediary controls for P arise.

Finally, we show that the Isaacs equation of a discrete-time version of
the problem provides a discretization scheme that converges to the value
function of the differential game. This is done through the investigation of
a (degenerate) quasi-variational inequality and its viscosity solution, with
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University of Nice-Sophia Antipolis: Nicéphore Allaglo, Carole Bouvelot, Charlotte
Pouderoux, and Laetitia Richter.
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the help of an equivalent, but nonimpulsive, differential game—a method
of interest per se that we credit to Joshua—to which we apply essentially
the classical method of Capuzzo Dolcetta extended to differential games
by Pourtallier and Tidball, with some technical adaptations.

1 The Differential Game Considered

We consider a differential game arising in finance, specifically in the theory of
option pricing with an “interval model.” (We refer to [4,16] for the context in
finance.) This is a game in two dimensions plus time with an integral payoff,
or three dimensions plus time with a terminal payoff, and two scalar controls
(pursuer P and evader E), with the peculiarity that the pursuer may, and will,
use arbitrarily large control values, up to the point of producing “impulses.”
Thus, this player may cause discontinuities in some state variables, incurring a
related cost.

1.1 Dynamics

The (3-D) dynamics are as follows. We call (x, y, z) the state variables, and u and
v the controls of pursuer and evader respectively. The continuous (nonimpulsive)
part of the dynamics is given in terms of ε = sign(u) and two numbers C+1 and
C−1, also written C+ and C− respectively, with C+ > 0, C− < 0, as follows:

ẋ = vx , (1)
ẏ = vy + u , (2)
ż = vy − Cεu , (3)

with the control constraints on v specified by two positive numbers α and β as

−α ≤ v ≤ β . (4)

Since u is not bounded, we allow the pursuer to cause discontinuities in the
state variables at isolated time instants tk according to the rule

y(t+k ) = y(t−k ) + uk , (5)
z(t+k ) = z(t−k )− Cεk

uk . (6)

Of course, we have set y(t−k ) = limt↑tk
y(t) and y(t+k ) = limt↓tk

y(t) and likewise
for z. The jump amplitude in y is uk ∈ R, and εk = sign(uk).

To avoid an unessential discussion later on, we shall further assume that

α ≤ β , and 0 < (1 + C+)(1 + C−) ≤ 1 . (7)



An Impulsive Differential Game Arising in Finance 337

1.2 Payoff

The game is played over a fixed time interval [0, T ], and is a capture-evasion
game of kind, with capture defined in terms of a given positive number Z as

z(T ) ≥ max{0 , x(T )− Z} =: M(x(T )) . (8)

Again this rather strange setup is motivated by its finance application in [4].
We may notice that, since z does not appear in the right-hand side of its

dynamics, it integrates so that (8) is equivalent to

z(0) ≥
∫ T

0

(−vy + Cεu) dt +
∑

k

Cεk
uk + M(x(T )) .

As a consequence, we may consider the game of degree in dimension 2 plus time
with state variables (x, y), the same dynamics (1) (2) and (5)(6), and payoff
minu maxv G with

G =
∫ T

0

(−vy + Cεu) dt +
∑

k

Cεk
uk + M(x(T )) . (9)

Let W (t, x, y) be its value function, an initial state is capturable iff z ≥
W (0, x, y), so that the graph of the value function W is the barrier of the game
of kind.

1.3 Strategies

In this game, the pursuer chooses the function u(t), the jump instants tk, and
the jump amplitudes uk. It does so knowing past values of the state. It is
a classical fact that it will only use an (instantaneous) state feedback which
we write symbolically u = ϕ(t, X(t)), where X stands for the whole state.
Admissible strategies are those such that the dynamical equations have for
any initial state a unique solution with y(·) uniformly bounded over admissible
v(·)’s.

We are looking for capturable states of the game of kind. It is known that this
is equivalent to looking for the upper value of the game of degree, and that then,
whether the evader plays open loop or closed loop is irrelevant. Thus we may
always assume that v is chosen open loop, as a measurable time function from
[0, T ] into [−α, β]. (This remark will play an important role in the investigation
of the convergence.)

2 A Geometric Analysis: The Isaacs–Breakwell Theory

2.1 Jumps as Ordinary Trajectories

In [4], we introduced a quasi-variational inequality (QVI) naturally related to
the game of degree with impulse controls. However, due to its very degenerate
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nature, it is not accounted for by the literature on viscosity solutions of first
order QVI such as [3,2]. We prefer to use the 3-D plus time representation (1),
(2), (3), (5), (6), and the formulation as a game of kind, and apply to it the
geometrical tools of the semipermeability.

In that representation, jumps are just trajectories orthogonal to the t axis.
As a matter of fact, Equations (5) and (6) show that these trajectories are also
orthogonal to the x axis and have a slope either −C+ or −C− in the (y, z)
plane. We stress the following fact.

Proposition 2.1. Given a smooth two-dimensional manifold M transverse
to the jump trajectories, the hypersurface made of jump trajectories of the same
slope through each point of M is a “safe hypersurface” for P, (i.e., E cannot
force the state to cross it against P’s will).

Proof. Indeed by choosing a jump, P causes the state to traverse these trajec-
tories in no time, so that E’s control v has no time to act. (P has chosen to be
in the dynamics (5), (6) where v does not enter.) �

We shall in effect construct manifolds y = y̌(t, x), z = ž(t, x) for some func-
tions y̌ and ž, construct barriers made of jump trajectories reaching that mani-
fold, and show that upon reaching it, P still has a means of preventing a crossing
of the composite surface.

2.2 The Natural Barrier

We proceed with the classical construction of the natural barrier through the
boundary of the capture set, which here is t = T , z = M(x), y arbitrary. This
has been published in [4]. We summarize it here.

The natural barrier is made up of two sheets, one towards x ≤ Z and one
towards x ≥ Z. They are given below, together with a corresponding inward
semipermeable normal as the vector (n, p, q, 1) (corresponding to the state vari-
ables (t, x, y, z)), leading to Isaacs’“main equation”

0 = max
u

inf
v∈[−α,β]

[
n + v
(
px + (q + 1)y

)
+ u(q − Cε)

]
,

and the adjoint equations

ṗ = −vp , (10)
q̇ = −v(q + 1). (11)

The analysis depends on the fact that the maximum in u of (q − Cε)u is
reached at u = 0 provided that C− ≤ q ≤ C+. (Remember that ε = sign(u).)
When q leaves that range, there is no maximum anymore. (Or u should be
infinite: we shall have a jump.)
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Sheet ααα towards xxx ≤≤≤ ZZZ. We set the parameters x(T ) = s ≤ Z, y(T ) = r.
It yields v∗ = −α and

sheet (α) semipermeable normal να

t = t n(t) = αr ,
x(t) = seα(T−t) , p(t) = 0 ,
y(t) = reα(T−t) , q(t) = e−α(T−t) − 1 ,
z(t) = r(eα(T−t) − 1) , 1 = 1 .

This is a valid solution as long as q ≥ C−, i.e., for t ≥ tα with

e−α(T−tα) = 1 + C− , i.e., T − tα =
1
α

ln
(

1
1 + C−

)
. (12)

Sheet βββ towards xxx ≥≥≥ ZZZ. On this sheet, x(T ) = s ≥ Z, y(T ) = r. We find
that v∗ = β, and

sheet (β) semipermeable normal νβ

t = t n(t) = β(s− r) ,
x(t) = se−β(T−t) , p(t) = −eβ(T−t) ,
y(t) = re−β(T−t) , q(t) = eβ(T−t) − 1 ,
z(t) = r(e−β(T−t) − 1) + s− Z , 1 = 1 .

This is a valid solution as long as q ≤ C+, i.e., for t ≥ tβ with

eβ(T−tβ) = 1 + C+ , i.e., T − tβ =
1
β

ln(1 + C+) . (13)

From the hypothesis (7), we have tα < tβ .
Moreover, from final states on the boundary z = x−Z ≥ 0 of the admissible

set, a 2-D singular sheet can be constructed with r = s, v arbitrary, leading to

x = y = z − Z = s exp

(
−
∫ T

t

v(τ) dτ

)
, −p = q + 1 = exp

(∫ T

t

v(τ) dτ

)
.

Intersection and Composite Barrier. The two main sheets (α) and
(β) intersect along a two-dimensional edge D that spans the domain t ≥ tβ ,
Ze−β(T−t) ≤ x ≤ Zeα(T−t), and that can be parametrized by (t, x) as y =
y̌(t, x), z = ž(t, x) given by

y̌(t, x) =
(xeβ(T−t) − Z)

eβ(T−t) − e−α(T−t)
, ž(t, x) = (1− e−α(T−t))y̌(t, x). (14)

Notice that for x = Z exp(−β(T − t)), we have y̌ = ž = 0, which corresponds
to the sheet (α) with r = 0. For smaller x’s, only the sheet (α) plays a role.
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We find it convenient to extend the definition of y̌ and ž by 0 for both. For
x = Z exp(α(T − t)), we have y̌ = x, ž = x−Z, which corresponds to the sheet
(β) with r = s = Z exp((α+β)(T − tβ)). For larger x’s, only the sheet (β) plays
a role. Again, we extend the definitions of y̌ = x and ž = x− Z to larger x’s.

We easily check that D is an E-dispersal line. States “above” (with larger
z’s) are indeed capturable, and the edge does not “leak” since P’s control on
both sheets is the same: u = 0. Therefore, this same control prevents crossing
of both barrier sheets.

The singular sheet x = y = z + Z is imbedded in the sheet (β). But it can
be used against v = −α until time tα. In the region x ≤ Z exp(α(T − t)) it
plays no role. However, it will be seen to play a prominent role in the region
x ≥ Z exp(α(T − t)) for t ≤ tβ , when the sheet (β) does not exist. There it
behaves as a manifold drawn on an extension of the sheet (α) for s ≥ Z.

2.3 Junction of a Jump Manifold and the Natural Barrier

For t ≤ tβ , the sheet (β) of the natural barrier does not exist, since it would
entail a q ≥ C+, leading to u = +∞. We therefore expect a positive jump man-
ifold, i.e., trajectories in the (y, z) plane with slope −C+. They must join on a
two-dimensional manifold E drawn on the sheet (α), and such that, whatever
v, P can maintain the state on or above both that sheet and the jump man-
ifold. The manifold E will indeed be an “equivocal” one (in Isaacs’ parlance),
constructed according to the technique of a “safe contact” on a barrier, as orig-
inally discovered by Breakwell and Merz [9,12].

We first determine a control u(v) that maintains the state on the barrier
sheet (α). Let να be the normal to that sheet; we have

〈να, Ẋ〉 = e−α(T−t)(v + α)y − u(1 + Cε − e−α(T−t))

so that we keep the state on the sheet (α) by choosing

u =
e−α(T−t)(v + α)y

1 + C+ − e−α(T−t)
.

With that control, keeping in mind that the normal to the jump manifold, say
νj , has to be of the form νj = (nj , pj , C

+, 1), we get on E :

〈νj , Ẋ〉 = nj + v(pjx + (1 + C+)y) .

Furthermore, we want E to join on the boundary of D at t = tβ . Therefore, νj

there should be normal to that boundary. This gives pj = −(1 + C+), i.e., the
same as in νβ as it should be, and hence at t = tβ ,

〈νj , Ẋ〉 = n− v(1 + C+)(x− y) .

The domain considered thus far, the boundary of D, is such that x ≥ y. As
a consequence, the minimizing v is v = β. Furthermore, if we construct the
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manifold E using v = β in the above construction, we can check1 that nj remains
positive, hence (pjx+(1+C+)y) is negative. Hence v = β is indeed minimizing,
or, equivalently, we check that the strategy u(v) above guarantees that the state
lies on the sheet (α) and on the desired side of the jump manifold.

We therefore obtain the following.

Theorem 2.1. The equations of the equivocal manifold E are

ẋ = βx , x(tβ) = s
1+C+ ,

ẏ = β(1+C+)+αe−α(T−t)

1+C+−e−α(T−t) y , y(tβ) = s−Z

1+C+−e−α(T−tβ) ,

ż = β(1+C+)(1−e−α(T−t))−C+αe−α(T−t)

1+C+−e−α(T−t) y , z(tβ) = (1− e−α(T−tβ))y(tβ).

(15)

We can integrate these backwards as long as the sheet (α) exists, i.e., down to
t = tα. However, due to our restricted set of initial conditions, this will only
take care of the domain s ∈ [Z, Z exp((α+β)(T −tβ))], i.e., Z exp(−β(T −t)) ≤
x ≤ Z exp(α(T − tβ)−β(tβ− t)). We need to find the extension of the manifold
E to all values of (t, x) for t ∈ [tα, tβ ].

In the region x ≤ Z exp(−β(T − t)), the above equations are to be taken with
terminal conditions y = z = 0, and thus yield y = z = 0 down to t = tα.

In the region x ≥ Z exp(α(T − t)), we do not have the sheet (α) to perform
the above construction, but we do it with the singular sheet y = x, z = x− Z.
A completely similar analysis yields a u proportional to y − x, i.e., zero on the
singular sheet, which turns out itself to be the manifold E .

This joins smoothly with D in the region t ≥ tβ . We shall use it as terminal
conditions for the equations of E along the boundary x = Z exp(α(T − t)),
tα ≤ t ≤ tβ . That way, we have defined the manifold E in all the required
domain. Again, for t ∈ [tα, tβ ], let y = y̌(t, x), z = ž(t, x) describe this manifold.
The functions y̌ and ž thus defined extend continuously those for t ≥ tβ defined
on D.

It turns out that the equations for y integrate analytically. See Appendix A.

2.4 The Focal Manifold

2.4.1 Principle

For t ≤ tα, neither of the two sheets of the natural barrier exist. We must
therefore replace them both by jump manifolds that will join on a new manifold,
which is thus a focal surface, (but with adjoining trajectories that are jump
trajectories). Let us call it F .

To explain how to construct F , we need to introduce some notation. We shall
have two jump manifolds, one with negative jump and one with positive jump.
1We did it numerically. There should exist an analytical proof.
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Let ν− and ν+ be the corresponding normals. They are of the form

ν− =

⎛⎜⎜⎝
n−

p−

C−

1

⎞⎟⎟⎠ , ν+ =

⎛⎜⎜⎝
n+

p+

C+

1

⎞⎟⎟⎠ .

Let also Ẋ = f(X, u, v) denote the dynamics. Upon reaching F , player P will
have to choose a control u(v) that will maintain the state on F or above the
composite barrier thus constructed. Assume that for the extreme values of v,
i.e., −α and β, the state can just be maintained on F . Let uα and uβ be the
corresponding controls. Now, we must have the following equalities:

0 = 〈ν−, f(X, uα,−α)〉 , 0 = 〈ν+, f(X, uα,−α)〉 ,
0 = 〈ν−, f(X, uβ , β)〉 , 0 = 〈ν+, f(X, uβ , β)〉 .

We have six unknowns, n−, p−, n+, p+, uα, uβ . We need two more equations to
determine them.

2.4.2 Trajectories v = βv = βv = β

We choose to describe F as the set of trajectories obtained for v = β. Later we
shall discuss this arbitrary choice. In this description, let Xβ(s, t) be our state,2

depending on the parameter s characterizing the trajectory (say reaching the
boundary of E at tα at the point u = s exp(β(T − tα)) and on t. Thus

∂Xβ

∂t
= Xβ

t = Ẋβ = f(X, uβ , β) .

We need further express that all trajectories lie in the same manifold F . Hence,
let Xβ

s := ∂Xβ/∂s; we must further have

0 = 〈ν−, Xβ
s 〉 , 0 = 〈ν+, Xβ

s 〉 .

We now have six equations in six unknowns at each X. We want to use them
to recover uβ and put it in the equations of the dynamics. Surprisingly, this is
rather easy to do. The first four equations yield

uα =
α + β

C+ − C− [p+x + (1 + C+)y] , uβ =
α + β

C+ − C− [p−x + (1 + C−)y] .

The equation 0 = 〈ν−, Xβ
s 〉 yields

p−xβ
s = −(C−yβ

s + zβ
s ) .

2Obviously, β here is a superindex, not a power!
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Now, we still have ẋβ = βx, i.e., xβ = s exp(−β(T − t)). Thus xβ(s, t) = sxβ
s .

Hence, the above equation reads

p−x = −s(C−yβ
s + zβ

s ) .

Put this back in uβ ; this finally yields a pair of coupled partial differential
equations (PDEs). We use the notation

γ =
α + β

C+ − C− , (16)

to get the following fact (we have dropped the superindices β).

Theorem 2.2. The focal manifold satisfies the following system of partial
differential equations:(

yt

zt

)
= sγ

(
−C− −1

C+C− C+

)(
ys

zs

)
+
(

β + γ(1 + C−)
β − C+γ(1 + C−)

)
y . (17)

Domain and Boundary Conditions. We need to know F for all t ≤ tα
and all x ≥ 0. However, for x ≤ Z exp(−β(T − t)), we have previously argued
that we expect the optimal (y, z) to be (0, 0). Also, for x ≥ Z exp(α(T − t)),
we expect the optimal (y, z) to be (x, x − Z). Notice first that each of these
two pairs, with x = s exp(−β(T − t)), satisfies the PDE (17). It remains to fill
the domain Ω := {t ≤ tα, Z exp(−β(T − t)) ≤ x ≤ Z exp(α(T − t))}, using
the above known values at the boundaries in x, and the previously computed
values on E at t = tα for Z exp(−β(T − tα)) ≤ x ≤ Z exp(α(T − t)).

This may entail discontinuities of the gradients of y and z along the “lat-
eral” boundaries of Ω. Appendix B provides a proof that these two lines are
precisely the possible support of such discontinuities. It also provides a further
mathematical and numerical investigation of this PDE.

We therefore have a manifold F defined for all t ≤ tβ , all positive x’s. We
still call y̌(t, x), ž(t, x) this manifold, and observe that the functions y̌ and ž
are continuous.

2.4.3 Trajectories v = −αv = −αv = −α

As stressed above, the choice to analyze F through the trajectories generated
by v = β was arbitrary. The same analysis could have been made using the
trajectories v = −α. Let them be parametrized by u = r exp(α(T − t)), and
Xα(r, t) be the resulting manifold. One obtains the PDE(

yt

zt

)
= rγ

(
−C+ −1

C−C+ C−

)(
yr

zr

)
+
(
−α + γ(1 + C+)
−α− C−γ(1 + C+)

)
y . (18)

(Notice that one gets these equations upon interchanging in (17) −α with β on
the one hand, and C− with C+ on the other hand.)
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Proposition 2.2. The PDEs (17) and (18) (with the same boundary condi-
tions) describe the same manifold in the (t, x, y, z) space.

Proof. Let us pick

s = r exp((α + β)(T − t)) (19)

so that the coordinates x coincide. Let Y = (y z)t. We want to show (with
transparent notation) that Y α(r, t) = Y β(r exp((α + β)(T − t)), t). Therefore,

Figure 1: A 2-D sketch of the 4-D geometry of the barrier.
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we should have

Y α
r = e(α+β)(T−t)Y β

s , (20)

Y α
t = −(α + β)re(α+β)(T−t)Y β

s + Y β
t . (21)

Write (17) and (18) respectively as

Y β
t = sAβY β

s + BβY β , Y α
t = rAαY α

r + BαY α .

We also need the notation D :=
⎛⎝ 1 0

1 0

⎞⎠ . We therefore have

Aβ = γ

(
−1
C+

)
(C− 1) , Bβ = (βI −Aβ)D ,

Aα = γ

(
−1
C−

)
(C+ 1) , Bα = (−αI −Aα)D .

Substituting both (17) and (20) into (21) and also using (19), we get

Y α
t = r[−(α + β)I + Aβ ]Y α

r + BβY α . (22)

The proposition then results from the easy fact that (remembering (16))

Aα = Aβ − (α + β)I , and therefore Bα = Bβ ,

so that (22) coincides with (18). �

2.5 Synthesis

The boundary of the set of capturable states is given by z = W (t, x, y) defined,
in the domain t ∈ [0, T ], x ≥ 0, y ∈ [0, x], by

W (t, x, y) = ž(t, x) + Dη(y − y̌(t, x)) ,

where
• The functions y̌ and ž are given by the requirement that they be continuous

(which specifies the boundary values of the differential equations) and

(i) y̌ = ž = 0 if x ≤ Z exp(−β(T − t)),
(ii) y̌ = x, ž = x− Z if x ≥ Z exp(α(T − t)),
(iii) if x ∈ [Z exp(−β(T − t)), Z exp(α(T − t))],

· if t ≥ tβ , equations (14)
· if t ∈ [tα, tβ ], differential equations (15) with terminal conditions

as in (15) t = tβ , and and by continuity with region (ii) above on
the boundary in x,
· if t ≤ tα, equations (17) with terminal conditions by continuity

with the above at t = tα, and by continuity with (i) and (ii) on
the boundaries in x,
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• η = sign(y − y̌), and D+1 = D+ and D−1 = D− are given by

D+ =
{
−C− if t ≤ tα ,
1− e−α(T−t) if t ≥ tα ,

D− =
{
−C+ if t ≤ tβ ,
1− eβ(T−t) if t ≥ tβ .

This function W is therefore also the upper value function of the game of
degree in (x, y) with payoff given by (9). Figure 1 shows a sketch of this com-
pound manifold.

3 Discretization

3.1 The Multistage Game

In [4], we investigated a discrete-time version of the same problem. In dis-
crete time, there are no such things as impulse controls (or there are only
such things!), so that this is now a classical multistage game. Let h = T/N ,
with N an integer, be our time step. We shall often use a dyadic division,
i.e., N = 2d, with d an integer. Write x(kh−) = xk, and likewise for y, z and
W (kh, x, y) = Wk(x, y).

The following system is the natural discretization of our game (and is of
interest per se in the finance application):

xk+1 = (1 + vk)xk , (23)
yk+1 = (1 + vk)(yk + uk) , (24)
zk+1 = zk + vk(yk + uk)− Cεuk , (25)

αh = 1− exp(−αh) , βh = exp(βh)− 1 , vk ∈ [−αh, βh] . (26)

It is also convenient to separate the effect of the two controls via the two-step
description:

x+
k = xk , xk+1 = (1 + vk)x+

k ,
y+

k = yk + uk , yk+1 = (1 + vk)y+
k ,

z+
k = zk − Cεuk , zk+1 = z+

k + vky+
k .

The 3-D plus time game of kind is the same pursuit-evasion game as in
the continuous theory, and capturable states are here again defined by zk ≥
Wk(xk, yk) where the sequence of functions {Wk}k∈N is the uppervalue function
of the 2-D plus time game of degree (23), (24) with payoff

G = M(xN ) +
N−1∑
k=0

(
−vk(yk + uk) + Cεk

uk

)
. (27)

Straightforward application of Isaacs’ equation (see [4]) yields
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Proposition 3.1. The value function of the above discrete-time game is the
only solution of the recursion

Wk(x, y) = min
u

max
v∈[−αh,βh]

[Wk+1((1 + v)x, (1 + v)(y + u))− v(y + u) + Cεu]

(28)

with

∀x, y , WN (x, y) = M(x) . (29)

Equation (28) is equivalent to the two-step procedure

W+
k (x, y+) = max

v∈[−αh,βh]
[Wk+1((1 + v)x, (1 + v)y+)− vy+],

Wk(x, y) = min
u

[W+
k (x, y + u) + Cεu].

The two-step formulation separates the maximization and minimization opera-
tions. It proves useful in the numerical implementation.

We also recall the following theorem from [4].

Theorem 3.1. The functions (x, y) 
→Wk(x, y) are all convex.

Proof. Notice that (x, y) 
→ M(x) is convex. Assume that Wk+1 is convex.
Then (x, y) 
→ Wk+1((1 + v)x, (1 + v)y) − vy is convex, so that W+

k is the
maximum of a family of convex functions, and hence is convex. Now, changing
u in −u′, Wk appears as the inf-convolution of W+

k and the convex extended
function Γ(x, y) equal to +∞ if x 	= 0 and to Cε(−y) (with ε = sign(−y)) if
x = 0. Hence it is convex. �

This, in turn, helps us in devising an efficient numerical procedure to compute
that value. Because the functions v 
→ Wk((1 + v)x, (1 + v)y) are convex, the
maximum in v is reached at either v = −α or v = β. As for the inf-convolution,
it is easy to see that, for each fixed (k, x), one should look for

y−
k (x) = max{y | −C+∈ ∂yWk(x, y)} ,

y+
k (x) = min{y | −C−∈ ∂yWk(x, y)} .

(30)

Then, for y ∈ [y−, y+], Wk and W+
k coincide. For y ≤ y−, Wk must be extended

continuously with a slope in y equal to −C+. For y ≥ y+, Wk must be extended
continuously with a slope equal to −C−:

Wk(x, y)=

⎧⎪⎪⎨⎪⎪⎩
W+

k (x, y−
k (x))− C+(y − y−

k (x)) if y ≤ y−
k (x) ,

W+
k (x, y) if y−

k (x) ≤ y ≤ y+
k (x),

W+
k (x, y+

k (x))− C−(y − y+
k (x)) if y ≥ y+

k (x) .

(31)
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Implementing that procedure is much faster than computing a min via a stan-
dard search procedure.

Understanding the shape of the functions Wk will be useful in the sequel. We
emphasize it in the following remark.

Remark 3.1.
• For y < y−, for 0 < h < y−−v, Wk(x, y) = Wk(x, y+h)+C+h ≤W+

k (x, y),
and Wk(x, y) ≤Wk(x, y − h)− C−h,

• for y ∈ [y−, y+], for all h > 0, Wk(x, y) = W+
k (x, y) ≤Wk(x, y− h)−C−h,

and Wk(x, y) ≤Wk(x, y + h) + C+h,
• for y > y+, for 0 < h < v−y+, Wk(x, y) = Wk(x, y−h)−C−h ≤W+

k (x, y),
and Wk(x, y) ≤Wk(x, y + h) + C+h.

3.2 Convergence

3.2.1 Main Theorem

We introduce the function Wh(t, x, y) defined as the linear interpolation in time
of the functions Wk(x, y) and Wk+1(x, y) where kh ≤ t < (k + 1)h, and where
the functions Wk are given by Equations (28) and (29) for a time step h (in
(26)). The objective of this section is to prove the following theorem.

Theorem 3.2. Let h = 2−dT . As d goes to infinity, the sequence of functions
{Wh} converges uniformly on every compact (and monotonously decreasing) to
the value function W of the continuous-time, impulse control game of degree.

To prove this theorem, we need to introduce another way of looking at the
impulse control problem, via yet another game. Thus we name our games. Let G
be the original, continuous-time game, with controls u either finite or impulsive.
Its (upper) value function is W . We shall also use the game G′ which is the
same as G, but where P may only use impulses. Let Gh be the discretized game
of this section, and its upper value the sequence {Wh

k }k (the Wk’s above). Let
also Gh,� be the discrete-time game with time step h where, in addition, the
variable u has been discretized with a step �, i.e., uk ∈ �Z. Its value function
is a sequence {Wh,�

k }k∈N, which we interpolate in a function Wh,�(t, x, y) as we
did for Wh.

3.2.2 Joshua’s Transformation

Finally, we introduce a game J according to an idea initially due to Joshua [11].
The players are still P and E as previously, but P has a control j which can
take only the values -1, 0 or +1. We shall for convenience let j̄ = 1 − |j|. The
game happens in an artificial time that we call τ . We denote with a prime the
derivatives with respect to τ . The natural time is now a state variable, and the
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final τ is defined as the first instant τ = T such that t(T ) = T . The dynamics
of the game are

t′ = j̄ ,

x′ = j̄vx ,

y′ = j̄vy + j ,

and the payoff is

J = M(x(T )) +
∫ T

0

(−j̄vy + Cjj) dτ ,

(with C0 arbitrary, 0 for instance).
Observe that this is now a standard differential game, which no longer has

impulse controls. Its Isaacs equation can be written in the following way:

0 = min

{
∂W

∂t
+ max

v∈[−α,β]
v

[
∂W

∂x
x +
(

∂W

∂y
− 1
)

y

]
,

∂W

∂y
+ C+,−

(
∂W

∂y
+ C−
)}

.

This is a less degenerate form of the quasi-variational inequality of [4]:

0 = min

{
∂W

∂t
+ max

v∈[−α,β]
v

[
∂W

∂x
x +
(

∂W

∂y
− 1
)

y

]
,

min
u

[W (t, x, y + u)−W (t, x, y) + Cεu]

}

(where we required ∂W/∂y ∈ [−C+,−C−] everywhere).
We claim the important following fact.

Proposition 3.2. The game J has the same value as the game G.

Proof. The game J is in fact completely equivalent to the game G′. When P
chooses a control j = 0, the game proceeds exactly as the game G′ between two
impulses. When P chooses j = +1 or −1, the time stops (hence the reference
to Joshua), and y evolves in no real time of a quantity equal to j times the
duration, in artificial time, of that control, at a cost Cε times the variation of y.

The rest of the proof depends on the following easy lemma.

Lemma 3.1. For any P’s control strategy ϕ in the game G, and any positive
δ, there exists an admissible (causal) strategy in the game G′ that yields against
any admissible v(·) a payoff within δ of the payoff obtained with ϕ in the game
G.
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The proof of the lemma is given in Appendix C. We immediately have the
following:

Corollary 3.1. The games G and G′ have the same value.

And this, together with the fact that J and G′ have the same value, proves the
proposition. �

To complete the proof of the theorem, we need two more lemmas.

Lemma 3.2. For every positive h, � and every (t = kh, x, y), N ≥ k ∈ N, one
has

W (t, x, y) ≤Wh
k (x, y) ≤Wh,�

k (x, y) . (32)

Proof. We notice that due to our choice of αh and βh in (26), the quantity

exp
(∫ t

t−h

v(τ) dτ

)
exactly spans the interval [−αh, βh]. As a consequence, due to the linearity of
the dynamics, the game Gh is an exact time sampling of the game G′ where P is
further constrained to placing its impulses at time instants tk = kh, k ∈ N. Since
constraints have been placed on the admissible strategies of the minimizer, but
not on the controls of the maximizer, we have the first inequality in (32). (Here
and in the next lemma, the fact that v(·) can be taken open loop in defining
the upper value plays a crucial role.)

In the game Gh,�, further constraints are placed on the admissible strategies
of P. Hence the second inequality follows. �

Lemma 3.3. The functions Wh and Wh,h with h = 2−dT decrease as d→∞
and converge, uniformly on any compact, to functions Ŵ and W̃ respectively.

Proof. We have noticed that the various games Gh are variants of the game
G′. They differ by the frequency at which player P is allowed to play. The
game with h = 2−dT can be considered itself as a variant of the game with
h = 2−(d+1)T but where P is constrained to play u = 0 at every odd-numbered
stage. Since P is minimizing, this constraint increases the value of the game.
Hence Wh(t, x, y) is decreasing for every fixed (t, x, y). Being bounded from
below by zero, it converges to some Ŵ (t, x, y). Now, the Wh are convex, thus
continuous, in (x, y), and continuous in time by construction. We therefore have
a monotonous convergence of continuous functions, hence it is uniform on every
compact.

Concerning the functions Wh,h
k , they correspond to games where a further

constraint has been imposed on u. And again, for h = 2−dT , the admissible
u’s for d + 1 are a superset of those admissible for d. Hence the value function
decreases also. The rest follows. �
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The main theorem is now a consequence of a last lemma.

Lemma 3.4. Let W be the value function of the game G and W̃ =
limh→0 Wh,h. Then

W̃ = W . (33)

Proof. The detailed proof is given in Appendix C. It uses the method of [10] for
the game J , whose value is W according to Corollary 3.1, and uses the fact that
it follows from our analysis of (28), and specifically from Remark 3.1, that the
sequence {Wh,h

k }k can be identified with the value function of the discretized
version of the game J . Hence (33) follows. �

Proof of the Main Theorem. of the main theorem: It follows from
Lemma 3.3 that Wh converges to some Ŵ as h→ 0 in a dyadic way. It follows
from (32) that W ≤ Ŵ ≤ W̃ , and from (33) that Ŵ = W . �

4 Numerical results

We have implemented the recursion (28). We have used the two-step formulation
and the procedures of Section 3.1 for the maximization and minimization. We
are, of course, obliged to discretize x and y. To evaluate W and W+ between
discretization points, we have used a piecewise affine interpolation on triangles,
and to evaluate them beyond the domain of discretization (the evaluation at
((1 + β)x, (1 + β)y) may require that), a linear extrapolation. Notice that this
affine interpolation is essentially equivalent to the space discretization procedure
analyzed in [13,14]. Hence, we may expect it to converge to the desired function
as the discretization step goes to zero.

We have found that in some very narrow ranges of discretization steps,
depending on the parameters, one may get wide numerical instabilities. Yet,
being carefull to validate the results as “reasonable,” we have a very efficient
program. With a 600×600 grid in the (x, y) domain, it runs in about .22 second
per time step on a 1.7 GHz PC.

The numerical results corroborate our continuous-time theory. The results
we discuss here correspond to the following set of parameters: a time step of
h = 0.02, α = .10, β = .15, c0 = .02, c1 = .05, and a discretization step of .005
in x and y.

For large t’s (the first time steps) the program finds y− and y+ at both ends
of the domain of y. Then for T−t larger than .52, it finds y− within the range of
discretization and y+ at the boundary. The theoretical value is T−tβ = .46. For
T−t larger than .70, it finds y− and y+ either equal or within one discretization
step, the latter being a normal discretization effect. The theoretical value is
T − tα = .71. Thus tα has been recovered with a good accuracy (within one
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time step) while tβ is recovered with an error of three time steps. When y− and
y+ differ within one discretization step, we have taken (1/2)(y− + y+) as the
approximation of y̌, and the smallest W as the approximation of ž.

We have also implemented a numerical integration of the differential equa-
tions for E (or used the closed form found later. It makes no observable differ-
ence) and of the PDE for F . The latter can exhibit numerical instabilities with
bad choices of method. We got good results with a second-order centered finite
difference scheme in “space” and a Runge–Kutta method of order two in time.
Our computer code (in MATLAB) is still far from being optimized in terms of
computing time. Thus this aspect will not be discussed here.

We have made the comparisons with a short maturity of T = 5 to save
computation time in the computation of the focal surface. Both methods gave
the same graphs for y̌ within one or two discretization steps (.005Z), except
close to the boundary of the discretized domain, and almost the same graphs
for ž to within two discretization steps, the discrete time ž being slightly larger,
as expected. Both graphs are plotted in Figure 2.

5 Variants and Related Works

5.1 Another Terminal Target

Another game, maybe more significant for the finance application, but less
rich in terms of game theory, is obtained by replacing M(x) by N(x, y) :=
M(x) + Cε(−y), with ε = sign(−y). (See [4] for a motivation.) Then the sheet
(α) of the barrier does not exist any longer, and thus neither does the dispersal
manifold. The first singularity met (rearward) is an equivocal junction on the
sheet (β), and before (in forward time) a focal surface. The theory is essentially
the same.

5.2 The Viability Approach

In a series of papers [1,15] and in private communications, Aubin, Saint-Pierre,
Pujal, and collaborators have considered, with the same motivation, essentially
the same continuous-time problem, slightly more general in some aspects (they
allow for constraints that were not considered in our work). They put a bound
on the magnitude of our u to avoid impulses. But this is mainly for theoretical
reasons, to get existence results for the viscosity solution of Isaacs’ equation,
an issue we did not tackle. They use a capture basin type of approach (similar
to our game of kind approach) and discretize the corresponding PDE, leading
to the same recursion (28) as ours, or a slightly different one depending on
whether they use an explicit or implicit scheme. There, if taken large enough,
the bounds on u are inactive.

A noteworthy feature is Saint-Pierre’s “decoupling algorithm,” which, for the
above variant (Section 5.1), let him compute the locus y̌ and ž, as the locus of
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Figure 2: Cut of the focal manifold F : y̌(t, x) and ž(t, x) for T − t = 5. Dotted line:
discrete time. Solid line: continuous time.
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the minimum in y of the solution, with a computing effort comparable to two
dynamic programming algorithms in dimension one instead of one in dimension
two. Coupled with our theory as synthesized above, this is the fastest known
way to compute the value of that game.

6 Conclusion

We have provided two closely related ways of investigating impulse controls
in a differential game, both linked to the fact that “jump trajectories” can be
regarded as ordinary trajectories. In this game, the optimal strategy of the
pursuer contains both an impulse at initial time, and finite controls later on as
the state traverses the singular manifolds. Admittedly, here the optimal strategy
has the weakness that it needs to sense instantaneously the opponent’s control,
i.e., here the time derivative of the first state variable. Breakwell has discussed
this feature and approximate implementation in other papers [7,8]. Here, our
discrete-time theory points to a practical solution of that problem.

This approach is feasible only because the cost of jumps was supposed to be
proportional to the amplitude of the jump. It would be interesting to consider
a cost affine in the amplitude, with a positive infimum. This would probably
entail an investigation of the QVI according to the theory of [3].

More significantly perhaps, this analysis proves correct an old conjecture by
Arik Melikyan that in higher dimensions, focal surfaces would be traversed by
noncollinear optimal fields of trajectories. We have shown in detail that this is
indeed the case here.

There remains to derive from the above analysis a general construction of
higher-dimensional focal surfaces, which was missing in our constructive theory
of singularities of co-dimension one in the Isaacs equation of (deterministic)
two-person zero-sum differential games [5,6].

We have also proved and checked numerically that the continuous-time solu-
tion can be approached by the natural discrete-time game associated to our
differential game. Yet, while that approach lets one numerically compute the
value function, it does not give the more explicit form of Section 2.5, nor our
detailed description of the optimal continuous-time strategies.

Appendix A: Equations of the Manifold EEE

We recall the equations of the manifold E :

ẋ = βx ,

ẏ =
β(1 + C+) + αe−α(T−t)

1 + C+ − e−α(T−t)
y ,

ż =
β(1 + C+)(1− e−α(T−t))− C+αe−α(T−t)

1 + C+ − e−α(T−t)
y ,
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to be integrated backwards from the terminal states (t0, x(t0), y(t0), z(t0)) either
on the boundary of the manifold D at t = tβ or on the boundary parametrized
by x = Ze(α(T−t)), tα ≤ t ≤ tβ . These equations admit a closed form solution
as follows:

x(t) = x(t0)eβ(t−t0) ,

y(t) = y(t0)eβ(t−t0)

(
1 + C+ − eα(t0−T )

1 + C+ − eα(t−T )

)α+β
α

,

z(t) = (1− e−α(T−t))y(t) + z(t0)− (1− e−α(T−t0))y(t0),

as can be checked by direct differentiation. The expressions for y and z can be
rewritten in terms of x and t, upon substituting for t0, y(t0), and z(t0), to yield
y̌(t, x) and ž(t, x).

Let x̃(t) = Ze(α+β)(T−tβ)e−β(T−t):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if x ≤ x̃(t):

⎧⎪⎨⎪⎩
t0 = tβ ,
y(t0) = xeβ(T−t)−Z

1+C+−e−α(T−tβ) ,
z(t0) = (1− e−α(T−tβ))y(t0) ,

if x ≥ x̃(t) :

⎧⎨⎩
t0 = 1

α+β (αT + βt) ln
(

x
Z

)
,

y(t0) = xeβ(T−t0) ,
z(t0) = y(t0)− Z .

We can remark that in the region x ≤ x̃(t) we still have w(t) = (1−e−α(T−t))y(t)
as on the manifold D.
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Appendix B: The PDE for the Focal Manifold FFF

B.1 Analysis

As the trajectories v = β and v = −α describe the same focal manifold F in
(s, x, y, z) space, we only solve the PDE system (17), which we rewrite as

Y β
t = sAβY β

s + BβY β .

Let us pick

σ = ln
( s

Z

)
,

which transforms the PDE system in a linear PDE system of first order with
constant coefficients in (t, σ):

Y β
t = AβY β

σ + BβY β . (34)

Moreover, the domain of interest Ω simplifies into the new domain in (t, σ):
Ωσ := {t ≤ tα, 0 ≤ σ ≤ (α + β)(T − t)}.

We notice that the known solutions y̌ and ž outside Ω, namely (0, 0) to the
“left” of Ω and (x, x − Z) to the right, satisfy the PDE for F (34). Moreover,
we have the following fact.

Proposition B.1. If (34) admits a continuous solution on [0, T ]×[−∞,∞] (in
the domain (t, σ)) with simple discontiuities in (∇y,∇z), these discontinuities
are born by lines of slope 0 or −(α + β) in the plane t, σ.

Hence, if such discontinuities follow from the discontinuity in σ = 0 at ter-
minal time, they will precisely be born by the boundaries of Ω.

Proof. Let ∆yt, ∆yσ, ∆zt, and ∆zσ be the discontinuities. Let (p, q) be the
direction of a smooth curve bearing the discontinuity in the (t, σ) domain. The
continuity of both y and z implies that

p

(
∆yt

∆zt

)
+ q

(
∆yσ

∆zσ

)
= 0 .

Moreover, because at the discontinuity both sides satisfy the PDE (34), it fol-
lows that (

∆yt

∆zt

)
= Aβ

(
∆yσ

∆zσ

)
.

Hence, combining these two equations, we obtain

(pAβ + qI)
(

∆yσ

∆zσ

)
= 0.

Since, by hypothesis, the vector is nonzero, p cannot be 0, and −q/p is an
eigenvalue of Aβ . These are 0 and α + β. �
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B.2 Numerical Integration

We decided to use the fact that y̌ and ž are known outside of the domain
of interest Ω in the numerical procedure. We compared this approach with a
global integration relying on the preceding analysis. But the latter gave, not
surprisingly, less precise results close to the boundary of Ω.

Hence, the boundary conditions in (t, σ) are also affine but the domain is
not rectangular, the range in σ is a function of t. Let σ� = σ0 + �δσ where
� = 0, . . . , N − 1 are the values of the discretization of the variable σ with a
step of δσ on the domain (t, σ) = [0, tα] × [0, (α + β)T + δσ] including Ωσ. We
shall explain this choice hereafter.

At any time t ≤ tα, we consider the vector of fixed dimension 2N × 1:

Y β(t) =

⎛⎜⎜⎜⎜⎜⎜⎝

Y β(t, σ0)
...

Y β(t, σ�)
...

Y β(t, σN−1)

⎞⎟⎟⎟⎟⎟⎟⎠ with Y β(t, σ�) =
(

y(t, σ�)
z(t, σ�)

)
.

We denote by Y β
σ (t) the vector of the derivatives in σ of the vector Y β(t). We

will approach it by finite differences in σ. Thus the PDE system leads to an
ODE system of 2N equations of the form

Y β
t (t) = M(t)Y (t). (35)

The interest of the new domain is that we will work with a matrix M(t) of
constant dimension.

In the domain σ ≥ (α + β)(T − t), we replace the PDE system (34) by the
system satisfied by x = y, z = x− Z with ẋ = βx, i.e.:{

ẏ = βy ,
ż = βy .

(36)

This leads to a matrix M(t) whose lines corresponding to σ ≤ (α + β)(T − t)
implement Equation (34) while those corresponding to σ ≥ (α + β)(T − t)
implement Equation (36). Hence, M is time varying.

To solve the ODE system (35), we have tried different numerical methods of
lower order (1 or 2). Some methods exhibit numerical instabilities, but we got
good results with a second-order centered finite difference scheme in “space”
and a Runge–Kutta method of order two in time.
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Appendix C: Proofs of the Lemmas

C.1 Proof of Lemma 3.1

Lemma 3.1. For any P’s control srategy ϕ in the game G, and any positive δ,
there exists an admissible (causal) strategy in the game G′ that yields against
any admissible v(·) a payoff within δ of the payoff obtained with ϕ in the game
G.

Proof. We shall only prove that y can be approximated uniformly arbitrarily
well. The proof for its integral follows. In fact, integrating (2) yields

y(t) = y(0) exp
(∫ t

0

v(τ) dτ

)
+ ȳ(t),

where only ȳ depends on u. Thus it suffices to approximate ȳ. Let δ be a given
positive number; we shall show how to approximate ȳ(t) within δ uniformly in
t and v(·).

Pick a strategy ϕ. For a disturbance v(·) given, it generates a time function
(or distribution) u(·) that may contain impulses. One has

ȳ(t) =
∫ t

0

exp
(∫ t

s

v(τ) dτ

)
u(s) ds .

We decompose u(·) as u(t) = u+(t) − u−(t), its positive and negative parts
(including the positive and negative impulses). In an obvious way, this induces
a decomposition ȳ = ȳ+ − ȳ−.

Proposition C.1. Under our hypotheses, we may assume that both ȳ+ and ȳ−

are uniformly bounded over all admissible v(·)’s for any initial state.

Proof of the Proposition. In investigating the value of the game G, we may
restrict our attention to strategies ϕ that do better than a given strategy ϕ0.
Choose, for instance, ϕ0 as the strategy made of an initial jump to y = 0 at
time t = 0 (i.e., t0 = 0 and u0 = −y(0)), and u = 0 from then on. It yields
z(T ) = z(0) − Cε(−y(0)). Thus we restrict our attention to strategies ϕ that
yield a larger z(T ) for all admissible v(·)’s. Now, since y(t) is by hypothesis
uniformly bounded, so is

∫ T

0
v(t)y(t) dt. According to (3), z(T ) = z(0)+

∫ T

0
(vy−

Cεu) dt. Therefore,
∫ T

0
Cεu(t) dt is also uniformly bounded. But if we let C =

max{C+,−C−} (C is positive), we have Cεu ≥ C|u|. Hence the integral of |u|
is uniformly bounded, and a fortiori those of u+ and u−, and finally also ȳ+

and ȳ−. �

We shall do the approximation for each of these two parts separately. Hence,
from now on, we may assume that u(t) ≥ 0, or more precisely that

∫
|u(s)|ds =∫

u(s) ds.
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Let therefore ymax be an (uniform) upper bound of ȳ(t), pick ε (< 1 and)
such that εymax ≤ δ/2, and let h be a positive number such that, for every
admissible v(·), and ∀t ∈ [h, T ],∣∣∣∣exp

(∫ t

t−h

v(τ) dτ

)
− 1
∣∣∣∣ ≤ ε

2
≤ 1

2

(this is possible uniformly in v(·) because |v(t)| is bounded), and thus a fortiori,
∀s ∈ [t− h, t],∣∣∣∣exp

(∫ t

s

v(τ) dτ

)
− 1
∣∣∣∣ ≤ ε

2
≤ ε exp

(∫ t

s

v(τ) dτ

)
. (37)

We advocate the impulses-only strategy using impulses of amplitude uk at
the instants tk = kh, k ∈ N as follows:

uk =
∫ tk

tk−h

u(t) dt .

This yields for ȳ a time function that we denote ỹ:

ỹ(t) =
∑

k|tk<t

uk exp
(∫ t

tk

v(τ) dτ

)
.

The difference ∆(t) = |ȳ(t)− ỹ(t)| can be written as

∆(t) =

∣∣∣∣∣∣
∑

k|tk<t

∫ tk

tk−h

[
exp
(∫ tk

s

v(τ) dτ

)
− 1
]

u(s) ds exp
(∫ t

tk

v(τ) dτ

)∣∣∣∣∣∣ ,
hence

∆(t) ≤
∑

k|tk<t

∫ tk

tk−h

∣∣∣∣exp
(∫ tk

s

v(τ) dτ

)
− 1
∣∣∣∣u(s) ds exp

(∫ t

tk

v(τ) dτ

)
.

According to (37),

∆(t) ≤ ε
∑

k|tk<t

∫ tk

tk−h

exp
(∫ tk

s

v(τ) dτ

)
u(s) ds exp

(∫ t

tk

v(τ) dτ

)
= εȳ(t) .

Hence, for each of the positive and negative parts of ȳ we have

ỹ(t) ∈ [(1− ε)ȳ(t) , (1 + ε)ȳ(t)] ⊂
[
ȳ(t)− δ

2
, ȳ(t) +

δ

2

]
.
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C.2 Proof of Lemma 3.4

We consider the following discrete scheme associated to Joshua’s transform:⎧⎪⎨⎪⎩
t((k + 1)h) = t(kh) + hj̄,

x((k + 1)h) = x(kh) + hj̄vx(kh),

y((k + 1)h) = y(kh) + h(j̄vy(kh) + j),

with the payoff defined with t(T ) = T and

J = M(u(T )) +
N−1∑
k=0

h(−j̄vy(kh) + Cjj) ,

and the controls j ∈ {−1, 0, 1} and v ∈ [−αh, βh], where (see (26)):

αh =
αh

h
=

1
h

(1− e−αh) , βh =
βh

h
=

1
h

(eβh − 1) .

We notice that αh → α and βh → β as h→ 0.
The Isaacs equation of the above multistage game concerns a function V h

and reads:

∀(t, x, y) ∈ [0, T ]× R
+ × R ,

0 = min
j∈{−1,0,1}

max
v∈[−αh,βh]

[
V h(t + hj̄, x + hj̄vx, y + h(j̄vy + j))

−V h(t, x, y) + h(−j̄vy + Cjj)
]
,

∀t ≥ T , V h(t, x, y) = M(x).

(38)

Now, we want to prove that V h converges towards V , where V is the viscosity
solution of the following Isaacs equation, associated to the continuous Joshua
form:

0 = min
j

max
v∈[−α,β]

[
∂V

∂t
j̄ +

∂V

∂x
j̄vx +

∂V

∂y
(j̄vy + j) + (−j̄vy + Cjj)

]
with the same boundary condition.

We recall the definition of a viscosity solution of the last Isaacs equation. A
bounded uniformly continuous function V is called a viscosity solution of the
Isaacs equation above if for each φ ∈ C1(R3), the following hold:

(1) if V − φ attains a strict local maximum at a0 = (t0, x0, y0), then

min
j

max
v

[
∂φ

∂t
(a0)j̄ +

∂φ

∂x
(a0)j̄vx0 +

∂φ

∂y
(a0)(j̄vy0 + j)− j̄vy0 + Cjj

]
≥ 0 ,
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(2) if V − φ attains a strict local minimum at a1 = (t1, x1, y1), then

min
j

max
v

[
∂φ

∂t
(a1)j̄ +

∂φ

∂x
(a1)j̄vx1 +

∂φ

∂y
(a1)(j̄vy1 + j)− j̄vy1 + Cjj

]
≤ 0 .

Proof. Notice first that, expanding the minj according to the three possible
values of j, and replacing hv ∈ [−αh, βh] by

v ∈ [−αh, βh], (38) also reads

min
{

max
v∈[−αh,βh]

[
V h(t + h, (1 + v)x, (1 + v)y)− V h(t, x, y)− vy

]
,

V h(t, x, y − h)− C−h , V h(t, x, y + h) + C+h
}

,

so that, using Remark 3.1 we may conclude that V h coincides with Wh,h. Thus,
we know from Lemma 3.3 that there exists a V (called W in the body of the
paper) such that

V h → V uniformly on any compact of R
3when h→ 0 . (39)

Let φ ∈ C1(R3) and a0 be a strict local maximum for V − φ. Then there exists
a closed ball B centered at a0 such that

(V − φ)(a0) > (V − φ)(a), ∀a ∈ B. (40)

Let now ah
0 be a maximum point for V h − φ over B.

Lemma C.1.

ah
0 → a0, when h→ 0. (41)

Proof. ah
0 remains in the compact B. Let ā be a cluster point of the sequence

{ah
0} and {ahi

0 } be a subsequence converging to ā. By definition we have that
(V hi − φ)(ahi

0 ) ≥ (V hi − φ)(a), for all a ∈ B, and then, by continuity of V hi

and φ and using (39), we get (V − φ)(ā) ≥ (V − φ)(a), ∀a ∈ B. By unicity of
the maximum, we have that ā = a0. The cluster point ā is then unique, so the
whole sequence ah

0 converges towards a0. �

Now since h→ 0, we have that (th0 + hj̄, xh
0 + hj̄vxh

0 , yh
0 + h(j̄vyh

0 + j)) remains
in B. Since ah

0 is a maximum point for V h − φ over B, we have

V h(th0 , xh
0 , yh

0 )− φ(th0 , xh
0 , yh

0 )

≥ V h
(
th0 + hj̄, xh

0 + hj̄vxh
0 , yh

0 + h(j̄vyh
0 + j)

)
− φ
(
th0 + hj̄, xh

0 + hj̄vxh
0 , yh

0 + h(j̄vyh
0 + j)

)
,
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Using the last inequality together with Equation (38) and also using the mono-
tonicity of the “minmax” operator, we get the following, where v is always
understood to lie in [−αh, βh]:

0 = min
j

max
v

[
V h(th0 + hj̄, xh

0 + hj̄vxh
0 , yh

0 + h(j̄vyh
0 + j))

−V h(th0 , xh
0 , yh

0 ) + h(−j̄vyh
0 + Cjj)

]
≤ min

j
max

v

[
φ(th0 + hj̄, xh

0 + hj̄vxh
0 , yh

0 + h(j̄vyh
0 + j))

−φ(th0 , xh
0 , yh

0 ) + h(−j̄vyh
0 + Cjj)

]
.

Since φ ∈ C1(Rn), from the last inequality, we get

0 ≤ min
j

max
v

h

[
∂φ

∂t
(bh)j̄ +

∂φ

∂x
(bh)j̄vxh

0 +
∂φ

∂y
(bh)(j̄vyh

0 + j)− j̄vyh
0 + Cjj

]
,

where bh is in the segment [(th0 , xh
0 , yh

0 ), (th0 + hj̄, xh
0 + hj̄vxh

0 , yh
0 + (j̄vyh

0 +j))].
Since h > 0, we may divide through by h; then it follows that

0 ≤ min
j

max
v

[
∂φ

∂t
(bh)j̄ +

∂φ

∂x
(bh)j̄vxh

0 +
∂φ

∂y
(bh)(j̄vyh

0 +j)− j̄vyh
0 + Cjj

]
.

Since ah
0 converges towards a0 and since h converges towards zero, it follows that

bh also converges towards a0. Moreover, the bracket is continuous in (v, (t, x, y)),
therefore in (v, h) and therefore uniformly continuous in (v, h) in a (closed)
neighborhood of [−α, β]×{0}. Thus we may pass to the limit for each value of
j to conclude that

min
j

max
v∈[−α,β]

[
∂φ

∂t
(a0)j̄ +

∂φ

∂x
(a0)j̄vx0 +

∂φ

∂y
(a0)(j̄vy0 + j)− j̄vy0 + Cjj

]
≥ 0.

The proof is the same, mutatis mutandis, for point (2) of the definition of the
viscosity solution of the Isaacs equation considered. �
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