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Biocore team, Université Côte d’Azur-INRIA, BP 93, 06902 Sophia Antipolis
Cedex, France
pierre.bernhard@inria.fr

Marc Deschamps
CRESE EA3190, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
marc.deschamps@univ-fcomte.fr

Definition paragraph

One seminal question in social choice theory was: is it possible to find a social
choice function such that each agent is always better off when telling the truth con-
cerning his preferences no matter what the others report? In other words, can we
find a strategy-proof voting rule? With at least three alternatives and two voters the
answer is clearly no under a very general framework, as was proved independently
by Allan Gibbard and Mark Satterthwaite. Since then, the Gibbard-Satterthwaite
theorem is at the core of social choice theory, game theory and mechanism design.

1 Introduction

Since K. Arrow’s 1951 analysis, which marks the revival of the theory of social
choice, economists investigate from an axiomatic point of view the aggregation of
individual preferences in order to obtain a social welfare function (i.e a complete
and transitive ranking based on the individual preferences) or a social choice func-
tion (i.e one alternative from the individual preferences). Such questions concern
huge domains of human beings, for example, the family’s choice of the walls color
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in the living room, the choice of the Palme d’Or winner by the jury of the Cannes
International Film Festival, or the vote for the President of the European Commis-
sion. Thus, in addition to his (im)possibility theorem, K. Arrow has initiated a new
domain in economic analysis.

Since then, the question of the strategic behavior of individuals during an elec-
tion was raised again on several levels. Indeed for a very long time, since we find
for example a letter from Pline the Younger in Roman Antiquity, the question of
manipulation had attracted attention. Whether playing on who will be a voter, who
can be a candidate, the choice of the voting rule, abstention, beliefs about prefer-
ences or preferences expressed during the vote, the idea that at least one individual
can do a manipulation to his advantage has interested and concerned many thinkers.

Concerning this last form of manipulation, it was historically mentioned at
least seven times before the Gibbard-Satterthwaite theorem (an expression first
used by [Schmeidler and Sonnenschein, 1978]). First, a story probably apocryphal
tells that Borda responded to one of his critics who pointed out that his method
was manipulable that it was intended for use by honest people. There is also a
reference to this question in Ch. Dodgson (alias Lewis Carroll), who said in a
specific voting system, “This voting principle makes an election more of a skill
game than real test of voters’ wishes” (see [Black, 1958]). In the modern period,
[Black, 1948] discusses the link between unimodal preferences and strategic votes,
while [Arrow, 1951, p. 7] explicitly states that he will not deal with this issue even
though he later returns to it in a footnote [footnote 8, p. 80-81]. Arrow’s general
analysis, however, will lead [Vickrey, 1960, pp. 517-519] to conjecture that im-
munity to strategic manipulation is logically equivalent to the association of the
axiom of independence of irrelevant alternatives and that of positive association.
Finally, it will be R. Farquharson in his 1958 doctoral dissertation, published in
1969, [Farquharson, 1969], who will introduce the distinction between “sophisti-
cated strategy” and “sincere strategy”, and then in an article with M. Dummett in
1961 when they make the conjecture: “It seems unlikely that there is any voting
procedure in which it can never be advantageous for any voter to vote ‘strategi-
cally’, i.e non sincerely” [Dummett and Farquharson, 1961, p. 34]. In an interview
given in 2006 to R. Fara and M. Salles, M. Dummett confesses that he felt at this
time that proving this conjecture would be extremely difficult and that is why they
did not try the demonstration. We refer the reader to [Barberà, 2010] for more
details on this historical part.

Thus, for more than twenty years after [Arrow, 1951], all scholars of social
choice theory seem to have been convinced that the question of the manipulation
of preferences by an individual (that is, the fact that he does not express his true
preferences in order to lead to a social choice that satisfies him better than would
have been obtained if he had been honest) was an important question, easy to ex-
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plain, but very difficult to prove.
As an illustration of this question of the manipulation of preferences by an in-

dividual we can give the following example (from [Feldman, 1979, p. 459]):

Imagine a committee made up of 21 members each having one vote and whose
actual preferences presented in descending order can be broken down into three
groups.

Type 1 Type 2 Type 3
A B C
B C B
C A A

10 voters 9 voters 2 voters

In a majority election where voters indicate their real preferences, A gets 10
votes, B gets 9 votes and C gets 2 votes; this leads to the election of A. However,
if anticipating this result, the voters in group 3 manipulate their preferences and
vote for B, this will lead to 10 voters for A and 11 voters for B and so B will be
elected. This strategic choice of the voters of the group 3 allows them to obtain a
more favorable result than they would have obtained if they had voted sincerely.

Therefore a question immediately comes to mind: is it possible to imagine a
social choice function such that each individual, regardless of the others’s choices,
is always better off by expressing his true preferences? In other words, is there
a social choice function such that always telling the truth is a strictly dominant
strategy for each individual? The answer to this question was independently given
by the philosopher Allan Gibbard [Gibbard, 1973] and the economist Mark Sat-
terthwaite [Satterthwaite, 1975] (work summarizing part of his doctoral disserta-
tion defended in 1973) and it is unfortunately negative. What we call since the
Gibbard-Satterthwaite theorem can be broadly stated as follows: it is not possible
to find a social choice function that is both non-manipulable and non-trivial.1

This last term deserves an explanation. By a trivial function we mean one of
the following solutions (or a solution equivalent to it): 1/ a dictatorship (i.e all
the power of decision resides with a single individual and he has no indifferent
choice), 2/ the permanent choice of an alternative whatever the preferences ex-
pressed by the individuals are (which could, for example, correspond to a tradition
which would be imposed in all circumstances), 3/ the perfect unanimity of all the

1This statement implies that impossibility holds as soon as the social choice function has at least
three alternatives in its range. We will only prove a slightly weaker version, namely under the
stronger assumption that no alternative is out of its range.
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voters (which in fact means having perfect clones and therefore no diversity in the
preferences), or 4/ the majority between two alternatives only, whatever the num-
ber of other alternatives existing and the votes that are expressed for them. Thus,
if all individuals know their preferences and those of others and that there are at
least three possible alternatives and at least two voters, there is no social choice
function that implies that each individual always has an interest in expressing his
or her real preferences. We thus find here the conditions of Arrow’s theorem and
the same conclusion since when there are only two alternatives, majority voting is
at the same time a non-dictatorial and non-manipulable social choice function.

Since then, the Gibbard-Satterthwaite theorem has been considered, along with
Arrow’s theorem, as one of the two most famous results of social choice theory
and has led to a very large literature in this field. It also plays a crucial role in
public economics and in the theory of incentive mechanisms, which can be broadly
seen as a social engineering approach of finding the rules to achieve a specific
outcome from agents interacting strategically and having private information (see
[Börger, 2015]). Indeed, because of this theorem, the incentives of individuals
must be considered as relevant constraints in the design of any mechanism.

2 Gibbard-Satterthwaite theorem

Many proofs of this theorem have been proposed and it is possible to consider that
they take one of the following four paths: 1/ that used by A. Gibbard and which
uses Arrow’s theorem, 2/ that used by M. Satterthwaite thanks to a combinatorial
argument and recurrences on the number of individuals and alternatives, 3/ that
considering this theorem as the consequence of the fact that non-manipulability
requires strong monotony (see[Moulin, 1988]), and 4/ that developed by S. Barberá
and his coauthors using the concept of pivotal agents. For a first presentation of
the question of manipulation we refer to [Feldman, 1979] and for a review of this
literature we refer to [Sprumont, 1995] and [Barberà, 2010].

Following Gibbard’s approach, we will prove the Gibbard-Satterthwaite theo-
rem as a corollary of Arrow’s (im)possibility theorem. The presentation we retain
will distinguish the formal setup, the links between the two theorems, the proof of
the Gibbard-Satterthwaite theorem, and that Arrow’s theorem in turn can be seen
as a corollary if we directly prove the Gibbard-Satterthwaite theorem.

2.1 Formal set-up

LetA = {a, b, . . .} be a set of three or more alternatives. Let P be the set of linear
orders over A, and P = Pn. An element Π = (P1,P2, . . . ,Pn) ∈ P is called a
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profile, and the Pi the individual preferences. The order in Pi is denoted a �i b for
“player i prefers a to b”. We further define

Definition 1 The domination set of a ∈ A in Pi

D(a,Pi) = {x ∈ A | a �i x}

Moreover, for Π = (P1, . . . ,Pn),D(a,Π) stands for the product set of theD(a,Pi).
Thus, let Π′ = (P′1, . . . ,P

′
n) be another profile, the notation D(a,Π′) ⊇ D(a,Π)

means: ∀i ∈ {1, . . . , n} , D(a,P′i) ⊇ D(a,Pi).

Definition 2

• A social welfare function (or SWF) is an application f : P → P .

• A social choice function (or SCF) is an application F : P → A.

The order relation in f(Π) will be denoted a > b or, if needed a >f(Π) b. We need
to define the following properties of SWF or SCF:

Definition 3

• The SWF f is Pareto efficient (or satisfies the unanimity rule) if

[∀i ≤ n , a �i b]⇒ a > b .

• The SCF F is Pareto efficient, (or satisfies the unanimity rule) if whenever
an alternative a ∈ A is the most preferred alternative in all individual pref-
erences, it results that F (Π) = a.

• The SWF f is independent of irrelevant alternatives (IIA) if , for any a and b
in A, the relative ranking of a and b in f(Π) only depends on their relative
rankings in the Pi, irrespective of the rankings of other alternatives.

• The SCF F is monotonic if, given two profiles Π and Π′,

[F (Π) = a and D(a,Π′) ⊇ D(a,Π)]⇒ F (Π′) = a .

• The SCF F is strategy-proof if, when Π and Π′ differ only in changing Pi

into P′i, it results that either F (Π) = F (Π′) or F (Π) �i F (Π′) .

• The SWF f is called dictatorial if there exists a player k such that, ∀Π ∈ P ,
f(Π) = Pk. (The social preferences are always player k’ preferences.)

• The SCF F is called dictatorial if there exists a player k such that, ∀Π ∈ P ,
∀x 6= F (Π), F (Π) �k x. (F (Π) is player k’s most preferred alternative.)

5



2.2 Arrow and Gibbard-Satterthwaite theorems

Theorem 1 (Arrow) If a SWF is Pareto efficient and IIA, then it is dictatorial.

Theorem 2 (Gibbard-Satterthwaite) If a SCF is strategy-proof and onto (i.e. its
range is all of A: ∀a ∈ A, ∃Π ∈ P such that F (Π) = a), it is dictatorial.

Lemma 1 (Muller and Satterthwaite) If a SCF is strategy-proof and onto, it is
monotonic and Pareto efficient.

Proof Let Π and Π′ be two profiles, F (Π) = a,D(a,Π′) ⊇ D(a,Π), but assume
that F (Π′) 6= a. Make the change from Π to Π′ one player at a time in numeric
order. Denote by Πk the profile obtained after changing Pk to P′k. (And Π0 = Π).
At some point, we have that F (Πi−1) = a 6= b = F (Πi). By strategy-proofness,
it follows that a �i b in Pi while b �i a in P′i. But by hypothesis, if a �i b in Pi it
is a fortiori true in Π′. A contradiction. Therefore the SCF is monotonic.

Because F is assumed to be an onto function, for any given a ∈ A, there
exists a profile Π such that F (Π) = a. Build Π′ by moving a at the top of the
preferences of all players. By monotonicity, it still holds that F (Π′) = a. Now, get
Π′′ by shuffling at will the preferences of all players below a, leaving a at their top
position. Because of the definition of monotonicity, and specifically its IIA-like
character, it still holds that F (Π′′) = a. Therefore the SCF is Pareto efficient.

2.3 Proof of the Gibbard-Satterthwaite theorem

This note is devoted to the proof of the Gibbard-Satterthwaite theorem viewed as a
corollary of Arrow’s theorem. We assume therefore that the latter is known. Given
the above lemma 1, we need to prove

Lemma 2 If a SCF is Pareto efficient and monotonic, it is dictatorial.

Or method of proof will be as follows: we assume that a SCF F is known which
is Pareto efficient and monotonic. From it we construct a SWF f which we show
to be Pareto efficient and IIA, therefore dictatorial, which will imply that F is
dictatorial.

Let F be a SCF. Given a profile Π, our social ordering f(Π) is built via the
following algorithm:

Algorithm

• Let Π1 = Π.

• For i ranging from 1 to n, do:
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– define ai = F (Πi),

– define Πi+1 by moving ai at the bottom of all individual preferences in
Πi.

• Define f(Π) as: for all i ∈ {1, . . . , n− 1}, ai > ai+1.

Proposition 1 If the SWF F is Pareto efficient and monotonic, the above algorithm
produces a linear order on A.

Proof What we need to prove is that all elements of A will be ranked, i.e. that
for all i ∈ {1, . . . , n}, and for all j < i, ai 6= aj .

Let first i < n. Therefore, not all alternatives have been numbered as one
of the ak. Define Π′i as follows: Take an alternative b which has not yet been
ranked. Raise it at the top of all individual preferences. This does not change the
domination sets: D(aj ,Π

′
i) = D(aj ,Πi) since in Πi, all the alternatives that have

already been selected in the algorithm, including aj (remember that j < i), are
stacked at the bottom of all individual preferences. Therefore, by monotonicity, if
F (Πi) = aj , it also holds that F (Π′i) = aj . But by Pareto efficiency, F (Π′i) = b,
a contradiction.

Finally, in Πn, n − 1 different alternatives have been placed at the bottom of
all individual preferences, thus the same and last alternative is alone at the top of
all, and is therefore selected by F by Pareto efficiency.

The following propositions end our proof:

Proposition 2 If the SCF F is Pareto efficient and monotonic, the SWF defined by
the algorithm is

1. Pareto efficient,

2. independent of irrelevant alternatives (IIA),

and therefore dictatorial by Arrow’s theorem.

Proof

1. Let a, b ∈ A, and assume that in Π, ∀i ∈ {1, . . . , n}, a �i b. Assume that
at some step of our algorithm, F (Πi) = b, but a has not yet been chosen.
In Πi, raise alternative a at the top of all individual preferences. This does
not change the domination sets of b in any individual preferences. There-
fore, F should still select b. But by Pareto optimality, it should select a. A
contradiction.
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2. Let i < j and therefore by our algorithm, ai >f(Π) aj . In Π, move another
alternative b in some individual preferences, call the new profile Π′. We
claim that in the order created by our algorithm applied to Π′, it still holds
that ai > aj .

Assume that F (Π′) = b. Then at step 2, b is brought at the bottom of all
individual preferences, and, as compared to profile Π, the domination sets
of a1 have been enlarged or kept unchanged for all individual preferences.
Therefore F (Π′2) = a1. If b 6= a2, at step 2, for the same reason a2 will be
selected, and so forth until the end of the algorithm. Therefore, we will still
select ai before aj .

Assume F (Π′) = c 6= b, and assume c 6= a1. This is possible only if in one
individual preferences at least, b has been moved from below a1 to above
it. In these individual preferences only, bring b back below a1. Call this
profile Π′′. D(a1,Π

′′) ⊇ D(a1,Π). Therefore F (Π′′) = a1. But in going
from Π′ to Π′′, b has only been moved down in some individual preferences.
Therefore D(c,Π′′) ⊇ D(c,Π′). Therefore F (Π′′) = c. Hence a1 = c
contrary to the hypothesis. Hence F (Π′) = a1.

Repeat this argument at each step before b is selected, and once this hap-
pens, repeat the previous argument. It follows that, except for b, all other
alternatives are chosen in the same order as for Π.

It follows that, by Arrow’s theorem, f is dictatorial. There is a player k such
that for all Π, f(Π) = Pk, and in particular F (Π) is player k’s preferred alternative.
And this proves lemma 2, and consequently the Gibbard-Satterthwaite theorem.

2.4 Complement: Arrow’s theorem as a corollary of Gibbard Sat-
terthwaite

It can also be shown that, if the Gibbard-Satterthwaite theorem has been proved
directly, Arrow’s theorem is an easy corollary, thus establishing the equivalence
between the two results. The process is symmetrical from the above one, deriving
a SCF from a Pareto efficient and IIA SWF by simply picking the top alternative
in the social preferences, and showing that it is onto and strategy-proof.

We might also mention that Lemma 1 has an easy reciprocal.

3 Conclusion

Since its demonstration, the Gibbard-Satterthwaite theorem has generated a huge
literature on the question of the manipulation of preferences, distinguishing, in par-
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ticular, the cases where the social choice function is manipulable by an individual
from the case where it is manipulable by a coalition of individuals. It has also
been extended to take into account set-valued ([Duggan and Schwartz, 2000]) and
non-deterministic choice functions ([Gibbard, 1977]), that is those where the result
depends on the votes of individuals but also by chance. (Often both set-valued and
non-deterministic.)

In our opinion, three main ways of circumventing this theorem have been fol-
lowed. The first is to restrict the preference domain (with functions defined on
restricted sets of preference profiles, it is possible to find social choice functions
that are both non-dictatorial and non-manipulable, e.g unimodal preferences à la
Black). The second is to change the goal. Indeed, the framework in which the
Gibbard-Satterthwaite theorem is situated is very strong since it seeks a social
choice function for which telling the truth is a dominant strategy for each individ-
ual. The path followed by implementation theory is to simply ask that it be a Nash
strategy, or a perfect subgame strategy, or a Bayesian Nash strategy, depending on
the informational context of the individuals. Finally, more recently, a third way
explain that this problem is real but may not be very important empirically. Indeed,
besides the integrity, ignorance or stupidity of individuals that can prevent them
from performing manipulations, the fact that a social choice function is manipula-
ble does not imply that it will be manipulated. And since [Bartholdi et al., 1989],
economists consider that it may be empirically impossible for individuals to decide
how to manipulate even when they have all the information to do so, as the problem
may be NP-hard.
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