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R A B B I T  A N D  H U N T E R  G A M E :  T W O  D I S C R E T E  

S T O C H A S T I C  F O R M U L A T I O N S  

P. BF~RNHARO, A.-L.  COLOMB and G.  P. PAPAVASSILOPOULOS'{" 
INRIA, Sophia-Antipolis, Route des Lucioles, 06560 Valbonne, France 

Abstract--We study stationary and non-stationary versions of the same game with different information 
structures. In a discrete set up, we find algorithms to calculate value and saddle-point, 

1. I N T R O D U C T I O N  

This  pape r  deals  with different  versions of  the same basic  game. The  main  difference comes with 
the in fo rma t ion  s tructure.  Here,  the in fo rma t ion  avai lab le  to each p layer  is, apparen t ly ,  the same 
in all three versions o f  the game,  but  in the last version,  this same piece o f  in fo rmat ion  is no longer  
the comple te  state of  the game,  because  a t ime de lay  has been added .  The  first and second versions 
differ in that  one is s ta t ionary ,  with expected cap ture  t ime as payoff ,  the second finite time, with 
p robab i l i t y  o f  cap ture  before  game end as the payoff.  This  same difference is found  in the t rea tment  
of  the Princess and  M o n s t e r  on the circle game by F o r e m a n  [I]. His der iva t ion  in [1] for the 
s t a t iona ry  game relies on the hypothes i s  tha t  a finite value exists for the game. Here,  in a discrete 
set up, we are able  to show the existence o f  a value and saddle-poin t .  

2. T H E  G E N E R A L  SET UP 

2. I. D . v n a m i c s  

A rabb i t  R j u m p s  back  and for th a long  a finite wall,  in a discrete world.  I t  can therefore  be in 
a finite number ,  N, o f  loca t ions  and is a l lowed to j u m p  at  each ins tant  o f  time, of  a l imited j u m p  
size l. (We shall,  for s implici ty,  cover  main ly  the cases where the j u m p  is l imited to one unit or  
unl imited. )  

Let x, e l~. = {1 . . . . .  N } be the pos i t ion  o f  R. Let u, s U,,j(x,), where x + U,,j(x) c 1~, be its j u m p  
at t ime t, then the dynamics  o f  the rabbi t  are s imply 

x , + ,  = x , + u , .  (1) 

A hunter  H watches  the rabb i t  and  is t ry ing to shoot  it. W e  shall assume he has an a rb i t ra r i ly  
large number  o f  shots  at its d isposal .  (Changing  this to a given, finite number  would only make  
the c o m p u t a t i o n s  heavier  by in t roduc ing  an extra  state var iable ,  except  if tha t  number  were one.)  

Let v ,e  I N be the pos i t ion  at which H aims at  t ime t. 
In Sections 3 and  4, we shall assume tha t  the bullet  reaches the wall  in one step o f  time. Tha t  

is, a bul let  hits the wall  at z, at  t ime t, with 

z,+ h = v,. (2) 

Cap tu r e  is defined by 

tL = in f { t ;  x , =  z,}. (3) 

In the fifth section, we assume tha t  the bul le t  takes  several  t ime steps to reach the wall. In 
pract ice,  we shall only  detai l  the case with two t ime steps. It is clear how the me thod  we shall use 
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generalizes for more time steps. Using the same definition for .z, and capture, (2) is now replaced 
by 

.FI + I z U t ,  

(4) 
Z t  ~ I ~ .]:l  " 

2.2. Strategies 

Although we have not yet completely described the payoff, there is no need to specialize in animal 
psychology to guess that the rabbit R will strive to survive as long as possible, while the hunter 
H will at tempt to get his lunch ready. This will clearly involve mixed strategies that we introduce 
now. 

Let a mixed strategy for R at time t be a probability distribution p, on U,,,~(x), i.e. a vector of  
simplex Z~ 

p , ( , )  = P(u, = u), P, • Y.c. (5) 

Likewise, q, will be a mixed strategy for H at time t, a vector of  the simplex ZN 

q , ( v ) = P ( v , = v ) ,  q, eZN .  (6) 

Both players have infinite memory,  but while H sees R and knows where he has shot in the past, 
R does not know where H is shooting or has shot. (Otherwise, he would never get caught and would 
not need mixed strategies!) 

Let therefore 

X , = { x , , x ,  t . . . . .  xo], Y , = { y , , Y ,  , . . . . .  Y0} if appropriate.  (7) 

R must choose his mixed strategy p, as a function of X,; and so does H in Sections 3 and 4 [game 
(2)], while H has access to X, and Y, in Section 5 [game (4)] 

p, = 4,,[x,], 

q , =  ~P,[x,, Y,]. 
(8) 

2.3. Payo f f  

Replacing u and ~, by mixed strategies like (5) or (6) in the game (2) [or (4)] makes x,, y, and 
z, stochastic processes, and therefore t~ in (3) a stopping time. 

In Section 3, the payoff  that H will try to minimize, while R maximizes it, will simply be R's 
life expectation E(tl) .  This game will be called the stationary game. We shall look at it only in 
the complete information case (2) [and therefore no II, in (8)]. 

In Sections 4 and 5, we shall assume a time T is given (and known of both players) when the 
game warden is going to walk by forcing the hunter to leave (did we tell you he was a trespasser?). 
The payoff then shall be the probability for the hunter to kill the rabbit (probability of  capture) 
P(t, <~ T) and, of  course, R is seeking to minimize it while H is striving to maximize it. 

3. THE S T A T I O N A R Y  G A M E  

3.1. Problem statement 

The motion of  the rabbit is described probabilistically as a Markovian matrix P =pi j  defined 
by 

d e f  
p , j = P ( u , = j - - i / x , = i ) ,  pij>~O, y ' p i j = l ,  i 6 I N ,  j e I  u. 

I~  l N  
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The hunter, knowing x, ,  chooses to shoot at any position in Ix with a certain probability. So 
the motion of the hunter is described probabilistically as a Markovian matrix Q = qij defined by 

dc[" 
q u = P ( v , = J / x , = i ) '  qii>lO, ~ q~i=l"  i~ l~ . ,  j e I x .  

Thus, if x, = i, the bullet will hit position j at time t + I with probability qii. 
It should be pointed out that we consider in this part  of  paper that Pii and q,/are independent 

of t, i.e. we study stationary strategies. 
Stationary strategies are motivated for our problem partly because of the infinite time horizon 

and partly because of their relative simplicity. We do not intend to imply that nonstationary ones 
can be of no relevance to the infinite time horizon problem that we study. 

Since the time interval considered here is infinite, the hunter can assure that he will kill the rabbit 
with probabili ty one by choosing q~j= I /N,  for all i and j in [~., a fact quite easy to demonstrate. 
Thus, in the infinite time case, what appears to be the pertinent objective of  the hunter is the 
minimization of the average time within which the rabbit is killed. The rabbits '  objective is the 
contrary so that the two players are engaged in a zero-sum dynamic game. 

It should be notice that the average time of killing is a function of the initial position of the 
rabbit, x0. Thus, if 2i denotes the average killing time if x0 = i, we have a vector 2 = (2~ . . . . .  2N)' 
of  payoff  objectives where the ' is the notation for the transpose. 

Several questions can be posed concerning the situation described above. 
First, for fixed P, what is the best Q and conversely, for fixed Q, what is the best P? 
Do they exist and if yes, can one find them in a convenient manner? 
I f  there are no restrictions on the choices of  P and Q, does there exist a saddle-point solution? 
If  the matrix P is constrained to be of  a certain form, for example Pu -- 0 if li - j [  t> l + 1 (i.e. 

the rabbit  can move at most I positions to the right or the left of  its current position x, = i), does 
a saddle point equilibrium exist and what is it? 

It should be borne in mind, that in all the questions mentioned, we are interested in the whole 
vector 2 = (2~ . . . . .  24.)' and would like the optimal pairs pertaining to the questions posed above 
to be optimal simultaneously for each component  of  ~ 

In the next sections, we study some of these questions, in the context of  a simple example, and, 
in the later sections, we address them more generally. In the final conclusions section, we present 
some further questions and problems intimately related to those studied here. 

3.2. Introductory example 

Let us consider I~ = { 1, 2} and the 

P = ( 1  

Let P be fixed and thus we have a 

following matrices P and Q 

- a \q21 qz2,/ 

single objective problem, i.e, choose Q as to minimize the 
average killing time. If  x, = 1, it will necessarily be that x,+~ = I, so that the hunter obviously 
chooses ql~ = 1, qt,_ = 0. Therefore, the problem of the hunter is to choose q2~, q2z. Let us consider 
the following two possible choices for Q 

1 °0) ('0 0) 
and study first the situation under Q = Q~. Let x 0 = 2. 

Under QI, the hunter shoots always at position l if the rabbit is at position 2 (or position i). 
If  z, denotes the time at which the rabbit is killed, given that it starts at time zero at position 2, 
i.e. x0 = 2, it holds for the following strategy (for t s { 1,2, 3, 4}, the rabbit  chooses to go to position 
2 with probability a, at time t = 5, it chooses to go to position 2 with probability 1 - a)  

P(z2 = 5/xo = 2, Q = Ql)  = a4(l - a). 

In general, we have 

P ( z z = t ) = a ' - l ( 1 - a ) ,  for t = 1 , 2 , 3  . . . .  
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and thus. the average time for killing the rabbit  is 

- ,  = E ( z / . v , , .  Q = Q, ) 

= ~ ta '  I ( l - a )  
¢ I 

I 
- i f  a < l .  

I - a  

If a = I, then the rabbit  stays always at position 2, and is never killed: this is in agreement with 
l i m , _ . ~ ( I - a )  1= + , ~ .  

Let us now study the situation under Q = Q,_ and .v, = 2. There are now only two possible 
trajectories for the rabbit: 

if the rabbit  starts at .v, = 2 and goes to position 2, it will be killed at time I and this happens 
with probabil i ty a, 

if the rabbit starts at x0 = 2 and goes to position 1, it will be killed at time 2 and this happens 
with probabil i ty 1 - a. 

Thus 

and 

P ( z : =  1 /x0=2 ,  Q = Q e ) = a ,  

P(zz = 2/'x0 =--,'~ Q = Q2) = 1 - a, 

P(z~=t, , 'xo=2, Q = Q 2 ) = O  if t>~3, 

~ = E ( z z / x o = 2 ,  Q = Q : ) = a + 2 ( l - a ) = 2 - a .  

One can draw 5- 2 and ~ as a function o f  a and the two curves intersect at a = (3 - v;5)/2. It i~ 
clear that 

if a belongs to [0, a], ?.2 < ~2 and Q~ is preferred over Q2, 
if a belongs to [~, 1], ~ < :5~ and Qe is preferred over Q~. 

For  a -  h, both Q~ and Q2 result in the same average killing time 2 , ( ~ ) =  ~ , ( ~ ) =  (1 + \/_~)/2. 
There are several interesting facts revealed by this simple example. One is that, a l though Q: 

guarantees that the rabbit will be killed no later than time 2, whereas Q~ allows the rabbit to be 
alive after an arbitrarily large time, Q~ is preferable if a belongs to [0, a]. 

In the context o f  the example considered here with /x = { I, 2 I, the reader can easily persuade 
himself that a zero sum equilibrium cannot  be formed by a pair o f  matrices P* and Q* which have 
only zeros and ones. since, if, for example, the hunter  shoots always at the position i when the 
rabbit  is at position j, the rabbit  will always go from i to k ¢ j .  And so, it will never be killed. 
Analogously  can do the hunter  and always kill the rabbit in the next instant o f  time, if P* is 
composed  of  zeros and ones: thus, an equilibrium pair P*,  Q* with zeros and ones cannot  exist. 

Using the results o f  the next sections, one can show that if the choices o f  P and Q are arbitrar).. 
there exists a unique zero sum equilibrium pair P*, Q* with 

p*=Q*=  
1/2 1 /2 ] '  

and the resulting average killing time 2 ,  if the rabbit  starts at time t = 0 at x0 = i, i = 1,2, is 
- -  _ ,-} 

Actually, this pair (P*, Q*), constitutes a zero-sum equilibrium for either one o f  the costs E(zf) 
or E(z, ). 

Although it is reasonable to assume that Q is chosen arbitrarily by the hunter, i.e. that  he can 
shoot anywhere he wants, it might not be so for P, i.e. the rabbit  might be restricted as to where 
it can go within one instant o f  time, due for example to its finite speed. Thus, one may be interested 
in investigating zero-sum equilibria subject to the constraint  that P is o f  a certain form. 
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Let us examine a situation o f  this type. Let it be that  P is to be chosen of  the form 

l - - a  

i.e. the rabbit  can choose only a. 
The hunter  suffers no restriction as to his choice o f  Q, but it is obvious  that he will choose qt~ = 1, 

q~2 = 0. Thus,  the hunter  chooses 

(,'q 
The average capture times can be calculated directly, or  by using the more  general results o f  the 

next section to be 

and it is easy to see that 

21 = 1, 2 2 -  
! + q ( l  - a )  

1 + a ( l  - q ) '  

a=-- -~- -3-~  and ? / - - l + x / ~ 2  

consti tute the zero-sum equilibrium with resulting value for ~2, (1 + x/5)/2, (i.e. the intersection 
point  o f  the two curves [fi, 22(fi)1 appears,  as may  be expected). 

Thus,  we see that  it is possible to have zero sum equilibria in cases where P is restricted, a l though 
not  every restriction o f  P will allow such an existence. The issue o f  study of  zero-sum equilibria 
under  some restrictions on the choice of  P is under taken in paragraph  3.5.2. 

3.3. Calculation of  the average capture time 

For  a given pair  o f  two N x N Markov ian  matrices P and Q, let z be the r andom variable that 
the rabbit  is killed at some time; it obviously depends on P and Q as well as on the initial value 
o f  x0. It holds 

N 

P(z = t + 1/Xo = i) = ~ P(z  = t/Xo = j ) p u ( l  - qq), (9) 
J - [  

i.e, the probabil i ty that  the rabbit  is killed at time t + 1, given that  it started at x 0 = i, equals 
the probabil i ty that  it is not  killed in going f rom x0 = i to some x~ = j  multiplied by the 
probabil i ty that  it is killed at time t + 1 if it started at x~ = j  at time t = 1; the fact that  
P(z -- t + m / x ,  = j )  = P(z = t/xo = j ) ,  which is due to the stationarity o f  P and Q, is also used 
with m = 1 in deriving (9), Let 

P(~ = t + llxo = 1)  

Y,+,= I P ( z = t + l l x o = 2 )  

[~_P(Z = t +il/xo = N) 
and 

r Pll qll 

P • Q je=r I P21.q21. 

LPNI qNI 

(9)  can be written as 

Yt + I = Ly,, 

PlZql2 "'" PINqIN] 

P22qz2 . .  P2UqZU ] 

PN2qN2 " PNNq~,'N3 

L = P - P * Q .  

t = ! , 2 , 3  . . . . .  y l = ( P * Q ) e .  

If  some Pij = 0, i.e. the rabbit  does not  ever go f rom posit ion i to posit ion j, the hunter  can 
obviously choose qq = 0, since a shot at posit ion j will be an obvious waste. Thus,  without  loss 
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of  generality, we assume that  

pi: = 0 ~ q,/= 0. ( I 0) 

Gregorsk in ' s  theorem,  applied to the matrix L, yields that all the eigenvalues ). of  L lie in the 
disc 

N V 

),;~1 ~< max ~ pi/(l - q , )  = 1 - min ~ p~jq,/. 
i /=I i / = 1  

Under  assumpt ion  (10), it holds that  

)-I ~ 1 -- min {p , : ;p , ,>  0} < 1, 
i,j 

and thus, the matr ix  L has all its eigenvalues strictly within the unit disc of  the complex plane. 
This guarantees  that  y, tends to 0.  e as t tends to + oc. So, the matr ix  inverses, series forms and 
infinite series differentiat ions that  will be used next, are valid. It holds 

P(z < + w.J) =),, + Y2 +Y3 + " "  

= .l'j + L)'a + L~-yl + " ' "  

= ( l - L )  ly I 

= ( I - P + P * Q )  ' ( P* Q) e .  

Since Pe = e, it holds 

and 

( l - P + P , Q ) e = ( P * Q ) e  i.e. ( I - L ) e = y , ,  

P ( z <  + o o ) = e .  (11) 

Since P(z = + 3c) = 0, we can calculate the average  capture  t ime 2 by 
+ ~  

-5 = ~ t y , = ( I - L )  'e, 
t - - ]  

where (1 1) m a y  be used in the last step. Thus  

2 = ( I - L )  ~e = ( l -  P + P , Q )  'e. (12) 

Fo rmu la  (12) will be used repeatedly in the sequel. 

3.4. The hunter's problem 

The hunter ' s  p rob lem is to minimize - with respect to Q, P being fixed. 
Here,  we consider the p rob lem 

m i n E = m i n ( I - P  + P , Q )  le. (13) 
Q Q 

Notice that  we are interested in Qs  that  minimize all the componen t s  of  2- simultaneously.  
One way of  going abou t  this p rob lem is the following. It is known that  the inverse of  an N × N 

matr ix  A, assuming it exists, has ( i , j ) th elements (-l) i+JlAjiJ/IA I, where IAI is the de terminant  o f  
A and IA fji is the de te rminan t  o f  the minor  o f  the (j ,  i)  e lement of  A. Thus,  it is easy to see that  
a l though each componen t ,  say 2-j, o f  2 is a quot ient  o f  nonl inear  funct ions of  the q~/s, these 
nonl inear  functions are mult i l inear  in the sense that  they are linear in each qo, the rest o f  the 
q,js considered fixed. Thus,  the extremal  values of  2j can be achieved at a Q, the elements of  
which are zeros and ones. Consequent ly ,  one m a y  minimize 2~ by checking which ones o f  these 
(N 2 in mult i tude)  Q s results in the smallest  value. I f  one is interested in minimizing all the 
componen t s  of  -5 s imultaneously,  one m a y  check whether  this is possible by calculating 2 for all 
such Qs  and find whether  such solution exists and what  it is. This procedure  is quite cumbersome  
and as it s tands quite uninformat ive .  I f  one considers in addi t ion that  such Qs  cannot  serve as pairs 
o f  zero-sum equil ibrium, one is bound  to search for a different me thod  for handling (13). 
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Let us consider that a given choice Q results in 2 and that another choice (~ results in ~. Thus, 
( I -  P + P • Q)2 = e and ( I -  P + P * (~)~ = e. We assume that (10) holds for both Q and (~. 

Let ~ = 2 + 6 , 6 e R N .  It holds 

6 = ( I - P + P * Q )  ~ ( P , Q - P , O , ) 2 .  

It is obvious that all the elements of P - P • Q and of P - P * (~ are nonnegative and since it 
holds 

( I - P + P * Q )  ' = ( I - ( P - P * O _ ) )  ' = I + ( P - P * O , ) + ( P - P * Q ) 2 + . . .  (14) 

and similarly for (I - P + P * Q)-~. 
Thus, if we want (~ to be preferable over Q, it must be 6 ~< 0, so we have 

(P • Q - P • (~)2 ~<0. (15) 

If, by a choice of (~, we make the first component of (P • Q - P • 0 )2  negative and the other 
components less or equal than zero, we have guaranteed that all the components of 6 will be less 
or equal than zero. In addition, the first component of  6, 6t will be strictly negative since the unit 
matrix in the right-hand side of (14) guarantees that the first element of the first raw of 
(1 - P + P • Q) is strictly positive. For example, if 

PltZl-- max{pl~ zl ,PI2Z'2, . . .  ,P lNZU} ,  

we can choose the first raw of  (~ by 

i~l 1 . . . .  = l ~ l ( l _ l ) = 0 1 ( / + l  ) . . . .  = t ~ I N = 0 ,  0,t= 1, 

and the other raws of Q to be the same as those of  Q, which results in 

"-p~12t+ ~ p~jq~jV-i 
16 I~ 

( p , Q  - p , Q ) 2  = 0 ~<0. 

0 

No reduction of value in going from (Q, 2) to some (Q, ,~) is possible by changing only the first 
raw of Q if 

which is equivalent to 

Pll qtl-Zl "t'- " " " -{- P l N q I N 2 N  >/ P l l  21 . . . . .  P l , '~2N,  

p, j2j=pl/21, Vj, l with p t j4 :0  and p1/~0.  

The proof of the following theorem is a straightforward application of the ideas delineated 
above. 

Theorem 1 
(i) There exists a Q that minimizes simultaneously all the components 2L . . . . .  24, of 2-. 
(ii) A Q is optimum if and only if 

pij-Sj=pi12t, Vi, j , l  with pij=/=O, pit=/=O, (16) 

where the -is are the solution of (13) for the aforementioned Q. 
An algorithm for finding all the optimal Qs is the following 

Step 1: Choose a Q - -Qt ,  so that condition (10) is satisfied. Calculate 

5 ~ = ( I - P + P * Q I )  le, 21=(2tl . . . . .  2N1) r. 

Step 2: Calculate pi,2 i for Pii :/= 0. 

Step 3: Find for each i, the 1 for which 

Pil'Ei = max (Pil•lL, p i 2 2 2 1 ,  . . .  , P i N 2 X l  ) .  
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Step 4: Choose Q2 such that q~z = 1 for each i, where l is the l found for this i in the step 3. 

Step 5: Set Q = Q2. 

This algorithm will converge in a finite number of  steps. It operates essentially on the extreme 
points of  the set of the N x N Markovian Qs and will converge much faster than the primitive 
algorithm suggested in the paragraph 5. which checks N 2 possible Qs since it reduces simulta- 
neously all the components of  2. 

It is also clear that, as soon as an optimum has been found, all the other optima Q can 
be generated as follows if Q is optimal consider for each i, the ls for which 
p,t2t = max(p,21t . . . . .  p~2u~) where 2, = (2~ . . . . .  2,u~)' corresponds to the optimal Q* that has 
been found. Any Q, which has at the ith raw q~j = 1 for a n y j  for which the maximum of the p~j2/s 
for j = 1 to N, is achieved, is also optimal. 

The set of  convex combinations of all these Qs is the solution set of problem (13). Finally, by 
construction of the algorithm (I - P + P * Qk) ~ exists at each step k, i.e. (I0) will be automatically 
satisfied throughout the operation of the algorithm. 

Examph, 

Let 

Step 1: Let 

Then 

/1/3 2/3 0 \ 

P = [ 1 / 4  1/4 !/2 . 

\1 /5  2/5 2/5/ 

Q , =  1 . 

o 

-i = ( I -  P + P * Q i ) - l e  = 

3 + 3 / 1 7 \  

3 + 6/34 J.  

2 + 16/17/ 

Using the criterion of the step 3, we choose 

Q2 = 0 which yields 

1 

Notice that 22 is better than 51 componentwise. 
Using again the criterion of the step 3, we choose 

_ / 1 + 1 / 2 \  
, +  5 / 6 /  

\2 + 5/18/ 

(i'i) tl+,J2  Q3 = 0 which yields 23 = ~  1 +  5/6 J.  

0 \2  + 1/30/ 

Use of the criterion 3 shows that this is the optimal 2. It is worth noticing that in this example, 
q~j equals one at the position of  the raw-maxima of  the pos. 

This is not in general true as other examples can demonstrate. As a matter of fact, a simple 
continuity argument can show that Q3 remains optimum if we perturb the last raw of  P into 
(I/5, 2/5 +~, 2 / 5 -  ~) where E > 0, ~ small, so that the optimal Q3 for this new P will not have 
q32 = l ,  whereas P32 > P3~, P32. It is nonetheless reasonable to expect that large p, js deserve large qijs, 
so that a good initial choice of  Q for starting the algorithm is obviously to choose qi/= I for 
P~I = max{pik;k = 1 . . . . .  N}. 
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Before leaving this section, it is wor th  point ing out  an intuitive justif ication of  the first part  o f  
the theorem.  

First, a simple cont inui ty and compac tness  a rgumen t  shows that  there exist Q s which 
minimize 2g. 

Secondly, let us assume that  Qi minimizes ='i, i = 1 . . . . .  N at t ime t, the hunter  shoots  according 
to the j t h  raw of  Qj. I f  he fails to kill the rabbit ,  which now at t ime t + I is at x, + t = k, he uses 
the k th  raw of  Q~, whereas  c o m m o n  sense suggests that  the k th  raw of  Qj is pert inent  now. 

The fact that  there exists a Q that  minimizes ='t . . . . .  =,s, can also be justified by the fact that  the 
control  of  the hunter  can be expected to be of  the feedback type by which at position x, = i, the 
ith raw of  Q gives the opt imal  control .  

3.5. The rabbit's problem 

The rabbi t ' s  p rob lem is to maximize  2- with respect to P, Q being fixed. 
Here we consider the p rob lem 

m a x S = m a x ( I - P + P * Q )  Le. (17) 
P P 

Let Pt cor respond  to 2~ and P2 cor respond to 22. It holds 

( I  - P~ + PI * Q)2t = (I  - -  P2 + P2 * Q)='2 = e. 

Let 6 = =,~- =-,. So, we have 

6 = ( I - P 2 + P 2 * Q )  ~ ( ( P 2 - P . ) - ( P 2 - P ~ ) * Q ) = ' , ,  

where we assume that  (10) holds for both  PI and P2. Here,  we are interested in increasing =,, i.e. 
we would like to move  f rom =,, to 22 with 6 7> 0, We cannot  increase 6 if 

N 

=,i(1 -- q,j) ~< ~ =,jp,j(l -- q,s), J = 1 . . . . .  N, 18) 
) - I  

or equivalently if 

2 j ( l - -q i j )=22k(1--q~k) ,  Vi, j , k  with p , i ¢ 0  and p , k ¢ 0 .  (19) 

For  example,  if p~ . . . . .  P~k are not  zero and P~k-u . . . . .  PIN are zero, it should hold 

zL( 1 - qll) . . . . .  zk(l -- qlk). (20) 

The  whole deve lopment  of  the previous section can also be carried out here in a complete ly  
ana logous  fashion but we omit  it for  the sake of  brevity.  The  only difference is that  if P satisfies 
(10), and (18) does not hold for some ( i , j )  and we update  P accordingly to some P~ which yields 
a =,~ greater,  there is no guarantee  that  P3 satisfies also (10), so that  some of  the componen t s  of  
-~ may  be infinite. 

3.5.1. The zero-sum case with unrestricted P. If  pi j = 1/N, for i and j in Ix, (13) yields that  =_ -- Ne 
for any Q. Similarly, if q , j=  I/N, for i a n d j  in I~, (13) yields that  =, = N e  for  any P. 

Thus  the pair  (P* ,  Q*), such that  for all i a n d j  in l,~,pi* = q* -- 1/N, is a zero-sum equil ibrium, 
for each c o m p o n e n t  of  the vector  =,. The  averaging capture  t ime at the equil ibrium is N units o f  
time, i.e. it equals the dimension of  P (and Q).  The  remaining question is whether  there exists 
ano ther  zero-sum equil ibrium (P, Q_). I f  it does, it will hold for all Q and all P 

J(P,  Q)  >~ J(P,  0,) = J (P,  Q*) = Ue = J (P* ,  Q)  >~ J(P,  (~), (21) 

where J(P,  Q)  denotes 2- = (1 - P + P • Q)  le. The left-hand side of  (21), in conjunct ion with the 
condit ion (15) for opt imal i ty  of  Q -- (~ yields (/3 • Q* - / 5 ,  (~)=, >/0 for any Q, i.e. 

/5,, (q* - q,, )N + . . .  +/3,.v(q,*,- cT,~)N >~ 0. (22) 

But q* = 1IN and Z'Y'~= ~/~j = 1, so (22) yields 1IN >~tS,~fL~+ "'" +l~uq~.~,, for any (~ and thus, for 
any i,j, 1/N >~13~j which implies ~,, = I /N  = p * ,  i.e. P*  = P. Since (~ is an opt imal  response to P*. 
it has to satisfy (20) with ='2 = N and thus Q = Q*. We have thus p roven  
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Theorem 2 

If  there is no restriction on P or  Q, there exists a unique zero-sum equilibrium which is 

I /N . . .  I/N I 
P * = Q * =  : '. " (23a) 

\ l iN. . ' .  I /N/  
with opt imal  value for 2 = 

3.5.2. The zero-sum solution Jor a class of  constrained Ps. In this section, we assume that P is 
restricted so as to reflect the fact that the rabbit, due to its finite speed, cannot  move further than 
1 positions, i.e. we assume that  P u =  0 if t J -  il ~> (l + I), l ~> 1, so we have 

p = 

P l l  

P2i 

P( /+  I)1 

P12 " ' '  PI l l+I)  

P22 " ' '  P21t+I) P2{l+2,  ( 0 )  
• . , • . . , • - . . . 

• , . . . . . 

P l l +  I)2. - .  "" . .  

P( l+2)2  ' - " • • . .  
• . . • , . . 

(0) 
• , . . • . . . 

• P,vi P.~'~.x i) 

(24) 

P(N l)u 

P{ N I )A' 

P ,"v' N 

Obviously,  if a zero-sum equilibrium P*,  Q* exists, it will be qi* = 0 if Ji - j [  >~ (l + I). Let us 
examine whether such an equilibrium with p* :~ 0, for li - J l  < (l + l) exists• I f  it does, and the 
associated optimal value is z * =  (z* . . . . .  z~,), it must  hold 

and thus 

• . , _  , 7 ,  l i - j l < ( l + l ) ,  p q , ~ j  - - P i k e D ,  l i - k i  < ( l +  1), 

I( - '+ "  - )  pi* = ! z* ~ . (25a) 
k = m a × [ l . i  / ]  

Also using (19), we obtain that 

q,* = I - (rain [N, i + l ] -  m a x [ I ,  i - l ] -  I )p*,  (25b) 

where p,* is defined by (25a). 
We can write P*  and Q* in a more  compact  form by introducing the following notation• Let 

E be an N x N matrix with each (i,j) element equal to 1 if Ji - J l  ~< l and 0 otherwise• E has the 
same structure as P in (24) but with one 's  in place o f  the pi/s. 

Let e = (1 . . .  1)' in R x and 

: , p = Ee - -  e. 

p *  : ( ll']~i 

\ (o) 

/ (26a) 

Then 

Q* = E _ 1 / pl/']~I 

\ (o) 
E " ' .  , 

..,/z U o l i = * l  

(26b) 
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For  the P*,  Q*, z* to exist [since the choice Q as in (23a) is also admissible, we know that if 
P* and Q* are optimal, (10) will be satisfied since the resulting z* has to be finite] and satisfy (13) 
and (25), it must hold 

(I - P *  + P *  • Q * ) z *  = e. ( 2 7 )  

Substituting P* and Q* from (26) into (27) yields 

z* - "'. Ee + • = e. (28) 

\ (0) 1 /~ /  1/~,/ 
Introducing for any i in IN, 

ai = 1/z*, 

denoted by (29), we can write (28) in the following equivalent form: let 

(29) 

E = = E ( a )  and E e - e = p =  

u S P 

Zi 
Vi e I N. (30) 

ai - Z~ + Pi' 

what we need to show is the existence of a nonzero solution of (30). To prove existence, we 
introduce the function f f rom Ru+ to R N such that, for any x in Ru+, we have f ( x ) =  y with 

yi = max [e, ~ . ] ,  VieL~ ,  

where f; is defined by the first equality of  (20) and c in [0, 1] will be specified shortly. First, notice 
t h a t f i s  continuous andf( [e ,  1] s)___ [e, 1] N by construction. Thus, by Brouwer's fixed point theorem, 
f h a s  a fixed point. But for our purpose, i.e. existence of a nonzero solution of (30), the fixed point 
of  f would be worthless if e is such that, for some of the components  of  the fixed point o f f ,  x = y, 
we have xi = yi = c > ['2~(x)]/(l~ + pj). To exclude that this holds for the fixed point o f f ,  for any 
x~, we work as follows. I f  it holds for x~, it will be 

£,(x) cp~ 
- -  > £ , ( x ) .  

x~ = yi = ( > P~ + ~ ( x )  =~ 1 - c 

But 

Z,(x) = Ex  >i. E = e E e  = c ( p  + e ) = c  ' , 

o N ; N /  

and thus 

~Pi 1 
- -  > c ( p , +  i ) = > c  > - -  
1 - ~  p s +  1 

Thus, if c < 1/p, + 1, it cannot be that the fixed point x = y o f f  satisfies 

£(x) 
x i  = Y i  "= (~ 

p, + £(x)" 

To exclude that this happens for any component  of  the fixed point, it suffices to choose 

1 
c < - ~. (31) 

l + max(p~ . . . . .  PN) 

With such an c, the fixed point o f f  serves also as a nonzero solution of (30). 
Since any solution of (30) creates through (26), (29) a solution to the zero-sum game at hand 

and since the value of  this game is uniquely determined, we immediately conclude that (30) not 

CAMWA i~ I-3--0 



216 P. BERNHARD et al. 

only has a solution, but a unique one. Also, this solution satisfies ai >/e for any E < ~ and thus 
z*  = I/at ~< l/c, i.e. the average capture time at the zero-sum equilibrium is less or  equal than 2l + 1, 
which is a much better bound  than the already mentioned bound  N, especially if N is much larger 
than l. 

Remark:  notice that p = ( l , l + l  . . . . .  2 l - 1 , 2 1 , 2 1  . . . . .  2 1 , 2 1 , 2 1 - 1  . . . . .  l ) '  if N > / 2 1 + l ,  
p = ( l , l + l  . . . . .  N - 1 ,  N - 1  . . . . .  l ) '  i f N ~ < 2 l + l  and t h u s g = ( l + 2 l )  J, correspondingly.  

It is also clear that  one can slightly modify  the definition o f f  as to define it only for x symmetrics, 
i.e. x~ = XN, X2 = XN-~ . . . . .  which will guarantee that  the fixed point  is symmetric and thus z* = z* ,  
z* =ZN_* ~, and so on, which will guarantee that the ith row of  P* (or Q*) is the mirror  image 
o f  its N - i + l  row. 

Finally, since any solution o f  (30) provides the value vector o f  the zero-sum game at hand, which 
is uniquely determined one concludes that (30) has unique nonzero solution. The only thing missing 
is an algori thm for finding the solution o f  (30), since the obviously suggested iteration xk +, = . f ( xk )  
is not  guaranteed to produce the solution even as one o f  its cluster points. In this paragraph,  we 
are going to remedy this weakness. Let us consider the function g from R~ to R N defined by 
g ( x )  = v with 

£~(x) 
Vi E [~. (32) 

" £ i ( x ) + p ~  

It holds 

p,/(p, + £, (x) /  
Vg(x)  = E '  "- 

(o) 
Let us consider the iteration x ~ + ~ = g ( x k ) .  It holds 

(0) ]. 

pN/(p, + £Ax))2/ 

x~,+l - x l  = (Vg,(xk))'~ '(xk - x~ ,). (33a) 

where 2 ;  is some vector in Ru+, for i = 1 . . . . .  N. Since Vg(x)  has nonnegative elements, if 
x~./> x~ l, it will be xk +l ~> xk. Thus,  if we can find an initial point  x0 to start the iteration, with 
g(Xo) >>-xo and x 0 ¢ 0 we are guaranteed to create an increasing sequence o f  vectors {xk} which 
is obviously bounded  in [0, 1] u [see (32)] and thus we have guaranteed convergence o f  x k to 
some x * ¢ 0  which solves x * = g ( x * ) .  We claim that  any Xo=~e,  denoted by (33b), where 
0 < ~ < ~" = 1/(1 + max (Pl . . . . .  PN)) performs this task. It holds 

and thus 

E(Ee) = EEe = ~(p + e) = +i) 
PN+ 

g ( ~ e ) =  y with y i ( ~ e ) -  
c(pi  + 1) 

P i + E ( P i +  1) 

(33b) 

~(Pi+ 1) 1 
>/~ or c < - -  (34) 

P, + ~ ( P i +  l) 1 +Pi" 

It suffices 

Thus, if ~ < f  and we start the iteration x ~ . + , = g ( x , )  with any initial condit ion 
x0 = ~e, ~ < ~, ~ ¢ 0, we will create an increasing sequence converging to a solution o f  (30). 

Similarly, if we wish to have a decreasing sequence o f  xks, it suffices that, at the first step, 
g(Xo) <~ Xo. For  example, if x0 = a = pe for some/z  > 0, in order  to have g(xo) <~ xo, it suffices that 
Ei(xo) / (p i+  £~(x0)) ~</t or  Z~(x0) ~< pip/(1 - p)  or # >~ (1 + p,) i for all is which is equivalent 
to # > ~ ( l + l ) - t .  I f  we do not  wish to choose x0=/~e, since it holds that  
£~/(£ i + pi)~< (p~ + 1)/(2p~ + I ) (E/Z + p)  is an increasing function o f  Z), it suffices to choose the 
ith componen t  o f  x 0 greater than (1 + p~)/(1 + 2p,). In conclusion, if 
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- - i  ( (1  - pl)/(1 + 201) / 
x0=#e ,  l~>kt>(l+/------ ~ or e>~xo>>, " , (35) 

(1 + pu)/(1 + 2pu)/  

the iteration Xk + ~ = g(Xk) creates a decreasing sequence and thus {Xk } converges. It is conceivable 
that since {Xk} is decreasing, it might converge to zero, in which case this iteration would not 
provide a nonzero solution of  (30). But, this can be excluded by showing that it is not possible 
to have g(x)  <~ x for x sufficiently close to zero. The proof  is the following. 

For x close to 0, it holds gi(x)= g~(O)+ (Vg~(Yg))'x or 

(Pl/(Pl + £ , (Y ' ) )  2 . 
g(x~)=/ .. (o) )Ex, 

(0) PN/(Pu + ~N(2U))2/ 

where .?' is in [0, x], for i = 1 . . . . .  N. If the algorithm with decreasing XkS converges to zero, it will 
be 

Pl/(Pl + £1(2~)) 2 (0) ] 

g(x,)  = "'. EXk <~ Xk. (36) 

(0) Pu/(Pu + £u(2~))2/ 

It is clear from the form of g (32), that if Xk = 0 then Xk_ i = 0 and thus, as long as x0 4: 0, it 
will be x k ¢ 0 for every k. Let 6k = X/llXk I1 and divide both sides of (36) by IlXklt to get 

Pll(Pl + E1(2~)) 2 (0) ] 
"'. E6k <~ 6k. (37) 

(0) PN/(PN + "ZN(2#)) 2/ 
Since ][6k II = 1, there is a subsequence of {6~} which converges to some 5, 116 [I = 1, 6 >~ 0. For 

this subsequence, the corresponding subsequences of 2~,s go to zero for i = 1 . . . . .  N, and thus 
taking limits with respect to this subsequence in (37) yields 

"-. E6~<~ or E6<~ "'. & 

\ (0) l /PN/ (0) PN/ 

Multiplying both sides with e'  and using (30) yields 

( l + p ~  . . . . .  l + p N ) 6 < . ~ . ( p  1 . . . . .  pN)6 o r  6 1 - - ~  • • - - J f -6N ~ 0 ,  

But this cannot be for 6 = (6~ . . . . .  6 N ) '  >~ 0 and 113 I[ = 1. Thus, we conclude that any sequence 
Xk+t=g(Xk) with Xk+l ~< Xk cannot converge to zero. 

We have thus established two algorithms, the one increasing, if x 0 is as in (33b) and the other 
decreasing, if x0 is as in (34) which provide in the limit the solution of (30). One can carry out the 
first steps of these algorithms to create upper and lower bounds for the z~s. 

Thus, starting with x0 = (1 + 21)-le, we calculate g(xo)>1 Xo and a i is greater or equal to the 
ith component of g(xo); starting with x0 = (1 + l)-~, we calculate g(.20) >i x0 and ag is less or equal 
to the ith component of g(~0). It turns out 

Pi l + ~p~Pi (l + 2l) >~ zi>~ l + - - ( l  + + pi 

For z~, this means 

l 
1 + 2 l - - - -  >~z~ >~ 1 + l .  (38) 

1 + /  

For Zm somewhere in the middle, where Pm = 2/, we have 

l 

2 / +  l '  
1 + 2l >~ zm>~ 1 + 21 + - -  (39) 
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The bounds (38) and (39) are in agreement with the fact that we expect the average capture times 
for i close to 1 and N, to be smaller than those corresponding to is far from I to N, since the closer 
the rabbit starts to the barrier (i.e. i = 1 or N)  the more restricted its moves are. 

Having established the existence of a solution of (30), it is trivial to show that the P*, Q* 
constructed as.in (26) provide a zero-sum solution to the game. By arguments similar to those used 
in the part  3.5.1., one can show that it is unique. 

Let us formally state the results of  this part in the following theorem. 

Theorem 2 

The zero-sum game, with P restricted as in (24), admits a unique solution given by (26) where 
the z*s are found by solving (29) and (30). The solution can be found by finding the ais that solve 
(30), by using the iteration xk+ ~ = g(xk), where g is given in (32) and .x'o is as in (35) or xo = ce, 
where 0 < c < L  and ?- is given in (31). 

3.6. Interpretation off the solution 

Having derived the optimal strategies, let us elaborate on their meaning. Before doing that, let 
us find out where the rabbit spends most of  its time. Since P* is clearly composed of a single ergodic 
class, it holds 

lira _1 L p k =  ep', 
n ~  +-x~ n k _  0 

w h e r e / ~ ' = / 2 ' P  is a probability vector. It can be verified that 

la=~ O = Z a i Y i =  Z a , .  
t = l  t = l  

Let 2 = Q'/~; pi denotes the probabili ty with which the rabbit will be at position i, after the lapse 
of  a lot of  time, assuming it is still alive, and 2~ denotes the probability that the hunter will shoot 
at position i, i.e. 2 gives the distribution of the bullets as time goes to infinity. Let us proceed now 
with some intuitive interpretations of  what happens, by employing an example. Example: let N = 3, 
l = 1. Calculating the ais, z~s, P, Q,/t ,  2 at the opt imum yields 

al = a3 = 0.453, a: = 0.375, 

z I = z  3=2.207,  z2=2.666, 

Z r = Z 3 = 0 . 8 2 4 .  E2= 1.281, 

t0 , 0 / t04, 01 
 /002  029, 

0.45 0.55 1 0.55 0.45I 

to.3o \ 
1[0.390J, x /0 .499 ; ,  0 = ( 1 , 0 , 0 ) .  /~=~ = 

\0.3051 \0.250I 
Thus, the average expected time for the rabbit to leave, increases, the further, the rabbit starts 

at t = 0, from the boundary (z2 > zt ). The rabbit has a tendency to move to the boundary whereas 
the hunter prefers to shoot more towards the middle. One can say, intuitively, that the hunter 
exhibiting a tendency to shoot more towards the middle, forces the rabbit towards the boundary, 
where the restricted moves of the rabbit make easier the hunters '  task. Nonetheless, things are 
such that the rabbit ends up spending more time around the middle (since #2 > / h  = P3) where 
his life expectation is higher (z2 > Zl = z3) and actually that is where most of  the bullets fall 
(22 = 0.499 > ),1 = 23 = 0.25). Thus, two different tendencies appear. At each instant of  time (short 
time horizon), the rabbit moves towards the boundary,  forced by the hunter 's tendency to shoot 
more in the middle. But in the long term horizon, the rabbit frequents more the middle where his 
life expectation is higher and similarly the hunter ends up most of  his bullets there. 
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The  s ta t ionary  strategies applied to the finite hor izon game. 
It  is wor thy  finding out  in what  si tuations,  the s ta t ionary  strategies are good for finite t ime 

problems.  This obviously concerns the magni tu te  of  the t ime horizon• 
It  holds y,+~ = (P - P • Q ) y , , y ,  = (P • Q)e and 

P ( z < ~ t e ) = y ~ + . . . + y , = e -  "'. ( P , P )  e. 

(0) p , /  

Thus  

(P *P)e = 

A I 

"A 

m a x  = 1 . . . . .  N ) e  = 0e 

with 

Thus,  if 

A = E  " 

\aTe~ 

"'. ( P , P )  e<~O'e  

(o) 

and if 0 < 1, 0 gives a rate of  convergence of  l i m , ~ + ~ P ( z  ~< t e ) = e .  This can now be used as 
follows. The  s ta t ionary  s trategy applied to the finite t ime hor izon p rob lem with time hor izon ts, 
will give a very good  strategy for  the hunter ,  who will kill the rabbi t  fast in average times 2~ . . . . .  2~.. 
and the killing will take place with probabi l i ty  99% = 1 - c, c = 10 2 if O!r < 10 ~2 i.e. 

2 
tj > Ilog,001" (40) 

Let us show that  0 < 1, by calculat ing explicitly a 0 with 0 ~< 0- < 1. We will need the following 
fact 

x~ + ""  + x~, c~ + ( N - - 1 ) c ~  
if q < ~ x , ~ c 2 ,  i = l , . . . , N , q , L 2 > O  , then qS(x) ~< 

(XI -~- " ' " -~ XN) 2 (~2 + (N - l )q  )2" 

The  p r o o f  of  this fact is as follows: if ~h(x) achieves its m a x i m u m  in the interior o f  the constra int  
set, it will be x~ . . . . .  xt¢ and the value of  ~b will be 1IN. Checking now the values of  ~b at the 
boundary ,  it is easy to show that  ~ achieves its m a x i m u m  by taking (N - 1) componen t s  of  x to 
equal  the m i n i m u m  value q and only one c o m p o n e n t  of  x to equal the m a x i m u m  value ~2. 

Using this fact and taking q = 1/(2l + 1), E2 = l / ( l  + 1), we can show that  

I2~ (~2 + p , ~ )  ~ 

Thus  

1 1 Ai (~ + piL22, with q - c 2 -  
Pi E-~i ~ Pi (E 2 + pif.i) 2l + 1 ' 1 + I 

6 

We can now use the fact that,  if 0 < 2~ < 42 then 

41 (C2. .~_21(I )2~ '~2  (~2"~-22~1) 2' 
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to show that 

Ai c~ + 21E~ 
Pi~i i ~ 21(C 2 + 21Ei)2 =7.  

Letting E~ = 1/(2l + 1), c2 = 1/(l + 1) in the preceding equality, we find 

A 414+1613+1212+21 
max pi~ /=O <~t7 - 414+ 1613 + 1212+2l+812+61 + I 

Thus 

<1 .  

1 0= 
812 + 6l + 1 

1 +  
414+ 16l 3 + 12l 2 + 2l 

is a number smaller than 1, (which is independent of  N )  and can be used in (40), in place of 
0 to provide lower bounds for the duration of the game, in order that the stationary strategies are 
"good"  for the finite time case. Notice, that for l large 

1 2 
6 ~  ~ 1  

2 -  / 2' 
l+p  

ti~> 
2 l 2 

- - l n E .  

1 O g l 0 ( l - - ~ ) - 2  

and thus 

So that for large l, we have t/~ 12/21n(1 -~)  where p is the desired probability of killing. 

4. F IRST  VERSION OF THE N O N - S T A T I O N A R Y  GAME 

Let q~ and ~ be given strategies. Let the payoff J(q~, ~ )  be the probability that R be killed at 
time T or before knowing the initial state. Let the stopping time 

/ i n f { t ; t e { 1  . . . .  , T }  and x , = z , }  
ts= I,T if ¥ t ~ { 1  . . . . .  T}x,~z,. 

We use the same payoff and stopping time in Sections 4 and 5. 
We use dynamic programming to solve this game. 

4.1. Setup 
Let g', 7* be given strategies. Let W(x, t) be the probability that R be killed at time T or before 

when x, = x. We have 

W(x,t)= ~" (p(u)q(u+x)+ Y. p(u)q(v)W(x+u,t+l)) .  
uE Uad(X) t'EIN;I' # .V + u 

R wants to minimize this probability and H to maximize. Isaacs' optimality principle gives us 
the optimal value 

V(x, t )=minmax(  ~ p(u)q(u+x)+ ~" p(u)q(v)V(x+u,t+l)),  
P~'U qE'i'N UEUad(X) t'EIN;V ~.~ +.I' 

= min maxp 'B ,+  i(x)q. 
P~$'U qE]~N 

where B,+j(x) is a matrix of  dimension less or equal to N × (N + 1). 
Therefore, we have to solve a matrix game at each stage of the dynamic programming algorithm. 

The equivalence between solving such a problem and solving a linear programming problem gives 
us the existence of  a mixed saddle point for this game. 
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4.2. Resu l t s  and some  proper t ies  

We show some proper t ies  of  symmet ry  with respect to x, so we can study the game for  x in 
{1 . . . . .  N / 2 }  if N is even or x in { I , . . . , ( N  + 1)/2} if N is odd. 

Typical  results are as follows for  l = 1. 
Let  a = V ( x  - 1, t + 1), b = V ( x ,  t + 1) and c = V ( x  + 1, t + 1). Fo r  the game value, we have 

b ( 1 - c ) + ( l - b )  
V ( l , t ) -  

(I - c)+(1 - b )  ' 

a b c 
14 + 

(1 - a )  (1 - b )  (1 - c )  
V(x ,  t )  = 

! 1 1 
+ + 

( l - - a )  ( l - b )  ( l - - c )  

and 

for x ¢ !  

1/3 ~< V(x ,  T - 1) ~< 1/2 Vx, 

1/2~< V ( x , t ) ~ < l  Vx and t 4 : T - l ,  

V ( x  + 1, t)  ~ V (x ,  t )  <~ V ( x  + 1, t - 1) ~< V(x ,  t - 1) V(x, t). 

So that  the table of  Vs against  x and t can be easily computed .  We give an example  for N = 12: 

1 2 3 4 5 6 

T -  1 1/2 
T -  2 0.7140 
T -  3 0.8330 
T -  4 0.9000 
T - 5 0.9400 
T -  6 0.9640 

1/3 U3 1/3 1/3 1/3 
0.6000 5/9 5/9 5/9 5/9 
0.7570 0.7140 0.7040 0.7040 0.7040 
0.8500 0.8200 0.8050 0.8050 0.8050 
0.9100 0.8800 0.8700 0.8688 0.8683 
0.9450 0.9260 0.9160 0.9127 0.9123 

F o r  the opt imal  strategies, we have 
For  R 

For  H 

For  R a n d x # l  

1 
~ , * [ l ] ( 0 )  - l - b '  

l + - -  
l - c  

i 
• *[l](1) = 

l - - c "  
1 4 - - -  

1 - b  

f 
# , ~ [ 1 ] ( l )  i f  v = 1, 

~ [ 1 ] ( v ) =  ~ [ 1 ] ( 0 )  if v = 2 ,  

0 otherwise. 

~ [ x ] ( - l ) =  

~?[x](O)= 

1 - a  l - - a '  
1 +Ts-~_ b + 1-~-~ 

1 - b  1 - b '  
l + T ~ _ a +  l - S  7 

1 - c  1 - c  

1 +T~-a  + T=-~ 
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For  H a n d x ¢ l  

fl - 2q~*[x](v - x )  if t, = x  - l , x , x  + 1, 
7J*[x](v) = 

0 otherwise. 

At  x and t fixed, the probabil i ty that R jumps  in x + I is less than the probabil i ty that R stays 
in x which is less than the probabil i ty that R jumps  in x - 1. 

~*[x]  (1) ~< q~*[x](0) ~< 4~*[x](--1). 

At  x fixed, x 4: 1, the probabil i ty that R jumps in x - 1 decreases and the probabil i ty that R 
jumps  in x + 1 increases when t increases. 

4,*[x]( -  l) 4 4,,* , [ x l ( -  l) 

¢,*[x](1) ~> @* ,[x](l). 

The properties o f  (~u,*[x])(~., t are derived from the properties o f  (q'*[x])., ,i .  

5. S E C O N D  V E R S I O N  OF T H E  N O N - S T A T I O N A R Y  G A M E  

5.1. Definitions 
Let now the bullet take two time steps to reach the wall. The game is described by (1), (3) 

and (4). 
Let U, = (u0 . . . . .  u,) and V t = (v0 . . . . .  v,). We can remark that Yt = V,_ i and X, = (Xo, U, ~). 
The players '  informat ion are given by 

- - f o r  H, (X,, Y,) or  (Xo, U,_}, V, l) for all t in {0 . . . . .  T}, 
- - f o r  R, (xo,Yo, Zo) for t = 0 a n d  X, or  (x0, U~ i) for all t i n  {1 . . . .  , T } .  

R knows exactly x at each time t, so we can introduce a distribution law Q, on the space IN for 
y. This law depends on 

- - t h e  strategy o f  H at t - !, denoted by ~,_ ~, 

- - Q t -  i,  
- - t h e  informat ion of  R at t - 1, x ,  ~. 

Q,(y) is the a posteriori probabil i ty that yt equals y. Let E be defined by 

E =  Q = ( Q ( 0 )  . . . . .  Q(N))~[O,I] x + ' ;  ~ O ( y ) = l , Q ( O ) = O  or Q ( 0 ) = I  . 
I - - 0  

At time t, the strategies o f  the two players are defined by 

- - R ' s  strategy depends on its state, x in I.v and Q a distribution law in IN 

oh,Ix, Q] = p,, 
- - H ' s  strategy depends on R 's  state, x in IN, the control  V, ~ that he has chosen at time t - 1 

or y in iu and Q a distribution law in I~. 

tP,[x,),, Q] = q,. 

Then, we can write explicitly the dependance between Q, and Q,_ 

Q , ( y ) =  ~ Q , _ t ( j ) T ,  ,[x,j ,Q, , ] 0 ' ) ,  for t~>2, 

and 

QI (y )  = ~ 0 [ x 0 , 0 , Q o ] ( y )  with Qo~E; Q o ( 0 ) = l ,  

denoted by Q,(y )=  F(Qt 1, 71, ~)(y). 

w0 (x , ) ,  z, Q, t) be the probabil i ty for H that R be killed Let 4~ and ~u be given strategies. Let *~ ' 
at time T or  before when x, = x, y, = y, z, = z, Q, = Q. Now,  we have 
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f ~ ~ ~,[x,Q](u)~,[x,y,Q](v)W~Oe(x+u,v,y,F(Q,~,), t+ l )  
UE Uad(X ) t'EI N 

W~(x,y,z,Q,t)= if x Cz and t <t/, 
0 if x : / : z  and t = t t  (and then, tc =T), 
1 if x = z  (and then t t = t ) .  

We remark that the first term of the right-hand side of the equality does not depend on z, so 
we denote it by W~*(z, y, Q, t), furthermore by convention, we set W~e(x, y, Q, t 1) = O. 

Let W~'(x, Q, t) be the probability for R to be killed at time T or before when x, = x. Q, = Q. 
We have 

w~'(x,Q,t)= ~ Q(y)W~V(x,y,Q,t) for t>.l, 
I ' l l  N 

for t = 0. 

and 

W~(Xo, Qo, O) = w~V(xo, O, Qo, o) 

We define 

- - the  H cost function by 

V(x,y,Q,t)=max ~ ~ q(v)~[x,Q](u)E~(x+u,v,F(Q,~,),t+l), 
qeXN uEUad(X ) vei  N 

(41) 

where 

tP,[x,y, Q] = q *  belongs to the set of arguments of  the maximum sought, the function V. is 
defined by 

V:" 12 × E × {0 . . . . .  tr} -~ B, B bounded 

fV(x ,y ,Q, t )  if x Cz 
(x,y,Q,t)~ V:(x,y,Q,t)= ~O 1 if x ~ z  

if x =z, 

- - t he  R cost function by 

and t < tl. 

and t = t 1, 

V(x,Q,t)= ~ Q(y)V(x,y,Q,t) 
yE 1 N 

= m i n  ~ Q(y) ~ ~p(u)~[x,y,Q](v)Vv(x+u,v,r(Q,~,), t+l),  
PEZU v e i  N UEUad(X) vel  N 

where ~,[x, Q] = p *  belongs to the set of arguments of the minimum sought. 
Remark: The equality (42) is equivalent to this equality: 

v(x,Q,t)=min max ~ Q(y) ~ ~p(u)q(y)(v)E~.(x+u,v,F(Q,~',),t+l). 
pEEl;" qE[IsN= I ~  r y~l  N u~Uad(X) VEIN 

Remark: Thus, we have V:(x, y, Q, t) = W~o÷(X, y, z, Q, t), v w~ ÷ and P W~ ~ 

Let Q* be a solution of  (43): 

Q * + l ( . ) =  ~ Q*(y)~,[x,y,Q*](') for t>~l ,  
y~l  N 

Q * ( ' )  = kfi0[x 0 , 0 , Q * ] ( ' )  with Q* such that Q~(0)=  1. 

Let ¢*(x0, U,_,) = ¢,[x,, Q*] and T*(Xo, U, ,, Vt_l) = ~ J t [ x t , Y t ,  Qt ~] for all x,, y, in IN. 

(42) 

(43) 
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2 2 
U~ Uad{ ~:) '~1,, 

5.2. Theorem 

Theorem 3 

If it exists Q*, ¢b*, ~*,  v from l ] x  E x {0 . . . . .  t/} to Bo, Bo bounded, F form 
IN X E x {0 . . . . .  t/} tO B~, B~ bounded verifying the equalities (41)-(43) then 

(i) Y ( ~ * ,  7 /*)  = V(xo,  0, Q * ,  0) = V ( x  o, Q,* ,  0 ) ,  
(ii) For all admissible strategies ¢b and 7 s, we have the following inequalities 

J(cb*, ¢P) ~< J (~* ,  ~'*) ~< J(cp, tp,). 

Proof. First, notice that (41) implies that V = W~ '~* and P = W~ "~'. It follows the equality (i) 
of the theorem. 

Take now an arbitrary ~P. ~ and ~' together generate trajectories (depending on w). Let s--~ I Xt ~, 

{~}, {~} be such a trajectory. Also, let Q, be generated by (43) along this trajectory (i.e. placing 
and not ~u in the equation for Q,+~). Let t such that t < tt. 
We have 

E~(W+o+(.~,+,, y,+,, z,+,, Q,+,, ~ + 1)/x,, Y,) 

~/,(v)~,[x,, Q,](u) m~÷(x, + u, v, y,, F@, ,  ~ ) ,  t + I) 

if  x~+l -Cz~+~ and t < t t ,  

0 if  x,  + ~ 4: z,  + ~ and t = tr, 

1 i f  x , + l = z ~ + l .  

<<. W~oC'(x,,y,, z,, Q,, t) by definition of  ~b. 

Then 

J(4>, re) = E+~ ( W~o~ (X,,, ),,,, z,,, Q,,, ti)/xo), 

- E ~ (  .. E ~ ' W ~ ¢ ' x  - • t o t- ,,,Y,,, z,,, Q,,, tr)/X,, i, Y,, , ) . . .  IXo), 

with the increasing algebra property, 

<~ W~o+(Xo, o, o, 20, o) = w,*÷(Xo, o, 20, o), 

= j ( ~ ,  ~). 

So, we have J(q~*, ~)~< J(q)*, ~u,) for all admissible strategy ~P. 
Take now an arbitrary q~. ¢b and ~ together shall generate trajectories. Let {2,}, {~,} be such 

a trajectory. Let 2t be generated by (43) along this trajectory. Then, (Or) is the conditional 
distribution law of y, knowing X,. Let t such that t < t 1. By definition of W~ ~, we have 

W>*~(x,+,, Q,+, , t  + I )=  E ( W ~ ( x , + , , Y , + , ,  Q,+, , t  + I)/X,+,). 

Then 

E(W~' (x ,+ t ,  Q,+,, t + 1)/X,) = E ( E ( W ~ ( x , + , , y , + , ,  Q,+,, t + l)/X,+,)/X,), 

= E(W~'(x,+~,y,+~, Q,+~, t + 1)/X,) since 

~(X,) = a(X,+,). 

So, we have 

E~÷(W~+(x,+,, Q,+,, t + l)/x,) 

=E*c'(W~C'(x,+, ,Y,+,, Q,+,, t + 1)/X,), 

= Z 2 , ( Y )  Z Z P , ( U ) ~ , [ x , , Y  , O - , ] ( v ) W ~ o ¢ ( x , + u ' v ' y ' F ( 2 ' ' ~ ' ) ' t + l ) "  
V~I N u~l_,'ad(Xt) t'E],~¢ 
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Z O.,(y) E Z 4,[xt, O.,](u)q',[x,,y,O_t](v) 
yEI  N UE Uad(Xt) VEI N 

× W0~÷(xt + u, v, y, F(~ , ,  kb,), t + 1), by definition of qfi, 

= E O_,(y)wf*(x, ,y ,  O_t, t), 
y E I N 

= wf*(x,, 0.,, t). 
Then 

J ( ~ ,  ~ )  = F-~ (W~* (xt:, Q.,:, t:)/Xo), 
= E ~ ¢ ( . . .  E~÷(W~z÷(x , ,  0_ 9, tj)/X!t ~ ) . . . / X o )  with the increasing 

algebra property, 

> E ( w ~  ~ (x,j, 0.!,, t:)/xo) 

= s ( 4 ,  g'). 

So, we have J((P*, ~*)  ~< j(7~, ~* )  for all admissible strategy ~. 
The set of  inequations (41) and (42) is a saddle-point in p, q, with ~fi fixed in V, which must 

coincide with the optimal q in the saddle-point. The algorithm amounts therefore to solving what 
is essentially a fixed point problem ~b = q,(~b) at each point in the extended state space (x, Q, t). 
This is a formidable computational problem for large values of N, but can be tackled for small 
values. This is currently being attempted. 
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