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Abstract

Cournot’s model of oligopoly appears as a central model of strate-
gic interaction between competing firms both from a theoretical and
an applied perspective (e.g antitrust). As such it is an essential tool
in the economics toolbox and always a stimulus. Although there is
a huge and deep literature on it and as far as we know, we think
that there is a niche which has not yet been investigated: Cournot
oligopoly with randomly arriving producers. In a companion paper
[Bernhard and Deschamps, 2017] we have proposed a rather general
model of a discrete dynamic decision process where producers arrive
as a Bernoulli random process and we have given some examples relat-
ing to oligopoly theory (Cournot, Stackelberg, cartel). In this paper
we study Cournot oligopoly with random entry in discrete (Bernoulli)
and continuous (Poisson) time, whether the time horizon is finite or
infinite. Moreover we consider here both constant and variable proba-
bilities of entry or density of arrivals. In this framework, we are able
to provide algorithms answering four classical questions: 1/ what is
the expected profit for a firm as a function of its rank of arrival on the
market?, 2/ How do individual quantities evolve?, 3/ How do market
quantities evolve?, and 4/ How does market price evolve?
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1 Introduction

While it was ignored for many years it seems almost impossible today to
think about competition in economics without considering the Cournot
oligopoly model. As H. Demsetz said in his Economics of Business firms
book in 1995 it is one of the “safe harbors” of economic analysis, a state-
ment also shared by A. Daughety who considers that the Cournot oligopoly
model “over the recent decades has come to be an essential tool in many
economist’s toolbox, and is likely to continue as such” in his New Palgrave
Dictionary notice on Cournot competition.

In its classical form, Cournot’s model is static, each producer’s strat-
egy is the quantity of output she will produce in the market for a specific
homogeneous good and when the number of identical producers goes to
infinity the market price converges toward the marginal cost. Along the
years, economists have extended this classical form in many directions, in-
cluding asymmetric producers, differentiated goods and dynamics. On this
last topic economists have notably considered the Cournot model with such
characteristics as several periods of production ([Saloner, 1987], [Pal, 1991]),
game with free entry ([Mankiw and Whinston, 1986], [Amir et al., 2014]),
or in the theory of repeated games ([Abreu, 1986]), or stochastic games
([Kebriaei and Rahimi-Kian, 2011]), or as a Poisson game ([Myerson, 1998],
[Myerson, 2000]) and, recently, a mean field game ([Chan and Sircar, 2015]),
in continuous-time ([Snyder et al., 2013]) or with intertemporal capacity
constraints ([van den Berg et al., 2012]). But as far as we know, despite
this huge and deep literature, there is a niche which has not yet been inves-
tigated: a Cournot oligopoly model with randomly arriving producers.

To begin the investigation of this question we consider a model where
there is at the initial step a fixed number of symmetric producers of an homo-
geneous good playing according to a complete information Cournot oligopoly
with the common knowledge hypothesis that, at each future step, and irre-
spective of past entries, an identical producer may enter the game and, if it
does so, stay for ever. We will use control theoretic and dynamic game the-
oretic methods as in [Harris et al., 2010] and [Ludkovski and Sircar, 2012].

The paper is organized as follows: in the next section we present the
structure of the general dynamic game model with randomly arriving players
as we developed in [Bernhard and Deschamps, 2017]. Section 3 is devoted
to the discrete time problem while section 4 tackles the continuous time
problem, considered here as the limit of the former as the step size vanishes.
In both cases, we consider both constant and variable entry probabilities,
and finite and infinite time horizon. We also provide numerical results.
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Section 5 ends the paper by discussing conclusions and limits of our analysis.

2 General model

In a companion paper [Bernhard and Deschamps, 2017], we investigated a
rather general model of a discrete dynamic decision process where players ar-
rive as a Bernoulli random process. We summarize here the results obtained
there, simplified to fit our need in this article.

Time t is an integer, or, in section 4, a (continuous) real variable. At
time t1 one player is present, then players arrive as a Bernoulli process with
a unit probability p. We will first consider the case of a constant p; then
we will let it depend on the rank of the arriving player, or equivalently,
on the number of producers already on the market. Of particular interest
is the case where p is a known function of the expected future return at
the arrival rank. Player number m arrives at time tm, a random variable.
The game is played over an horizon T which may be finite or infinite. A
sequence of (usually positive decreasing) numbers {πm} is given, denoting
the reward of each player during one time period if there are m players
present. Typically, πm may be taken as the individual profit in a static
m-player Cournot oligopoly. We let m(t) be the number of players actually
present at time t, a random variable. Therefore, at each period of time t, all
players get a reward πm(t). Let finally r ∈ (0, 1) be a discount factor. The
reward of the n-th player arrived is

Πn =
T∑

t=tn

rt−tnπm(t) ,

and we sought to evaluate its expectation Πe
n. Figure 1 illustrates that

problem.
Concerning the sequence {πm}, we will use the following definitions:

Definition 1 The sequence {πm} is said to be

• bounded by π if there exists a positive number π such that

∀m ∈ N , |πm| ≤ π ,

• exponentially bounded by π if there exists a positive number π such
that

∀m ∈ N , |πm| ≤ πm .
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Figure 1: The events tree

Notice that if the sequence {πm} is bounded by π, it is exponentially bounded
by max{1, π}, while if it is exponentially by π ≤ 1, it is bounded by π.

We also need the following notation for a domain of the discrete plane,
for any positive integer (a time interval) ν:

Dν = {(k, `) ∈ N2 | 0 ≤ ` ≤ k ≤ ν} . (1)

The theorems proved in [Bernhard and Deschamps, 2017] can be simpli-
fied here, with the use of the combinatorial coefficients

∀k ≥ ` ∈ N ,
(
k
`

)
=

k!

`!(k − `)!

Theorem 2 (Bernhard and Deschamps [2016]) If T < ∞, or if T =
∞ and the sequence {πm} is bounded or exponentially bounded by $ < 1/r,
the expected payoff of the n-th arrived player is

Πe
n =


∑

(k,`)∈DT−tn

[(1− p)r]k
(

p

1− p

)`(
k
`

)
πn+` if p < 1 ,

T−tn∑
k=0

rkπn+k if p = 1 .

(2)
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3 Discrete time

3.1 Constant entry probability

3.1.1 Algorithm

We offer an alternative approach to theorem 2 to evaluate Πe
n, recovering an

algorithm that can easily be derived from formula (2). Given any natural
integer (time interval) k, let q`(k) be the probability that ` players arrive
during that time interval. In a Bernoulli process, only one player may arrive
at each instant of time. Thus, there are only two incompatible ways to
achieve exactly ` arrivals at time k: either there were `− 1 arrivals at time
k−1 and one arrived at time k, or there were already ` arrivals at time k−1
and none arrived at time k. Hence

q`(k) = pq`−1(k − 1) + (1− p)q`(k − 1) . (3)

Now, it holds that

Πe
n =

T∑
t=tn

rt−tnE(πm(t) | tn) , and E(πm(t) | tn) =

t−tn∑
`=0

q`(t− tn)πn+` .

Therefore, using t− tn = k,

Πe
n =

T−tn∑
k=0

k∑
`=0

rkq`(k)πn+`

We define w`(k) = rkq`(k) to obtain

Πe
n =

T−tn∑
k=0

k∑
`=0

w`(k)πn+` =
∑

(k,`)∈DT−tn

w`(k)πn+` , (4)

and also the recursive formula, useful for numerical computations:

Πe
n(T ) = Πe

n(T − 1) +

T−tn∑
`=0

w`(T − tn)πn+` .

The w`(k) can be computed according to the following recursion. (The first
two lines may be seen as initialization tricks, while the third one directly
derives from equation (3))

w0(0) = 1 ,

∀k ∈ N , w−1(k) = wk(k − 1) = 0 ,

∀` ≤ k , w`(k) = rpw`−1(k − 1) + r(1− p)w`(k − 1) ,
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We know from appendix A that the πm of interest here are uniformly
bounded, and therefore, from theorem 2, that this can be extended to the
case where T =∞.

Indeed, that algorithm may be derived from formula (2) identifying

w`(k) = rk(1− p)k−`p`
(
k
`

)
and using the classical formula of “Pascal’s triangle”:(

k
`

)
=

(
k − 1
`− 1

)
+

(
k − 1
`

)
.

3.1.2 Numerical results

Figure 2 provides a plot of Πe
1(T ) assuming t1 = 0, for T varying from

0 to 20, and for p ∈ {0, .1, .4, .7, 1}. In this plot, we chose r = .9 and
πn = 1/(n+ 1)2. All the computations in this article were done with Scilab.

Figure 2: Plots of Πe
1(T ) against T for various values of p, with r = .9.
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3.2 Variable entry probability

We have seen in the introduction that it may be desirable to let the proba-
bility of entry depend on the rank of the entrant. The method of paragraph
3.1.1 can easily be extended to such a case.

3.2.1 Algorithm

Let therefore pm be the probability of entry of the competitor of rank m.
We modify slightly our previous algorithm, by introducing now the prob-

ability qn,m(k) of having m players present at time tn+k knowing that they
were n at time tn, and wn,m(k) = rkqn,m(k). (Notice that if pn happens
to be constant equal to p, then wn,m(k) = wm−n(k).) Equation (3) is now
replaced by

qn,m(k) = pmqn,m−1(k − 1) + (1− pm+1)qn,m(k − 1) ,

and we get

∀n ∈ N , wn,n(0) = 1 ,

∀n, k , wn,n−1(k) = wn,n+k(k − 1) = 0 ,

∀n ≤ m ≤ n+ k , wn,m(k) = rpmwn,m−1(k − 1) + r(1− pm+1)wn,m(k − 1) .

Formula (4) generalizes into

Πe
n =

T−tn∑
k=0

k∑
`=0

wn,n+`(k)πn+` =
∑

(k,`)∈DT−tn

wn,n+`(k)πn+` . (5)

3.2.2 A backward algorithm

While the algorithm of the previous paragraph is well adapted to an infinite
horizon (neglecting terms of high order thanks to the discount factor), it
does not fit our aim to let pm depend on Πe

m. To reach this goal, we need to
compute the latter before using the former. This is provided by the following
algorithm.

Let F be a fixed entry cost. We take advantage of the fact that we
assume that no entry will occur once Πe

n < F . The last entrant, say of rank
N has an expected profit

Πe
N =

πN
1− r

and is defined by the fact that

πN+1 < (1− r)F ≤ πN .
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Therefore, we know N and Πe
N . From there, we can proceed by backward

induction.
We write the profit Πn as a function of the arrival times tn and tn+1 as

the sum of the profits accumulated between these two time instants, plus the
profit to be made after time tn+1 (all these quantities are random variables)
as

Πn(tn) =

tn+1∑
t=tn

rt−tnπn + rtn+1−tnΠn+1(tn+1) .

We may use the fact that, on the one hand

Πe
n(tn) = E(Πn | tn)

and on the other hand

E(Πn+1 | tn) = Etn+1 [E(Πn+1 | tn+1)] = Etn+1

[
Πe
n+1(tn+1)

]
,

to get

Πe
n =

∞∑
tn+1=tn+1

(1− pn+1)tn+1−tn−1pn+1

[
tn+1∑
t=tn

rt−tnπn + rtn+1−tnΠe
n+1(tn+1)

]
.

(6)
It takes some calculations given in appendix B to conclude

Πe
n =

1

1− (1− pn+1)r

(
πn + pn+1rΠ

e
n+1

)
. (7)

This formula can be used backward from Πe
N .

3.2.3 Numerical results

Figure 3 provides a plot of the expected profit in the infinite horizon game
as a function of the rank of entry, computed with the backward algorithm.
In this computation, we chose r = .9, πn = 100/(n+ 1)2. We let somewhat
arbitrarily F = 2 and

pn = 1− F

Πe
n

in order to have an entry probability increasing with the expected payoff (i.e
decreasing with the rank of entry) and equal to zero as Πe

n drops below the
cost of entry. For these parameters, only 21 players enter the game.
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Figure 3: Expected payoff for the infinite horizon game as a function of the
rank of entry for pn = 1− F

Πe
n

, with r = .9.

4 Continuous time

We aim to derive the continuous time limit formulas and algorithms as the
step size vanishes. The profit when n players are present is now a rate of
profit per unit time, denoted by $n. Accordingly, q, Q, and C(q) are now
rates of production, respectively expense, per unit time (although we keep
the same notation as in the discrete time case). Let h (instead of 1) be the
step size, an integer submultiple of the horizon T when in finite horizon. Of
course, the number of steps to reach a fixed time goes to infinity as h goes
to zero, but the per step discount factor goes to one. Let an upperindex (h)
denote the relevant quantities when the step size is h. Specifically, we set

r(h) = e−δh

for a fixed continuous discount factor δ.
In the limit, the individual profit of the player of rank n arrived at time

tn is

Πn(tn) =

∫ T

tn

e−δ(t−tn)$m(t) dt .
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4.1 Constant Poisson density of arrivals

4.1.1 Continuous formula

Formula (2) must now be slightly modified into

Πe
n =

T−tn
h∑

k=0

[r(h)(1− p(h))]k
k∑
`=0

(
p(h)

1− p(h)

)`(
k
`

)
π

(h)
n+` . (8)

The limit as h→ 0 in the above formula leads to the following one, which has
been derived directly with a Poisson process in [Bernhard and Hamelin, 2016]:

Theorem 3 In the limit as the step size goes to zero, the expected payoff is
given by formula

Πe
n =

∫ T−tn

0
e−(λ+δ)t

∞∑
`=0

(λt)`

`!
$n+` dt . (9)

If the sequence {$m} is bounded or bounded by the powers $m ≥ |$m| of a
number $ ≤ 1 + δ/λ, this formula can be extended to T =∞.

Proof The calculation hereafter is directly inspired by the classical anal-
ysis of the continuous limit of a Bernoulli process, which is known to be a
Poisson process. Let the discrete quantities be expressed, up to second order
in h, in terms of the continuous ones as follows, where δ, λ and the sequence
{$m} are the continuous data:

r(h) = e−δh , p(h) = λh , π(h)
n = $nh . (10)

In formula (8), we let simultaneously h go to zero and each k go to infinity
keeping kh = t constant. It is a classic fact that

(1− λh)k = ek ln(1−λh) ' ek(−λh) = e−λt .

Therefore,
[r(h)(1− p(h))]k ' e−(λ+δ)t .

Furthermore(
λh

1− λh

)`(
k
`

)
$n+`h =

∏`−1
i=0 λh(k − i)
(1− λh)``!

$n+`h .
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When h→ 0 and k →∞ with kh = t, λh(k− i)→ λt. Also, (1− λh)` → 1.
We therefore have

Πe
n '

T−tn
h∑

k=0

e−(λ+δ)kh
k∑
`=0

λ`
(kh)`

`!
$n+`h

which converges to (9). Finally, if $n ≤ $n, (9) yields

Πe
n ≤

∫ T−tn

0
e−(λ+δ)t$n

∞∑
`=0

(λ$t)`

`!
dt =

∫ T−tn

0
e(−λ−δ+λ$)t dt

which converges when T → ∞ provided that −λ − δ + λ$ < 0, i.e. $ <
1 + δ/λ. (Notice however that in our application to Cournot equilibrium,
the sequence {$n} is decreasing, therefore bounded, thus we do not need
that bound which concerns increasing returns.)

One may notice that e−λt(λt)`/`! is just the probability that, in a Poisson
process of intensity λ, exactly ` positive events (here player’s arrivals) occur
during a time period of length t. Therefore, this can also be written, as
expected

Πe
n =

∫ T

tn

e−δ(t−tn)E($m(t) | tn) dt = E
[∫ T

tn

e−δ(t−tn)$m(t) dt

∣∣∣∣ tn] .
where the expectation is taken under a Poisson law of intensity λ.

4.1.2 Algorithm

We introduce the notation

wn,n+` =

∫ T−tn

0
e−(λ+δ)t (λt)

`

`!
dt . (11)

with which we re-write formula (9):

Πe
n =

∞∑
m=n

wn,m$m =

∞∑
`=0

wn,n+`$n+` .

Successive integrations by parts easily yield (see appendix C)

wn,n+` =
λ`

(λ+ δ)`+1

[
1− e−(λ+δ)(T−tn)

∑̀
k=0

(λ+ δ)k(T − tn)k

k!

]
. (12)
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Introduce the notation

vn,` = e−(λ+δ)(T−tn)λ
`−1(T − tn)`

`!
.

We propose the following algorithm:

∀n ∈ N , vn,n =
1

λ
e−(λ+δ)(T−tn) ,

∀(n, `) ∈ N2 , vn,n+` =
λ(T − tn)

`
vn,n+`−1 ,

∀n ∈ N , wn,n =
1

λ+ δ
(1− λvn,n) ,

∀(n, `) ∈ N2 , wn,n+` =
λ

λ+ δ
(wn,n+`−1 − vn,n+`) .

Moreover, in the case of an infinite horizon: T − tn =∞, all the vn,n+` are
equal to zero, and the wn,n+` = λ`/(λ+ δ)`+1 are independent from n.

Two simple cases in infinite horizon Two simple cases are as follows:

1. If $m = $0r
m for some positive $0 and r. Then formula (9) integrates

in closed form, giving

Πe
n =

$0r
n

(1− r)λ+ δ
[1− e−[(1−r)λ+δ](T−tn)] ,

which simplifies to

Πe
n =

$0r
n

(1− r)λ+ δ

in infinite horizon.

2. If the players just share equally a fixed flux $1 of resource, i.e. $m =
$1/m, then the last remark above yields

Πe
1 =

$1

λ

∞∑
k=1

1

k

(
λ

λ+ δ

)k
=
$1

λ
ln

(
1 +

λ

δ

)
.

4.1.3 Numerical results

The above two cases are not Cournot payoffs. We give in Figure 4 numerical
results for the case where $m = 1/(m + 1)2, infinite horizon, δ = .1, and
λ ∈ {0, .1, .4, .7, 1}.
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Figure 4: Curves Πe
n against n for the infinite horizon game, with δ = .1

and for various intensities λ.

4.2 Variable Poisson density of arrivals

4.2.1 General formula

We wish now to let the density of arrivals λ be a function of the rank of
the next player to arrive (the number of players already present plus one).
We are therefore confronted with a sequence of inter-arrival time intervals
which are independent random variables each with an exponential law of
coefficient, or intensity, λm. We can use an approach similar to that of
subsection 3.2.1.

Let λm be the arrival density for the m-th player. Let also qn,m(t) be
the probability that m players be present at time t, knowing that they were
n at time tn.(1) We claim the following:

Theorem 4 The sequence qn,m(t) is the unique solution of the following set
of differential equations:

∀n ∈ N , qn,n(tn) = 1 , q̇n,n = −λn+1qn,n ,

∀m > n , qn,m(tn) = 0 , q̇n,m = λmqn,m−1 − λm+1qn,m .

1We should denote this probability it as qn,m(tn, t). We omit the explicit dependence
on tn because it is fixed in the analysis of Πe

n.
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Proof The first differential equation is just another, numerically efficient,
way to write qn,n(t) = exp[−λn+1(t− tn)], which is the probability that no
event occurs during the time interval (tn, t) for a random variable with an
exponential law of density λn+1.

Consider qn,m(t) for m > n. Notice first that by hypothesis qn,m(0) = 0.

Let h be a time step destined to vanish. Let also p
(h)
n be the probability of

arrival of the n-th player during a step of length h. Hence p
(h)
n = hλn+ 0(h)

(where 0(h)/h → 0 as h → 0). Also, the probability of arrival of several
players during a step of length h is of the order 0(h). The event of being m
players present at time t is either that there were m players at time t − h
and none arrived, or there were m−1 players at time t−h, and one arrived,
or that there were less than m− 1 players at time t− h and several arrived
during the interval [t− h, t]. Hence we have

qn,m(t) = (1− p(h)
m+1)qn,m(t− h) + p(h)

m qn,m−1(t− h) + 0(h)

= (1− hλm+1)qn,m(t− h) + hλmqn,m−1(t− h) + 0(h) .

Hence

qn,m(t)− qn,m(t− h)

h
= −λm+1qn,m(t− h) + λmqn,m−1(t− h) + ε(h)

where ε(h) → 0 with h. It suffices to take the limit as h → 0 to obtain the
result of the theorem.

Knowing these probabilities, we can compute

E$m(t) =

∞∑
m=n

qn,m(t)$m ,

and therefore

Πe
n =

∫ T

tn

e−δ(t−tn)E$m(t) dt =

∫ T

tn

e−δ(t−tn)
∞∑
m=n

qn,m(t)$m . (13)

4.2.2 Algorithm

Finite horizon We start from the formula (13) which we rewrite as

vn,m(t) := e−δtqn,m(tn + t) , (14)

wn,m :=

∫ T−tn

0
vn,m(t) dt , (15)

13



and

Πe
n =

∞∑
m=n

wn,m$n+m . (16)

We propose to compute the vn,m(t) via the integration of the following dif-
ferential equations, directly derived from those for qn,m(t):

∀n ∈ N , vn,n(0) = 1 , v̇n,n = −(λn+1 + δ)vn,n , (17)

∀m > n , vn,m(0) = 0 , v̇n,m = λmvn,m−1 − (λm+1 + δ)vn,m . (18)

Infinite horizon The computation simplifies in the case where T = ∞.
Indeed, we can write equation (15) taking equation (18) into account, as

wn,m =

∫ ∞
0

1

δ + λm+1
[λmvn,m−1(t)− v̇n,m(t)] dt .

However, it follows from its definition (14) that vn,m(t)→ 0 as t→∞. Also,
for m > n, vn,m(0) = 0. Therefore the integral of v̇n,m vanishes. And we
are left with

∀n ∈ N , wn,n =
1

λn+1 + δ
,

∀m > n , wn,m =
λm

λm+1 + δ
wn,m−1

(19)

and formula (16).

4.2.3 A finite entry problem

As in the discrete time case, we wish to investigate a problem where the
density λm is a (decreasing) function of the expected payoff of the m-th
player, becoming null when that expected payoff drops below a fixed entry
cost F . We therefore need to compute that specific payoff before we can
use λm in the algorithm. We proceed as in the discrete time case, with
the approximations (10) and taking the limit as h → 0. The last entrant’s
expected payoff is now

Πe
N =

$N

δ
,

and N is the integer such that

$N+1 < δF ≤ $N .

Formula (7) reads

Πe
n =

1

1− (1− λn+1h)(1− δh)

[
$nh+ λn+1h(1− δh)Πe

n+1

]
14



and therefore, taking the limit as h→ 0:

Πe
n =

1

λn+1 + δ

(
$n + λn+1Πe

n+1

)
, (20)

Πe
N =

$N

δ
, or equivalently λN+1 = 0 . (21)

We can also expand in

Πe
n =

1

λn+1 + δ

{
$n +

λn+1

λn+2 + δ

[
$n+1 +

λn+2

λn+3 + δ

(
$n+2 + λn+3Πe

n+3

)]}
and continue until the last term is

λN
λN+1 + δ

($N + λN+1ΠN+1) =
λN
δ
$N .

Clearly, we have

Πe
n =

N∑
m=n

wn,m$m ,

i.e. formula (16), with the same recursion (19). One may notice that

wn,m =
1

λn

m∏
k=n

λk
λk+1 + δ

,

but the recursion (20)(21) is more useful. It can be applied backward, with
a law λn = Λn(Πe

n). (Although adjusting the laws Λn is made difficult by
the fact that we do not know Πe

1 beforehand. If the $n are decreasing with
n, we only know that Πe

1 < $1/δ.)

4.2.4 Numerical results

Figure 5 shows the plot of the expected payoff as a function of the rank of
entry for the infinite horizon game, computed with the backward algorithm.
We chose δ = .1, $n = 100/(n+ 1)2, F = 2, and λn = 1− F/Πe

n.

5 Conclusion

The model we investigated is slightly more general than a sequence of
Cournot oligopolies, in that we allow for an arbitrary stepwise profit πm,
and not necessarily one of the the Cournot profits listed in A. But the real
innovation we claim is in the random arrival of producers, be it in discrete
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Figure 5: Expected payoff for the infinite horizon game as a function of the
rank of entry for λn = 1− F

Πe
n

, with δ = .1.

or continuous time, and whether the game horizon is finite or infinite. Our
results are in the same spirit as in the classical Cournot oligopoly but we
are able to answer precisely in this new set up four questions: what is the
expected profit for a firm as a function of its rank of arrival on the market?
How do individual quantities evolve? How do market quantities evolve?
How does market price evolve?

There are at least five limitations to our analysis. First, we do not have a
dynamic equilibrium since there is no intertemporal link between each step
(such as capacity constraints, stickiness, etc.). We only have a sequence of
static equilibria. Second, there is no exit of players, yet this would be more
realistic. In an other paper ([Bernhard and Deschamps, 2016]) we explicitly
consider these issues and propose a way to overcome these two limitations.

The third limitation of this paper is that we only consider a Bernoulli
or a Poisson process of entry. They are the most simple probability laws
concerning random events, and as such the most widely used. But in some
contexts they could unfortunately be inappropriate. In each such case, a new
analysis needs to be done. Fourth, in our setting market demand is always
deterministic (such as linear or isoelastic). Last but not least, we have only
considered symmetric producers (incumbents and potential entrants), an
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hypothesis which leads to symmetric profits for producers who are in the
game since the same step. We leave for further developments the case where
producers belong to several classes of players and the market demand is
random.
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A Classical n-fixed results

We wish to apply our model to Cournot oligopoly, under the combination of
two hypotheses, one relative to the demand function —linear or isoelastic—,
the other to the production cost of the players —linear or quadratic. We
always consider identical players, enjoying complete information about the
rules of the game and about the current number of players present in the
game at each instant of time.

Let P (Q) be the inverse demand function and C(q) the individual pro-
duction cost. We have

π = qP (Q)− C(q) ,

that each player seeks to maximize, assuming other players’ production fixed.
The method is as follows: write Q = q + (n− 1)qn, hence

π = qP
(
q + (n− 1)qn

)
− C(q) ,

equate the partial derivative with respect to q to 0, and in that equation
place q = q?n. The results are summarized in Table 1. In table 2, we
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C = cq C = cq2
P

=
a
−
bQ P ?n = a+nc

n+1 P ?n = a(b+2c)
(n+1)b+2c

q?n = a−c
(n+1)b Q?n = n(a−c)

(n+1)b q?n = a
(n+1)b+c Q?n = na

(n+1)b+c

π?n = 1
b

[
a−c
n+1

]2
Π?
n = n

b

[
a−c
n+1

]2
π?n= a2(b+c)

[(n+1)b+2c]2
Π?
n = na2(b+c)

[(n+1)b+2c]2

P
=
a
Q
−

1 ε

P ?n = nc
n− 1

ε

P ?n =
(

2aεc
n− 1

ε

) 1
1+ε

q?n=

[
a(ε− 1

n)

n
1
ε cε

]ε
Q?n=

[
a(ε− 1

n)
cε

]ε
q?n=

[
a(ε− 1

n)

2n
1
ε cε

] ε
1+ε

Q?n=

[
a(n− 1

ε)
2c

] ε
1+ε

π?n = cQ?
n

n(nε−1) Π?
n = cQ?

n
nε−1 π?n=

c(n+ 1
ε)

n2(n− 1
ε)
Q?n

2 Π?
n=

c(n+ 1
ε)

n(n− 1
ε)
Q?n

2

Table 1: Equilibrium values in Cournot oligopoly with n agents

give the asymptotic equivalent as n → ∞. In the case of quadratic costs,
the price goes to zero as n → ∞. In the case of linear demand function,
total production goes to a finite limit, while individual profits go to zero as
n−2, and therefore also total profit as n−1. But the total production and
profit behave differently depending on whether the production cost is linear
or quadratic: in the former case, gross production goes to a finite limit and
total profits go to zero, while in the latter, gross production and total profits
go to infinity.

Let us also emphasize that the same theory developed to evaluate the
expectation of the cumulative profit of the players applies mutatis mutandis
to evaluate the expectation of any other cumulative quantity pertaining to
this game, e.g. in the application to the Cournot oligopoly, the finite time
cumulative gross production

G =

T∑
t=t1

Qn .
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C = cq C = cq2
P

=
a
−
bQ P ?n ∼ c+ a−c

n → c P ?n ∼
a(b+2c)

b n−1 → 0

q?n ∼ a−c
b n−1 Q?n → a−c

b q?n ∼ a
bn
−1 Q?n → a

b

π?n∼ (a− c)2n−2 Π?
n∼ (a− c)2n−1 π?n ∼

a2(b+c)
b2

n−2 Π?
n∼

a2(b+c)
b2

n−1

P
=
a
Q
−

1 ε

P ?n ∼ c
(
1 + 1

nε

)
→ c P ?n ∼ (2aεc)

1
1+ε n−

1
1+ε → 0

q?n ∼
(
a
c

)ε
n−1 Q?n →

(
a
c

)ε
q?n∼

(
a
2c

) ε
1+ε n−

1
1+ε Q?n∼

(
an
2c

) ε
1+ε

π?n ∼ aε

εcε−1n
−2 Π?

n ∼ aε

εcε−1n
−1 π?n ∼ αn

− 2
1+ε Π?

n ∼ αn
ε−1
ε+1

α =
(
a
2

) 2ε
1+ε c

1−ε
1+ε

Table 2: Asymptotics as n→∞

B Derivation of the backward algorithm formula

We start from equation (6)

Πe
n =

∞∑
tn+1=tn+1

(1− pn+1)tn+1−tn−1pn+1

[
tn+1∑
t=tn

rt−tnπn + rtn+1−tnΠe
n+1(tn+1)

]
.

The inner sum over t can be expressed in closed form, to get

Πe
n =
∞∑

tn+1=tn+1

(1− pn+1)tn+1−tn−1pn+1

[
1− rtn+1−tn

1− r
πn + rtn+1−tnΠe

n+1(tn+1)

]
.

substitute t for the dummy summation index tn+1, and expand in

Πe
n =

pn+1

1− pn+1

[( ∞∑
t=tn+1

(1− pn+1)t−tn −
∞∑

t=tn+1

[(1− pn+1)r]t−tn

)
πn

1− r

+
∞∑

t=tn+1

[(1− pn+1)r]t−tnΠe
n+1

]
.

Use again the closed form of the sums of powers:

Πe
n =

pn+1

1− pn+1

[(
1− pn+1

pn+1
− (1− pn+1)r

1− (1− pn+1)r

)
πn

1− r
+

(1− pn+1)r

1− (1− pn+1)r
Πe
n+1

]
.
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or

Πe
n =

(
1− pn+1r

1− (1− pn+1)r

)
πn

1− r
+

pn+1r

1− (1− pn+1)r
Πe
n+1.

or, finally, formula (7):

Πe
n =

1

1− (1− pn+1)r

(
πn + pn+1rΠ

e
n+1

)
.

C Evaluating the wn,n+`

We aim to derive formula (12) from formula (11). To simplify the calculation,
we let λ+ δ = γ and T − tn = S. We aim to evaluate

wn,n+` =

∫ S

0
e−γt

(λt)`

`!
dt .

Performing an integration by parts, we obtain

wn,n+` =

∫ S

0
e−γt

(λt)`

`!
dt = λ

∫̀ S

0

t`

`!
d

(
−1

γ
e−γt

)

=
λ`

γ

([
−e−γt

t`

`!

]S
0

+

∫ S

0
e−γt

t`−1

(`− 1)!
dt

)

=
λ`

γ

(
−e−γt

S`

`!
+

∫ S

0
e−γt

t`−1

(`− 1)!
dt

)
Apply the same integration by parts to the last integral, and repeat once:

wn,n+` =
λ`

−γ

{
e−γS

−S`

`!
+

1

γ

[
−e−γS

S`−1

(`− 1)!

+
1

γ

(
−e−γS

S`−2

(`− 2)!
+

∫ S

0
e−γt

t`−3

(`− 3)!
dt

)]}
=
λ`

γ4

[
−e−γS

(
γ3S`

`!
+
γ2S`−1

(`− 1)!
+

γS`−2

(`− 2)!

)
+ γ

∫ S

0
e−γt

t`−3

(`− 3)!
dt

]
.

Performing the same substitution ` times, we end up with

wn,n+` =
λ`

γ`+1

[
−e−γS

(
γ`S`

`!
+
γ`−1S`−1

(`− 1)!
+ . . .+ γS

)
+ γ

∫ S

0
e−γtdt

]

=
λ`

γ`+1

[
1− e−γS

(
γ`S`

`!
+
γ`−1S`−1

(`− 1)!
+ . . .+ γS + 1

)]
,

which is formula (12).

21


