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Abstract

We prove the missing uniqueness theorem which makes our proba-
bility-free theory of option pricing in the interval market model, essen-
tially complete.
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1 Introduction

In a series of papers starting with [4], and culminating, so far, with [6, 5, 7]
we have developped a probability-free theory of option pricing, both for
vanilla options and digital options. The most comprehensive account of this
theory is in the unpublished doctoral dissertation of Stéphane Thiery [13].
A rather complete account is to appear in the volume [8].

The main claims of that new approach are, on the one hand, the pos-
sibility of constructing a consistent theory of hedging portfolios with either
continuous or discrete time trading paradigms, the former being the limit
of the latter for vanishing time steps, with one and the same (continuous
time) market model, and, on the other hand, to accommodate transaction
costs and closing costs in a natural way, with a nontrivial hedging portfolio.

It may also be argued that although it seems somewhat un-natural, still
our market model implies much less knowledge about the future market
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prices than the classical probabilistic Samuelson model, used in the Black
and Scholes theory. A discussion of the strengths and weaknesses of the new
approach, as well as of related contributions in the literature, mostly [1] and
[10], can be found in [7].

The reference [13] stresses that the last missing item is a uniqueness
theorem for the viscosity solution of a particular, highly degenerate, Isaacs
Differential Quasi Variational Inequality (DQVI). In the article [7], we got
around that difficulty by resorting to a refined form of Isaacs’verification the-
orem. However, on the one hand, this relies on the true, but unpublished,
fact that the viscosity condition implies satisfaction of our old “corner con-
ditions” [3], and on the other hand, it is much less satisfactory than directly
proving that uniqueness.

In this article, we sketch the overall context and prove the uniqueness
sought. Notice, however, that the present proof does not account for the
discontinuous payment digital option, while that of [3] can be extended to
that case, thanks to the concept of barrier.

2 Modelization

2.1 Option pricing

Our problem relates to an economy with a fixed, known, riskless interest
rate ρ. In a classical fashion, all monetary values will be assumed to be
expressed in end-time value computed at that fixed riskless rate, so that,
without loss of generality, the riskless rate can be taken as (seemingly) zero.

We consider a financial derivative called option characterized by

• an exercize time, or initial maturity, T > 0,

• an underlying security, such as a stock or currency, whose price on
the market is always well defined. This price at time t is usually
called S(t). As indicated above, we shall use instead its end-time
price u(t) = eρ(T−t)S(t),

• a closure payment M(u(T )). Typical instances are M(u) = max{u−
K, 0} (for a given exercize price K) for a vanilla call, or M(u) =
max{K − u, 0} for a vanilla put.

2.2 Market

We share with Roorda, Engwerda, and Schumacher [12, 11] the view that a
market model is a set Ω of possible price trajectories, and we borrow from
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them the name of interval model for our model. It is defined by two real
numbers τ− < 0 and τ+ > 0, and Ω is the set of all absolutely continuous
functions u(·) such that for any two time instants t1 and t2,

eτ
−(t2−t1) ≤ u(t2)

u(t1)
≤ eτ

+(t2−t1) . (1)

The notation τ ε will be used to handle both τ+ and τ− at a time. Hence,
in that notation, it is understood that ε ∈ {−,+}, sometimes identified to
{−1,+1}. We shall also let (τ?, τ

?) = (minε |τ ε|,maxε |τ ε|).
We shall make use the equivalent characterization

u̇ = τu , u(0) = u0 , τ ∈ [τ−, τ+] . (2)

In that formulation, τ(·) is a measurable function, which plays the role of
the “control” of the market. We shall let Ψ denote the set of measurable
functions from [0, T ] into [τ−, τ+]. It is equivalent to specify a u(·)∈Ω or
a (u(0), τ(·)) ∈ R+ × Ψ. This is an a priori unknown time function. The
concept of nonanticipative strategies embodies that fact.

2.3 Portfolio

A (hedging) portfolio will be composed of an amount v (in end-time value)
of underlying stock, and an amount y of riskless bonds, for a total worth of
w = v + y. In the normalized (or end-value) representation, the bonds are
seemingly with zero interest.

2.3.1 Buying and selling

We let ξ(t) be the buying rate (a sale if ξ(t) < 0), which is the trader’s
control. Therefore we have, in continuous time,

v̇ = τv + ξ . (3)

However, there is no reason to restrict the buying/selling rate, so that there
is no bound on ξ. To avoid mathematical ill-posedness, we explicitly admit
“infinite” buying/selling rate in the form of instantaneous block buy or sale
of a finite amount of stock at time instants chosen by the trader together
with the amount. Thus the control of the trader also involves the choice of
finitely many time instants tk and trading amounts ξk, and the model must
be augmented with

v(t+k ) = v(tk) + ξk , (4)
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meaning that v(·) has a jump discontinuity of size ξk at time tk. Equivalently,
we may keep formula (3) but allow for impulses ξkδ(t− tk) in ξ(·).

We shall therefore let ξ(·) ∈ Ξ, the set of real time functions (or rather
distributions) defined over [0, T ] which are the sum of a measurable function
ξc(·) and a finite number of weighted translated Dirac impulses ξkδ(t− tk).

2.3.2 Transaction costs

We assume that there are transaction costs. In this paper, we assume that
they are proportional to the transaction amount. But we allow for different
proportionality coefficients for a buy or a sale of underlying stock. Hence
let C+ be the cost coefficient for a buy, and −C− for a sale, so that the cost
of a transaction of amount ξ is Cεξ with ε = sign(ξ). We have chosen C−

negative, so that, as it should, that formula always gives a positive cost.
We shall use the convention that when we write Cε(expression), and

except if otherwise specified, the symbol ε in Cε stands for the sign of the
expression. We shall also let (C?, C

?) = (minε |Cε|,maxε |Cε|).
Our portfolio will always be assumed self-financed ; i.e., the sale of one

of the commodities, underlying stock or riskless bonds, must exactly pay for
the buy of the other one and the transaction costs. It is a simple matter to
see that the worth w of the portfolio then obeys

∀t ∈ (tk−1, tk) , ẇ = τv − Cεξc , w(tk−1) = w(t+k−1) , (5)

between two jump instants, and at jump instants,

w(t+k ) = w(tk)− Cεkξk. (6)

This is equivalent to

w(t) = w(0) +

∫ t

0
(τ(s)v(s)− Cεξ(s))ds

= w(0) +

∫ t

0
(τ(s)v(s)− Cεξc(s))ds−

∑
k|tk≤t

Cεkξk .
(7)

2.4 Hedging

2.4.1 Strategies

The initial portfolio is to be created at step 0. As a consequence the seller’s
price is obtained taking v(0) = 0. Then, formally, admissible hedging strate-

4



gies will be functions ϕ : Ω → Ξ which enjoy the property of being nonan-
ticipative:

∀(u1(·), u2(·)) ∈ Ω× Ω, [u1|[0,t) = u2|[0,t)]⇒ [ϕ(u1(·))|[0,t] = ϕ(u2(·))|[0,t]].

(It is understood here that the restriction of δ(t − tk) to a closed interval
not containing tk is 0, and its restriction to a closed interval containing tk
is an impulse.)

In practice, we shall find optimal hedging strategies made of a jump at
initial time, followed by a state feedback law ξ(t) = φ(t, u(t), v(t)).

We shall call Φ the set of admissible trading strategies.

2.4.2 Closing costs

The idea of a hedging portfolio is that at exercise time, the writer is going to
close off its position after abiding by its contract, buying or selling some of
the underlying stock according to the necessity. We assume that it sustains
proportional costs on this final transaction. We allow for the case where
these costs would be different from the running transaction costs because
compensation effects might lower them and also allow for the case without
closing costs just by making their rate 0. Let therefore c+ ≤ C+ and −c− ≤
−C− be these rates.

It is a simple matter to see that, in order to cover both cases where the
buyer does or does not exercise its option, the portfolio worth at final time
should be N(u, v), given for a call and a closure in kind by

N(u, v) = max{cε(−v) , u−K + cε(u− v)} ,

where the notation convention for cε(expression) holds. We expect that on
a typical optimum hedging portfolio for a call, 0 ≤ v(T ) ≤ u(T ). Hence

N(u, v) = max{−c−v , u−K + c+(u− v)} . (8)

In the case of a put, where −u(T ) ≤ v(T ) ≤ 0, we need to replace the above
expression by

N(u, v) = max{−c+v , K − u− c−(u+ v)}. (9)

The case of a closure in cash is similar but leads to less appealing math-
ematical formulas in later developments. The details can be found in [5].
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2.4.3 Hedging portfolio

An initial portfolio (v(0), w(0)) and an admissible trading strategy ϕ, to-
gether with a price history u(·), generate a dynamic portfolio. We set the
following.

Definition 2.1 An initial portfolio (v(0) = 0, w(0) = w0) and a trading
strategy ϕ constitute a hedge at u0 if for any u(·) ∈ Ω such that u(0) = u0

(equivalently, for any admissible τ(·)), the dynamic portfolio thus generated
satisfies

w(T ) ≥ N(u(T ), v(T )) . (10)

Now, we may use (7) at time T to rewrite this:

∀τ(·) ∈ Ψ , N(u(T ), v(T )) +

∫ T

0

(
−τ(t)v(t) + Cεξ(t)

)
dt− w0 ≤ 0 .

This in turn is clearly equivalent to

w0 ≥ sup
τ(·)∈Ψ

[
N(u(T ), v(T )) +

∫ T

0

(
−τ(t)v(t) + Cεξ(t)

)
dt

]
.

We further set the following.

Definition 2.2 The seller’s price of the option at u0 is the worth of the
cheapest hedging portfolio at u0.

The seller’s price at u0 is therefore

P (u0) = inf
ϕ∈Φ

sup
τ(·)∈Ψ

[
N(u(T ), v(T )) +

∫ T

0

(
−τ(t)v(t) + Cεξ(t)

)
dt

]
, (11)

where it is understood that v(0) = 0 and that ξ(·) = ϕ(u0, τ(·)).

3 Solving the minimax impulse control problem

3.1 The related DQVI

We are therefore led to the investigation of the impulse control differential
game whose dynamics are given by (2), (3), and (4) and the criterion by
(11). In a classical fashion we introduce its Isaacs value function:

W (t, u, v) = inf
ϕ∈Φ

sup
τ(·)∈Ψ

[
N(u(T ), v(T )) +

∫ T

t

(
−τ(s)v(s) + Cεξ(s)

)
ds

]
(12)
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where the dynamics are integrated from u(t) = u, v(t) = v. Hence the
seller’s price is P (u0) = W (0, u0, 0).

There are new features in that game, in that, on the one hand, impulse
controls are allowed, and hence an Isaacs quasi-variational inequality (or
QVI; see Bensoussan and Lions [2]) should be at work, but, on the other
hand, impulse costs have a zero infimum. As a consequence, that QVI is
degenerate, and no general result is available. In [6], we introduce the so-
called Joshua transformation that lets us show the following fact.

Theorem 3.1 The function W defined by (12) is a continuous viscosity
solution of the following “differential QVI” (DQVI):

0 = min

{
∂W

∂t
+ max
τ∈[τ−,τ+]

τ

[
∂W

∂u
u+

(
∂W

∂v
− 1

)
v

]
,

∂W

∂v
+ C+ , −

(
∂W

∂v
+ C−

)}
,

W (T, u, v) = N(u, v) .

(13)

This PDE in turn lends itself to an analysis, either along the lines of the
Isaacs–Breakwell theory through the construction of a field of characteristics
for a transformed game as in [6], or using the theory of viscosity solutions
and the representation theorem as outlined in [7]. The solution we seek may
further be characterized by its behavior at infinity. Yet its uniqueness does
not derive from the classical results on viscosity solutions.

3.2 Representation

We introduce two functions v̌(t, u), a representation of the singular manifold,
and w̌(t, u), the restriction of W to that manifold, handled jointly as

V(t, u) =

(
v̌(t, u)

w̌(t, u)

)
.

That pair of functions is entirely defined by a linear PDE that involves the
following two matrices (q− and q+ are defined hereafter in (15)):

S =

(
1 0
1 0

)
and T =

1

q+ − q−

(
τ+q+ − τ−q− τ+ − τ−
−(τ+ − τ−)q+q− τ−q+ − τ+q−

)
,

and it seems to play a very important role in the overall theory. Namely,

Vt + T (Vuu− SV) = 0 . (14)
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The definitions of q+ and q−, as well as the terminal conditions at T for
(14), depend on the type of option considered. For a simple call or put, and
a closure in kind, we have

q−(t) = max{(1 + c−) exp[τ−(T − t)]− 1 , C−} ,
q+(t) = min{(1 + c+) exp[τ+(T − t)]− 1 , C+} . (15)

Notice that qε = Cε for t ≤ tε, with

T − tε =
1

τ ε
ln

1 + Cε

1 + cε
. (16)

The terminal conditions are given, for a call, by

Vt(T, u) =


( 0 0 ) if u <

K

1 + c+
,

(1 + c+)u−K
c+ − c−

( 1 − c− ) if
K

1 + c+
≤ u < K

1 + c−
,

(u u−K ) if u ≥ K

1 + c−

(17)

and symmetric formulas for a put. (All combinations call/put, closure in
kind/in cash, are detailed in [5]). Standard techniques of hyperbolic PDE’s
let us prove that that equation has a unique solution with these terminal
conditions. (See [13].)

In [7], we proved the following fact:

Theorem 3.2 The function W defined by the formula

W (t, u, v) = w̌(t, u) + qε(v̌(t, u)− v) , ε = sign(v̌ − v) , (18)

where qε is given by formula (15) (for a simple call or put), and (v̌ w̌) = Vt
is given by (14) and the terminal conditions (17) for a call (and symmetrical
formulas for a put) is a viscosity solution of (12).

If the uniqueness of the viscosity solution can be proved, this implies that
formula (18) indeed provides the Value of the game problem, and hence
solves the pricing problem via P (u0) = W (0, u0, 0). A huge computational
advantage as compared to integrating (12).

3.3 Discrete trading

We consider also the case where the trader is only allowed bulk trading
(“impulses” in the above setting) at predetermined instants of time tk = kh
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k = 0, 1, . . . ,K, with h a given time step and Kh = T . Everything else
remains unchanged, in particular the market model. A problem interesting
in its own right, and, we shall see, as an approximation to the continuous
trading solution.

A similar analysis leads to a discrete Isaacs equation,

∀k < K,∀(u, v) ,

W h
k (u, v) = min

ξ
max

τ∈[τ−h ,τ
+
h ]

[W h
k+1((1+τ)u, (1+τ)(v+ξ))− τ(v + ξ) + Cεξ],

∀(u, v) , W h
K(u, v) = N(u, v) .

(19)
A carefull analysis shows that its solution {W h

k }k∈{0,...K} can be obtained
via the following procedure. Notice first that qε` := qε(t`) can be computed
via the recursion

qεK = cε ,
qε
k+ 1

2

= (1 + τ εh)qεk+1 + τ εh ,

qεk+1 = εmin{εqε
k+ 1

2

, εCε} ,
(20)

Then, let, for all integer `,

Qε` = ( qε` 1 ) , and Vh` (u) =

(
v̌h` (u)
w̌h` (u)

)
. (21)

Take v̌hK(u) = v̌(T, u), w̌hK(u) = w̌(T, u) as given by (17) for a call (symmet-
rically for a put) and

Vhk (u) =
1

q+
k+ 1

2

− q−
k+ 1

2

(
1 −1

−q−
k+ 1

2

q+
k+ 1

2

)(
Q+
k+1V

h
k+1((1+τ+)u)

Q−k+1V
h
k+1((1+τ−)u)

)
. (22)

We leave to the reader the tedious, but straightforward, task to check that
this is indeed a consistent finite difference scheme for (14). This provides
our preferred fast algorithm to compute the premiums in our theory. As a
matter of fact, we claim the following:

Theorem 3.3 The solution of (19) is given by (20), (21), (22), and (17) for
a call, as

W h
k (u, v) = w̌hk(u) + qεk(v̌

h
k (u)− v) = QεkVhk (u)− qεkv, ε = sign(v̌hk (u)− v).
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Finally, the main theorem of [6], and a central result in that theory, is the
following convergence theorem. (Which can very probably be extended to a
sequence h = T/K, K → ∞ ∈ N.) Let W h(t, u, v) be the Value function of
the minimax problem where the minimizer is allowed to make an impulse at
the initial time t, and then only at the discrete instants tk as defined above.
It is an interpolation of the sequence {W h

k }. (This is the correct definition
of W h(t, u, v). It only appears in [13]).)

Theorem 3.4 Choose h = T × 2−n. As n → ∞ in N, W h converges
uniformly on any compact to a viscosity solution W of the DQVI (13).

Since (22) can be viewed as a finite difference scheme for (14), it is clear
that this limit W is the same function W as given by (18). But here again,
we need a uniqueness theorem of the viscosity solution of (13) to conclude
that the Value of the discrete trading problem converges towards that of the
continuous trading problem.

3.4 Uniqueness

At this point, we know that if the viscosity solution of the DQVI (13) can be
proved unique, we have both an interesting representation formula (18) for
the value function of the continuous trading problem, and a fast algorithm
(22) to approximate it via the Value function of the discrete trading problem.

In order to exploit the technical result of the next section, we need to
introduce a modified problem.

Let R be a fixed positive number, and R ⊂ R+ × R be the region u ∈
[0, R], |v| ≤ R. For the time being, we consider only problems of option
hedging where (u(0), v(0)) ∈ R.

As a consequence, for these problems, and for all t ∈ [0, T ], we have
u(t) ≤ Reτ

+T .
Concerning v(·), the control ξ might send it anywhere in R. But we

know from the analysis according to the Isaacs-Breakwell theory that the
minimizing strategies never create large v(t)’s. As a matter of fact, let W0

be the maximum payoff obtained by the strategy ϕ = 0 (after maximization
in τ(·)) for any (u0, v0) ∈ R. Let a be a large number, chosen satisfying
a > 2 exp(τ+T )[W0/(RC?) + 1], and S = aR. We claim the following:

Proposition 3.1 Any nonanticipative strategy φ that causes |v| > S is
dominated by the strategy φ = 0.
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Proof Let ζ be a positive number, ζ < C? exp(−τ+T )/4τ+. Any nonan-
ticipative strategy φ may be challenged by the control function generated
by the following rule: If v(t − ζ) > S, choose τ(t) = τ− if v(t − ζ) < −R
choose τ(t) = τ+. Due to the small time delay ζ, it does generate an ad-
missible control function τ(·) against a nonanticipative strategy φ, which,
in turn, cannot anticipate this control. It is easy to check that whether we
reach v = S or v = −S, from |v0| ≤ R, the cost

∫
Cεξ(t)dt is larger than

C?(e
−τ+TS −R).

On the other hand, under the rule proposed to generate τ(·), after at
most a delay ζ, we shall have τv < 0, so that the benefit accrued to the
minimizer is not more than

∫ t
t−ζv(s) ds ≤ S(exp(τ+ζ) − 1) < 2Sτ+ζ <

C? exp(−τ+T )S/2. Hence, any such excursion in v costs the minimizer at
least C?(exp(−τ+T )a/2−1)R > W0. Since the terminal cost N(u(T ), v(T ))
is itself non negative, that strategy φ does less well than φ = 0.

As a consequence, for initial states in R, we may, without modifying the
Value, restrict the set of admissible strategies to strategies that keep |v| ≤ S.
With these strategies, the term

∫
τ(t)v(t) dt is bounded. And therefore, we

can furthermore restrict the admissible strategies to be such that
∫
Cεξ(t) dt

be also bounded, and therefore also
∫
|ξ(t)| dt. (Say, by (W0+1+τ?ST )/C?.)

Let Φb the set of admissible non anticipative strategies thus restricted.
We now modify the original problem as follows: let P[a,b] be the projec-

tion of R on [a, b] ⊂ R and,

Nb(u, v) = N(P
[0,eτ+TR]

(u),P[−S,S](v)) , Lb(v) = P[−S,S](v) . (23)

We keep the same dynamics as we had, and define the pay-off as

Wb(0, u0, v0) = inf
φ∈Φb

sup
τ∈Ψ

[
Nb(u(T ), v(T )) +

∫ T

0

(
−τLb(v(t)) + Cεξ(t)

)
dt

]
.

(24)
We have modified the problem only for states outside [0, eτ

+TR] × [−S, S],
never reached from initial states (u0, v0) in R. Hence in R, the value of the
modified game coincides with that of the original game: Wb|R = W |R.

The new point is that now, Wb is a bounded viscosity solution of the
modified DQVI

0 = min

{
∂Wb

∂t
+ max
τ∈[τ−,τ+]

τ

[
∂Wb

∂u
u+

∂Wb

∂v
v − Lb(v)

]
,

∂Wb

∂v
+ C+ , −

(
∂Wb

∂v
+ C−

)}
,

Wb(T, u, v) = Nb(u, v) .

(25)
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Following the lines of [9], it can be shown to be uniformly continuous, i.e.
in the space BUC of bounded uniformly continous functions.

We prove in the next section the following technical result:

Theorem 3.5 The DQVI (25) admits a unique BUC viscosity solution.

One can look at the discrete trading problem associated to the bounded
pay-off (24), and define as above a function W h

b (t, u, v) solution of the related
minimax problem. As soon as the step size h is smaller than C?/4τ?, it holds
as well that the restrictions of the original and modified discrete trading
values W h|R and W h

b |R coincide. The same proof as in [7] shows that
as h → 0 (in a dyadic fashion), W h

b converges to a viscosity solution of
(25). But this viscosity solution being proved unique, we may conclude that
W h
b →Wb, uniformly on every compact. As a consequence,

W h|R = W h
b |R →Wb|R = W |R .

Therefore, in R, we do have uniform convergence of the Value of the discrete
trading problem to that of the continous trading problem. But R was picked
arbitrarily. Therefore convergence occurs for all of R2, uniformly on any
compact.

4 Proof of the uniqueness theorem

We now set to prove theorem (3.5). We ommit all indices b, but it should
be understood all along that we are dealing with the modified problem.

4.1 The proof with three lemmas

4.1.1 Proof of the theorem

We shall consider the DQVI for V = etW . It satisfies another DQVI, (35).
Assume that it has two BUC viscosity solutions V and V ′. Choose ε > 0
and ε < ‖V ‖∞ (it is to go to 0). Choose µ ∈ (1 − ε/‖V ‖∞, 1), and let
U = µV . Then,

∀(t, u, v) , |V (t, u, v)− U(t, u, v)| ≤ ε .

Let M = supt,u,v(U(t, u, v)− V ′(t, u, v)). It follows that

sup
t,u,v

(V (t, u, v)− V ′(t, u, v)) ≤M + ε . (26)

We now claim the following lemma:
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Lemma 4.1 There exists µ? ∈ (1− ε/‖V ‖∞, 1) and a constant K > 0, both
depending only on the data of the problem, such that, if µ ∈ (µ?, 1), then
M ≤ Kε.

As a consequence,

sup
t,u,v

(V (t, u, v)− V ′(t, u, v)) ≤ (K + 1)ε . (27)

Since ε was chosen arbitrary, it follows that for all (t, u, v), V (t, u, v) ≤
V ′(t, u, v). But since the argument is symmetric in V and V ′, necessarily
V = V ′. Q.E.D.

4.1.2 Proof of lemma 4.1

Notice first that if M ≤ 0, then according to (26), supt,u,v(V (t, u, v) −
V ′(t, u, v)) ≤ ε, and (27) is satisfied for any positive K. We may there-
fore, from now on, concentrate on the case M > 0.

Let, thus 0 < ε < ‖V ‖∞ be given, and pick µ such that

1 > µ ≥ µ? = 1− ε

max{‖V ‖∞, `eT ,meT }
< 1 . (28)

For three positive numbers α, β, γ (that we shall pick small later on), intro-
duce the test function φα,β,γ : [0, T ]× R2 × [0, T ]× R2 → R:

φα,β,γ(t, u, v, t′, u′, v′) = U(t, u, v)− V ′(t′, u′, v′)− α(u2 + u′2 + v2 + v′2)

−(u− u′)2 + (v − v′)2

β2
− (t− t′)2

γ2
.

This function reaches its maximum at

maxφα,β,γ(t, u, v, t′, u′, v′) = φα,β,γ(t̄, ū, v̄, t̄′, ū′, v̄′) =: Mα,β,γ .

We claim the following two lemmas, both for µ ∈ (µ?, 1) fixed, and under
the hypothesis that M > 0:

Lemma 4.2 There exists α?, β?, γ? all positive, such that for any α ≤ α?,
β ≤ β?, γ ≤ γ?,

|U(t̄, ū, v̄)− V ′(t̄′, ū′, v̄′)−M| ≤ ε , (29)

α(ū2 + ū′2 + v̄2 + v̄′2) +
(ū− ū′)2 + (v̄ − v̄′)2

β2
+

(t̄− t̄′)2

γ2
≤ 2ε . (30)

13



Let τ? = max{τ+,−τ−}.

Lemma 4.3 For any α ≤ α?, β ≤ β?, γ ≤ γ?,

U(t̄, ū, v̄)− V ′(t̄′, ū′, v̄′) ≤ max{2, 7τ?}ε . (31)

The main lemma follows clearly, with K = max{3, 7τ?+1}, from inequations
(29) and (31).

Inequation (30) is used in the proof of lemma 4.3. We split the assertions
in two separate lemmas, because the first one does not make use of the DQVI
while the second one does.

4.2 Proof of the lemmas 4.2 and 4.3

4.2.1 Proof of lemma 4.2

Assume that M > 0. Choosing (t, u, v) = (t′, u′, v′), it follows that

∀(t, u, v) , Mα,β,γ ≥ U(t, u, v)− V (t, u, v)− 2α(u2 + v2) . (32)

Pick a point (t?, u?, v?) such that M is approached within ε/2:

U(t?, u?, v?)− V ′(t?, u?, v?) ≥M− ε/2 ,

and let α1 = ε/[4(u?2 + v?2)] if (u?2 + v?2) 6= 0, (and α1 =∞ otherwise). It
follows that for any α ≤ α1,

U(t?, u?, v?)− V ′(t?, u?, v?)− 2α(u?2 + v?2) ≥M− ε ,

and using (32),
M− ε ≤Mα,β,γ . (33)

Hence,

−ε ≤M− ε ≤Mα,β,γ ≤ ‖U‖∞ + ‖V ′‖∞ − α(ū2 + ū′2 + v̄2 + v̄′2)

−(ū− ū′)2 + (v̄ − v̄′)2

β2
− (t̄− t̄′)2

γ2
.

Let r2 := ‖V ‖∞ + ‖V ′‖∞ + ε, and notice that ‖U‖∞ < ‖V ‖∞. It follows
that

α(ū2 + ū′2 + v̄2 + v̄′2) +
(ū− ū′)2 + (v̄ − v̄′)2

β2
+

(t̄− t̄′)2

γ2
≤ r2 ,

14



and in particular that

α(ū2 + ū′2 + v̄2 + v̄′2) ≤ r2 , |ū− ū′| ≤ rβ , |v̄ − v̄′| ≤ rβ , |t̄− t̄′| ≤ rγ .
(34)

Now, V ′ is uniformly continuous by hypothesis. Let, for u and v positive

n(u, v) = sup
|t− t′| ≤ v
|u− u′| ≤ u
|v − v′| ≤ u

|V ′(t, u, v)− V ′(t′, u′, v′)|

Clearly, n is decreasing with its arguments and decreases to 0 with u + v.
Using (34), it follows that

U(t̄, ū, v̄)−V ′(t̄′, ū′, v̄′) ≤ U(t̄, ū, v̄)−V ′(t̄, ū, v̄)+n(rβ, rγ) ≤M+n(rβ, rγ) .

Choose β1 and γ1 such that for β ≤ β1 and γ ≤ γ1, n(rβ, rγ) ≤ ε. Using
again (33), we get

M− ε ≤Mα,β,γ ≤ U(t̄, ū, v̄)− V ′(t̄′, ū′, v̄′) ≤M + ε .

Conclusions (29) and (30) of the lemma follow.

4.2.2 Modified DQVI’s

We first apply a classical transformation to DQVI (13) introducing

V (t, u, v) := etW (t, u, v) ,

which is BUC if and only if W is. Now, W is a viscosity solution of (13) if
and only if V is a viscosity solution of the modified DQVI:

∀(t, u, v) ∈ [0, T )× R2,

0 = min

{
∂V

∂t
− V (t, u, v) + max

τ∈[τ−,τ+]
τ

[
∂V

∂u
u+

∂V

∂v
v − etL(v)

]
,

∂V

∂v
+ etC+ ,−∂V

∂v
− etC−

}
V (T, u, v) = eTM(u, v) , ∀(u, v) ∈ R2 .

(35)
We shall also make use of the following remark. For any positive µ, that

we shall take smaller than one, let U(t, u, v) = µV (t, u, v). It is a viscosity
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solution of the third DQVI

∀(t, u, v) ∈ [0, T )× R2,

0 = min

{
∂U

∂t
− U(t, u, v) + max

τ∈[τ−,τ+]
τ

[
∂U

∂u
u+

∂U

∂v
v − µetL(v)

]
,

∂U

∂v
+ µetC+ ,−∂U

∂v
− µetC−

}
U(T, u, v) = µeTM(u, v) , ∀(u, v) ∈ R2 .

(36)
As a matter of fact, the DQVI (35) is a particular case of this one with
µ = 1. We gave it separately for reference hereafter.

4.2.3 Proof of lemma 4.3

Case t̄ and t̄′ smaller than T By definition of (t̄, ū, v̄) and (t̄′, ū′, v̄′), we
have

U(t̄, ū, v̄)− V ′(t̄′, ū′, v̄′)− α(ū2 + ū′2 + v̄2 + v̄′2)− (ū−ū′)2+(v̄−v̄′)2
β2 − (t̄−t̄′)2

γ2
≥

U(t, u, v)− V ′(t̄′, ū′, v̄′)− α(u2 + ū′2 + v2 + v̄′2)− (u−ū′)2+(v−v̄′)2
β2 − (t−t̄′)2

γ2
,

and also

U(t̄, ū, v̄)− V ′(t̄′, ū′, v̄′)− α(ū2 + ū′2 + v̄2 + v̄′2)− (ū−ū′)2+(v̄−v̄′)2
β2 − (t̄−t̄′)2

γ2
≥

U(t̄, ū, v̄)− V ′(t′, u′, v′)− α(ū2 + u′2 + v̄2 + v′2)− (ū−u′)2+(v̄−v′)2
β2 − (t̄−t′)2

γ2
.

Define the two test functions:

φ(t, u, v) = V ′(t̄′, ū′, v̄′) + α(u2 + ū′2 + v2 + v̄′2) + (u−ū′)2+(v−v̄′)2
β2 + (t−t̄′)2

γ2
,

φ′(t′, u′, v′) = U(t̄, ū, v̄)− α(ū2 + u′2 + v̄2 + v′2)− (ū−u′)2+(v̄−v′)2
β2 − (t̄−t′)2

γ2
.

The first inequality above means that (t̄, ū, v̄) is a maximal point of U − φ,
and the second that (t̄′, ū′, v̄′) is a minimal point of V ′ − φ′. Using the
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definition of a viscosity solution, it follows that1

at t̄, ū, v̄ , min

{
∂φ

∂t
− U + max

τ∈[τ−,τ+]
τ

[
∂φ

∂u
ū+

∂φ

∂v
v̄ − µet̄L

]
,

∂φ

∂v
+ µet̄C+ ,−∂φ

∂v
− µet̄C−

}
≥ 0,

(37)

at t̄′, ū′, v̄′ , min

{
∂φ′

∂t′
− V ′ + max

τ∈[τ−,τ+]
τ

[
∂φ′

∂u′
ū′ +

∂φ′

∂v′
v̄′ − et̄

′
L

]
,

∂φ′

∂v′
+ et̄

′
C+ ,−∂φ

′

∂v′
− et̄

′
C−

}
≥ 0,

(38)

The first inequality can be decomposed into three inequalities:

2
t̄− t̄′

γ2
− U(t̄, ū, v̄)

+ max
τ∈[τ−,τ+]

2τ

[
αū2 +

ū− ū′

β2
ū+ αv̄2 +

v̄ − v̄′

β2
v̄ − µ

2
et̄L(v̄)

]
≥ 0,

(39)

−µet̄C+ ≤ 2αv̄ + 2
v̄ − v̄′

β2
≤ −µet̄C− . (40)

The second inequality reads

min

{
2
t̄− t̄′

γ2
− V ′(t̄′, ū′, v̄′)+

max
τ∈[τ−,τ+]

2τ

[
−αū′2 +

ū− ū′

β2
ū′ − αv̄′2 +

v̄ − v̄′

β2
v̄′ − 1

2
et̄
′
L(v̄′)

]
,

−2αv̄′ + 2
v̄ − v̄′

β2
+ et̄

′
C+ , 2αv̄′ − 2

v̄ − v̄′

β2
− et̄

′
C−

}
≤ 0.

(41)

We want, now, to use the inequalities (40) to show that the last two terms
of (41) can be made positive, which will imply that the first one is negative.
Let us therefore write the following string of inequalities, which makes use

1Our sign convention for the Isaacs equation follows that of control theory rather than
that of the calculus of variations. It follows that the roles of maximum and minimum are
reversed in the definition of viscosity super- and sub-solutions.
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of (40) between the second and the third line, then of (34):

−2αv̄′ + 2
v̄ − v̄′

β2
+ et̄

′
C+ =

2αv̄ + 2
v̄ − v̄′

β2
+ µet̄C+ − 2α(v̄ + v̄′) + (et̄

′ − µet̄)C+ ≥

−2α(|v̄|+ |v̄′|) + (et̄
′ − et̄)C+ + (1− µ)et̄C+ ≥

−4r
√
α− eT rγC+ + (1− µ)C+ .

Hence, choose

α2 = min

{
α1 ,

(1− µ)2C+2

64r2

}
and

γ2 = min

{
γ1 , e

−T 1− µ
2r

}
.

The choice of α ≤ α2, γ ≤ γ2 insures that this term is positive, without
destroying the effects sought with the choice of α1 and γ1.

In a similar fashion, we have

2αv̄′ − 2
v̄ − v̄′

β2
− et̄

′
C− =

−2αv̄ − 2
v̄ − v̄′

β2
− µet̄C− + 2α(v̄ + v̄′)− (et̄

′ − µet̄)C− ≥

−4r
√
α+ eT rγC− − (1− µ)C− .

Again, define

α3 = min

{
α2 ,

(1− µ)2C−
2

64r2

}
and

γ3 = min

{
γ2 , e

−T 1− µ
2r

}
,

and the choice α ≤ α3, γ ≤ γ3 insures that both terms are positive.
Therefore, with these choices of parameters α, β, γ, we have

2
t̄− t̄′

γ2
− V ′(t̄′, ū′, v̄′)+

max
τ∈[τ−,τ+]

2τ

[
−αū′2 +

ū− ū′

β2
ū′ − αv̄′2 +

v̄ − v̄′

β2
v̄′ − 1

2
et̄
′
L(v̄′)

]
≤ 0 .

(42)
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We now make the difference (42)-(39), and make use of τ? = max{τ+ ,−τ−}
and the fact

max
τ∈[τ−,τ+]

τA− max
τ∈[τ−,τ+]

τB ≤ max
τ∈[τ−,τ+]

τ(A−B) ≤ τ?|A−B|.

This yields

U(t̄, ū, v̄)− V ′(t̄′, ū′, v̄′) ≤ 2τ?
[
α(ū2 + ū′2 + v̄2 + v̄′2) +

(ū− ū′)2 + (v̄ − v̄′)2

β2

+
1

2
(et̄
′
L(v̄′)− µet̄L(v̄))

]
Using (30), the first line of the r.h.s. above is less than 4τ∗ε for any
(α, β, γ) ≤ (α1, β1, γ1), and a fortiori for (α, β, γ) ≤ (α3, β3, γ3). Also

et̄
′
L(v̄′)− µet̄L(v̄) = (et̄

′ − et̄)L(v̄′) + et̄(L(v̄′)− L(v̄)) + (1− µ)L(v̄)

≤ eT [rγ`+ |L(v̄′)− L(v̄)|+ (1− µ)`]

According to our choice (28) of µ, the last term in the r.h.s. above is
not larger than ε. Let β4 be small enough so that, for any |v̄′ − v̄| ≤ rβ4,
|L(v̄′)−L(v̄)| ≤ ε, which is possible since L is uniformly continuous. Picking
β ≤ β4, and γ ≤ γ4 = min{γ3, ε/(e

Tr`)}, the first two terms are also not
larger than ε. Therefore, with this choice of (α, β, γ), we have

0 < U(t̄, ū, v̄)− V ′(t̄′, ū′, v̄′) ≤ 7τ?ε.

It remains to use inequality (29) to get M ≤ (7τ?+1)ε. This is the inequality
M ≤ Kε foretold in section 4.1.1.

Case t̄ = T or t̄′ = T If t̄ = T , it follows that U(t̄, ū, v̄) = µeTM(ū, v̄).
It also holds that V ′(t̄, ū, v̄) = eTM(ū, v̄) and |V ′(t̄′, ū′, v̄′) − V ′(t̄, ū, v̄)| ≤
n(rβ, rγ) ≤ ε. (this last inequality as soon as β ≤ β1 and γ ≤ γ1.) Remem-
ber that ‖M‖∞ = m and (28). Hence

U(t̄, ū, v̄)− V ′(t̄′, ū′, v̄′) ≤ (1− µ)eTm+ n(rβ, rγ) ≤ 2ε .

If t̄′ = T , V ′(t̄′, ū′, v̄′) = eTM(ū′, v̄′). Choose β5 < β4 and γ5 ≤ γ4

such that for |u − u′| ≤ rβ5, |v − v′| ≤ rβ5 and |t − t′| ≤ rγ5, it results
|U(t, u, v)−U(t′, u′, v′)| ≤ ε. (This is possible since, as V ′, U is assumed to
be uniformly continuous.) It results that

U(t̄, ū, v̄)− V ′(t̄′, ū′, v̄′) ≤ ε+ (µ− 1)eTM(ū′, v̄′) ≤ ε+ (1− µ)eTm ≤ 2ε .
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Finally, the case where t̄ = t̄′ = T is taken care of by any of the above
two.

We may now set α? = α3, β? = β5 and γ? = γ5, and the two lemmas are
proved, hence also lemma 4.1 and the theorem.
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